首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Summary. Palaeomagnetic results from 212 horizons spread evenly through an 18 m sedimentary sequence in southern British Columbia are reported. Radiocarbon ages suggest that the sequence spans the interval from 31 200 to 19 500 yr bp. No evidence for any large geomagnetic excursions (such as the so-called Mono Lake Excursion) is found, but a distinctive pattern of 'normal' secular variation is observed with declination and inclination swings of 45° and 25° peak to peak amplitude respectively. For the most part the secular variation consists of low amplitude oscillations about the field vector of a geocentric axial dipole expected at the site latitude, but three relatively large perturbations occur at approximately 4000 yr intervals. These perturbations systematically bias the overall mean to shallow inclinations and easterly declinations in a manner reminiscent of the spatially non-isotropic secular variation model proposed by Cox. The bias involved is about 6° in declination and 3° in inclination (overall mean D = 5.8°E, I = 64.2°, α95 = 0.9°, N = 212 horizons), which leads to a pole which is both 'far-sided' and 'right-handed'. If the horizons involved in the three major perturbations are eliminated the mean direction ( D = 1.2°E, I = 67.2°, α95 = 0.8°, N = 125 horizons) does not differ from that of a geocentric axial dipole despite the small cone of confidence.  相似文献   

2.
Summary. A 10 000 yr continuous secular variation record from intensively dated lake sediments in SE Australia has been subjected to periodogram and maximum entropy method analysis. Tests on synthetic data reveal some of the limitations of the latter method, particularly when applied to complex number series. Anticlockwise precession of the magnetic vector at a period of 5000 ± 1000 yr is tentatively ascribed to dipole precession, and clockwise precession at a period of about 2800 yr is probably due to westward drift of features of the non-dipole field.
The effect of calibrating the radiocarbon time-scale is important and results in periodicity shifts of up to 25 per cent. Even for well-dated lacustrine sequences power spectra are poorly constrained: it is thus possible that the geomagnetic secular variation on a time-scale of thousands of years is more uniform than often supposed. Mismatches between declination and inclination spectra can arise as a natural consequence of certain types of source mechanism and should not be simply attributed to figments of the analysis employed.  相似文献   

3.
A secular variation record of the geomagnetic field direction for the last 6.5  kyr has been obtained from the magnetization of sediment cores from Erhai Lake, southwest China. In order to make a comparison with this record, secular variation in east-central China was investigated by combining available magnetic field data from historical records and archaeomagnetic measurements since about 350 bc . The secular variation in Erhai Lake shows features consistent with the combined record, except for the oldest three observed declination swings in Sian from 720 to 900 ad . Many features of declination and inclination in China also occur in Japan. From 500 to 1000 ad , declination was westerly ranging from about −20° to −5° in Erhai Lake, east-central China, and Japan.  相似文献   

4.
Summary. A palaeomagnetic record of the geomagnetic secular variation during the last 10000 years has been obtained from 10 cores of sediment from Loch Lomond, Scotland, Lake Windermere, North England, and Llyn Geirionydd, North Wales. A time-scale is provided by 30 radiocarbon age determinations and pollen analyses on several of the cores. The main swings and much fine detail of both declination and inclination records repeat well between cores and between lakes, and the overall record is much more detailed than previous European records.
The new record shows that neither declination nor inclination swings have been periodic over the past 10000 years, but that the main swings have become progressively shorter in duration during that time. Each swing is characterized by fine detail which enables use of the record as a secondary method of dating other European sediments.
The motion of the geomagnetic vector has been predominantly clockwise throughout the time period spanned, but confirms a period of anticlockwise motion from 1100 to 600 bp first discovered by British archaeomagnetic investigations. The record agrees with British and Czechoslovakian archaeomagnetic records, but not with Japanese archaeomagnetic or North American lake sediment records. This suggests that the secular changes are controlled by local growing and decaying, drifting sources, rather than by wobbling of the main geomagnetic dipole.  相似文献   

5.
Remanence directions, measured at 2  cm intervals along a composite 88  m bore-core, enable mean palaeomagnetic poles to be defined at 13.6°S, 25.2°W and 13.6°N, 154.8°E. The directions of remanence vary very smoothly away from each palaeomagnetic pole, extending more than 90° from them. This raises doubts about the physical meaning of polarity definitions based on the distance between virtual and mean palaeomagnetic poles. For practical purposes, intermediate polarity is defined as directions whose virtual poles lie more than 25° from the mean pole, enabling at least five normal subchrons to be specified within the upper predominately reversed quarter of the core and 11 reversed subchrons within the lower predominantly normal three-quarters of the core. The stratigraphic thickness between these subchrons shows a very high linear correlation ( r >0.99) with the stratigraphic thickness of other terrestrial sequences and the distances between marine polarity sequences of comparable age. The analysed sequence contains wavelength spectra which, when transformed to the temporal realm, match periodicities determined for three marine magnetic anomaly profiles of similar age. These also match planetary orbital periodicities for the Cretaceous. These observations suggest that secular variations and polarity transitions are driven by common core processes whose surface expression is influenced by changes in the planetary orbits. Such detailed geomagnetic features enable far greater reliability in establishing magnetostratigraphic correlations and also enable them to be dated astronomically.  相似文献   

6.
Summary. Piper suggested that the Lewisian has rotated 30° anticlockwise since magnetization, whereas the opposite appears more likely. The main magnetization in the Lewisian recognized by Piper and Beckmann was imposed upon cooling after the Laxfordian metamorphism at about 1750 (± 50) Ma. The palaeomagnetic pole corresponding to this magnetization is at 37.6° N, 273.2° E ( dp = 3.7°, dm = 5.2°).
In Greenland, palaeomagnetic poles similar to each other, with a mean pole at 21.6° N, 280.1° E ( K = 52, A 95= 9.4°), have been determined from five widely separated regions in central West Greenland and from Angmags-salik in East Greenland. The magnetization observed in all these regions was established upon cooling after the Nagssugtoqidian metamorphism, again at about 1750 (± 50) Ma.
The Laxfordian and Nagssugtoqidian metamorphisms were equivalent. It is therefore assumed that the two palaeomagnetic poles quoted above were originally identical. Their present difference can be explained by clockwise rotation of north-west Scotland about a local rotation pole since the Lewisian became magnetized, in addition to opening of the Atlantic assuming conventional reconstructions:
(1) assuming the reconstruction of Bullard, Everett & Smith, the local rotation proposed is 39.5° (± 18.1°) about a pole of rotation at 60.3° N, 354.5° E, or
(2) assuming the reconstruction of Le Pichon, Sibuet & Francheteau, the local rotation is 28.0° (±17.7°) about a pole of rotation at 54.1° N, 354.6° E.
These proposals of local clockwise rotation of north-west Scotland accord with that of Storetvedt based on palaeomagnetic results from Devonian rocks on the north-west side of the Great Glen Fault.  相似文献   

7.
Summary. In this paper we present palaeomagnetic data from 87 hand samples collected in a sequence of tuffs and shales (Surf Formation) of Llanvirnian age, exposed in north-western Argentina (27° 47' S, 68° 06' W). After cleaning, the majority of samples showed reversed polarity and yielded a palaeomagnetic pole at 5.9° E, 8.5° S (α95= 5.9°). They also showed reversals of declination and inclination at the top of the sequence, which we have associated with geomagnetic excursions. Whole rock K—Ar age de-terminations suggest an age older than 416 ± 25 Myr for the Suri rocks. The predominant reversed stable remanence of these rocks is consistent with the reversed polarity reported for Early Llanvirnian rocks from USSR. The palaeomagnetic pole for the Suri Formation is consistent with the interpretation that Gondwana was a single unit in Early Palaeozoic times.
Palaeomagnetic data from 27 hand samples collected from 10 igneous units of Late Silurian—Early Devonian age (Ñuñorco Formation), exposed in the same area, are also given. The majority of the igneous units showed reversed polarity after cleaning. The positions of VGP's for the Ñuñorco igneous units are scattered and they are not used for geodynamic interpretations. Whole rock K—Ar age determinations suggest ages of 416 ± 25 and 360 ± 10 Myr for two igneous units of the Ñuñorco Formation.  相似文献   

8.
The remanent magnetic properties of an 88  m bore core are unrelated to either the dolomite content or the sedimentological textures and are considered to be carried primarily by biogenetic magnetite that was cemented in during very early diagenesis. Individual readings represent time intervals of c . 720 ± 32  yr and, after 40  mT partial demagnetization, they provide an almost continuous record of averaged geomagnetic secular variations over a period of some 3.17  Myr. The magnitude of directional secular variation is twice that of the present day, despite being smoothed, and the secular variations appear to grade into polarity transitions, suggesting no difference in their mechanisms. The rates of change in direction between subjacent levels in the core have a log-normal distribution which extends smoothly beyond 90° and has a median value of 13°/700  yr, the same as for unsmoothed European secular variation during the last 2000  yr. The intensity of remanence, after 40  mT partial demagnetization, appears to provide a reasonable approximation to geomagnetic field intensity. This tends to be weaker when the direction is moving faster, reflecting averaging, but is unrelated to the distance of the vector from the mean direction; that is, it depends on the rate of change and not on the virtual pole latitude. The virtual poles, after correction for tectonic rotations about horizontal and vertical axes, have latitudes that form a strongly platykurtic Fisherian distribution, while their longitudes have a circular distribution on which are superimposed two Gaussian peaks, 180° apart. This bore core thus provides detailed information of smoothed geomagnetic secular variation in the Lower Cretaceous (127 ± 3  Ma) which shows clear regularities in behaviour, some related to changes in the Earth's orbital parameters.  相似文献   

9.
The younger of two closely spaced palaeomagnetic excursions at Pringle Falls, Oregon, is recorded in lacustrine silts that crop out in Long Valley, California. Assigned an age of about 220 000 years, the virtual geomagnetic poles of the younger excursion form a clockwise loop that reached 35 °S latitude east of South America before returning to the northern hemisphere in the Pacific Ocean west of Central America. The poles then form a narrow band across North America while moving to high northern latitudes. This record matches extremely well feature B of the original excursion record from Pringle Falls reported by Herrero-Bervera et al. (1994) and is similar to this excursion at Summer Lake, Oregon ( Negrini et al. 1994 ), in that the pole path is confined primarily to the east–central Pacific Ocean. On the basis of an assumed sedimentation rate of 30  cm per thousand years, the younger excursion (feature B at Pringle Falls) spans an estimated 1200 years and followed by about 1000 years a larger excursion (feature A at Pringle Falls) previously discovered at the same Long Valley site. At a second Long Valley site 30  m away, the younger excursion (feature B) is only partially recorded because of a presumed small hiatus in the sedimentary section.  相似文献   

10.
Summary. In addition to a component (A) of recent origin, two NRM components are distinguished in the Cambro-Ordovician redbeds of the Armorican Massif. In most sites other than those from northern Brittany the oldest (C) is probably Silurian or early Devonian, and is mainly carried by specularite with high blocking temperatures. This component was variably overprinted by a Devonian or early Carboniferous component (B3) which was probably acquired as a viscous PTRM on uplift after burial, and is carried by hematite pigment with intermediate to high blocking temperatures. In the red succession of Plourivo-Bréhec (northern Brittany) declination scatter of two intermediate to high blocking temperature components (B1 and B2) is consistent with clockwise rotation of the bulk of Europe during the late Carboniferous, implied independently by published European Carboniferous palaeomagnetic data.
Stable NRM in the Erquy Spilite Series yields a palaeomagnetic pole at 344° E, 35° N ( dp = 21°, dm = 22°), and was probably acquired during remagnetization following Late Precambrian or early Cambrian folding. This is consistent with a middle to late Cambrian age of remagnetization estimated by comparison with other poles of known age.
A palaeomagnetic pole position at 332° E, 34° S ( dp = 4°, dm = 7°) determined for the Hercynian Trégastel-Ploumanac'h complex is consistent with other middle to late Carboniferous poles from elsewhere in Europe.  相似文献   

11.
Summary. Palaeomagnetic results are presented from the c . 160 km2 Caledonian synorogenic layered Fongen-Hyllingen gabbro complex (of probable late Silurian age) located about 75 km SE of Trondheim, Norway, in the allochthonous Seve-Kdli Nappe Complex. A total of 80 oriented samples from eight sites in the northern part of the gabbro were investigated. After detailed af demagnetization two stable high coercivity components emerge: one with a well defined NW direction with D =325°, I =−21° (α95=8°, N =8), and another, less well defined, probably younger, SW direction with D = 237°, I = 6° (α95= 9°, N = 8). Correction for dip of these two directions gives D = 329°, I =−7° (α95= 10°) and D = 238°, I =−11° (α95= 12°), respectively. The corresponding pole positions are P 1 : 19° N, 225° E and P 2: 19° S, 308° E, respectively. The reversed pole -P 2 of the SW direction lies close to other NW European palaeomagnetic poles of Caledonian, Upper Silurian-Lower Devonian age. However, the dominant pole PI is far away from these, and could be due to a late Caledonian geomagnetic excursion of considerable duration; or it could record a c . 90° rotation around a vertical axis of a crustal block within the Scandinavian Caledonides. Block rotation could have been related to nappe translation, although geological observations do not at present appear to support the occurrence of such an event.  相似文献   

12.
Palaeomagnetic measurements on a giant core sample 20 cm in diameter and 7.38 m long collected from Mizushima-Nada, the Inland Sea. Japan (Seto Naikai) provide evidence of post-depositional magnetization. the geomagnetic secular variation from about 4000 to 8000 yr BP is characterized by a long period of westerly declination before 6600 yr BP. the maximum deflection is beyond 50°W during this period. the palaeomagnetic record further demonstrates that there is a hiatus over 3000 yr in sedimentation due 10 the sea-level change around 6.85 m from sea bottom, and that the lower limit of the sea-level around 8000 yr BP is 18.5 m beneath the present sea-level.  相似文献   

13.
Calcite and sedimentary fills in fractures cutting the Upper Devonian carbonates in the Holy Cross Mountains (HCM) were dated palaeomagnetically by comparison with the apparent polar wander path (APWP). Haematite-bearing calcite possessed well-defined components of natural remanent magnetization (NRM), which were preserved under thermal demagnetization to temperatures of approximately 500 °C, when specimens disintegrated. Although not completely demagnetized, some specimens revealed a stable NRM component before destruction, thus making a component analysis possible. Five components were determined using density point distribution and cluster analysis. One has a mean that is similar to the present-day local geomagnetic vector. The remaining four components yielded palaeomagnetic poles located at: A (70.3°S, 5.5°E), B (71.3°S, 31.2°E), C (48.7°S, 351.0°E, virtual geomagnetic pole), and D (11.6°S, 312.3°E). Antipodal polarities found in the fracture fills, together with dissimilarities in magnetization found in calcite and hosting carbonates, indicate the lack of simultaneous remagnetization, and different times of remanence acquisition for the rocks under comparison. Taking both palaeomagnetically inferred palaeolatitudes and regional tectonics into consideration, a Mesozoic (Cretaceous?) age is estimated for palaeopoles A and B, a Permian age for pole C, and a Carboniferous age for pole D. These age determinations are in line with the calcite ages estimated from isotopic studies. A comparative palaeomagnetic study performed on a well-dated Upper Devonian neptunian dyke of limestone and a Lower Triassic clastic vein yielded virtual geomagnetic poles (VGPs) close to the APWP for Baltica. Generally, the remanence from fracture fills may be useful for dating related tectonics, karst phenomena and mineralization processes.  相似文献   

14.
Palaeomagnetic data from 182 hand samples collected in a rock sequence of about 620-m of red beds of Late Palaeozoic to Early Triassic age exposed in north-western Argentina (30.3° S 67.7° W), are given.
After cleaning, the majority of the Upper Palaeozoic samples (Middle Section of Paganzo Group) show reversed polarity and yield a palaeomagnetic pole at 78° S 249° E (α95= 3°). They also record a polarity transition which we have correlated with the Middle Permian Quebrada del Pimiento Normal Event. The position of the palaeomagnetic pole and the K-Ar age of a basalatic sill at the base of the sequence support this correlation.
Stable remanent magnetization has been isolated in the majority of samples from the Upper Section of the Paganzo Group; it is predominantly reversed and reveals three normal events and also three geomagnetic excursions suggesting an Illawarra Zone age (post Kiaman, Late Tatarian-Early Scythian). The palaeomagnetic pole of the reversely magnetized samples is located at 75° S 285° E(α95= 13°).
The red beds involved in this study are correlated with red beds from the Corumbataí Formation (State of Paraná, Brazil) and with igneous rocks from the Quebrada del Pimiento Formation (Province of Mendoza, Argentina).
The South American Middle and Upper Permian, Upper Permian—Lower Triassic, Lower, Middle and Upper Triassic and Middle Jurassic palaeomagnetic poles reflect a quasistatic period with mean pole at 82° S 244° E, (α95= 4°) which followed the South American Late Palaeozoic polar shift.  相似文献   

15.
Measurements are described of the directions of remanent magnetization of 89 samples from nine lava flows and red beds. Stable remanent magnetization was isolated after AC demagnetizing. All the units have normal remanent magnetization, except one lava flow which yields a direction toward the north with positive inclination. From the mean direction of stable remanence, referred to the bedding, of each unit a virtual geomagnetic pole is computed; the mean of eight of these poles is 90·6 °E, 84·2° South, α95= 4·7° and represents the position of the palaeomagnetic pole for the exposures of the Sierra de Los Condores group from El Estrecho-Cerro Libertad. The position of this pole is reasonably close to the positions of the South American Lower Cretaceous palaeomagnetic poles for the Serra Geral and Vulcanitas Cerro Colorado formations and the trachybasaltic dykes from Rio Los Molinos. This supports the interpretations that the South Atlantic Ocean was formed in Lower Cretaceous times and that the Earth's magnetic field was on average similar to that of a geocentric dipole in South America in the Lower Cretaceous, and suggests that there has not been substantial relative movements between Central Argentina and Southern Brazil.  相似文献   

16.
Palaeomagnetic results obtained from a 7-m sedimentary sequence in southern British Columbia spanning approximately 9000 yr (˜ 22 000 to ˜31 000 yr BP based on radiocarbon dates) are reported and analysed. Remanence directions from 37 horizons spread throughout the section have been determined, and no evidence of the geomagnetic excursion observed at Lake Mungo, Australia (˜ 31 000–28 000 yr BP), or that observed at Mono Lake, California (25 000–24 000 yr BP) is present. However, regular oscillations in the remanence vectors are observed, and maximum entropy spectral analysis, after mapping the remanence directions on to the complex plane, reveals peaks at periods of approximately 2000 and 5000 yr. The 2000-yr peak is associated with clockwise looping of the geomagnetic vector, and therefore most likely represents the time associated with one full cycle of the westward drift of the non-dipole field. The 5000-yr peak is associated with elliptical counterclockwise looping of the local geomagnetic vector and may be indicative of counterclockwise motion of the geomagnetic dipole axis.  相似文献   

17.
Summary Nine basic dykes were sampled near Angmagssalik, east Greenland. Specimens have been treated by alternating field demagnetization in 11 steps up to 3000 (peak) oersted (300 ml). The 'cleaned' direction at all sites is recognized after treatment at 150 oersted. All specimens are reversely magnetized. The mean of the site mean directions has declination = 182°.0, inclination =−66°.9, it = 45, α95= 7°.7. This direction yields a palaeomagnetic pole (reversed) at 73°.4N, 139°.5E ( dp = 10°.7, dm = 12°.9) which is near, but significantly different from, that derived from lower Tertiary rocks in Greenland, namely 63°.2N, 184°.6E ( A 95= 4°.5). K-Ar ages of the nine dykes, based upon whole-rock and mineral separates, range from mid-Tertiary to Cambrian. It is impossible to reconcile these ages with the palaeomagnetic results. The palaeomagnetic evidence, supported by geological inference, suggests that all nine dykes are members of the east Greenland lower Tertiary dyke swarm, designated THOL1, of probable age c. 52 Ma.
The difference between the poles given above can be explained by supposing that the sampling area has tipped about a horizontal axis directed along 013°/193°, the angle of rotation being 13° (± 11°) anti-clockwise, when the axis is viewed along 013°. This local effect could have been due to block faulting when the north-east Atlantic started to open, or may be attributed to upwarping of the coast due to the weight of the ice-cap inland.  相似文献   

18.
From a nunatak in central North Greenland (81.5°N, 44.7°W) nine sites of Middle Proterozoic basic dykes, cutting Archaean basement, were palaeomagnetically investigated. After AF and thermal cleaning the nine dyke sites and three adjacently baked gneiss sites give a stable characteristic remanent mean direction of D = 265°, I = 21.5° ( N = 12, α 95= 5.6°), the direction being confirmed by a detailed and positive baked contact test.
The polarity of the dykes in the nunatak area is opposite to that of the Zig-Zag Dal Basalts and the Midsommersø Dolerites in eastern North Greenland some 200–300 km away, the volcanics of which are assumed to be of similar age (about 1.25 Ga). The remanent directions of the two sets of data are antiparallel within the 95 per cent significance level of confidence.
When rotating Greenland 18° clockwise back to North America by the 'Bullard fit', the pole of the central North Greenland dolerites (NDL) falls at (14.3°N, 144.3°W). The reversed pole (14.3°S, 35.7°E) fits well on to the loop between 1.2 and 1.4 Ma on the apparent polar wander swath of Berger & York for cratonic North America.
The palaeomagnetic results from the Middle Proterozoic basic dykes from central North Greenland thus strengthen previous palaeomagnetic results from the Midsommersø Dolerites and Zig-Zag Dal Basalts from the Peary Land Region in eastern North Greenland, suggesting that Greenland was part of the North American craton at least for the period between c . 1.3 and 1 Ma (and probably up to the end of Cretaceous time). The major geographical meridian of Greenland was orientated approximately E–W, and the palaeo-latitude of Greenland was about 10°–15°.  相似文献   

19.
13 lava flows of known age (ages from 14C dating), which have been erupted in the last 30 000 years, have been studied to determine the palaeosecular variation of the geomagnetic field in Central Mexico. Samples were taken from two different monogenetic volcanic fields: the Michoacan-Guanajuato volcanic field (six sites) and the Chichinautzin Formation (seven sites), both part of the Transmexican Volcanic Belt. The lavas were studied in detail using rock magnetic methods (magnetic susceptibility at room temperature, low-temperature susceptibility behaviour, hysteresis loops, Curie temperatures), combined with reflected light microscopy, in order to deduce their magnetic mineralogy and the domain states of the magnetic minerals. The magnetic carriers are titanomagnetites, which show differing degrees of high-temperature deuteric oxidation, and seem to be predominantly pseudo-single domain (PSD), though in many cases are probably a mixture of domain states. Mean palaeomagnetic directions and palaeointensity values using Shaw and Thellier techniques were obtained using several specimens from each flow. Our data seem to indicate a sharp easterly swing in declination about 5000 years ago, which is also observed in lake sediments from Central Mexico. The calculated values of the virtual dipole moment (VDM) range from 3.1 to 14.9 × 1022 A m2. Our data indicate that the virtual dipole moment seems to have increased gradually in magnitude over the last 30 kyr, with a peak at about 9000 years BP. These are features that have been observed in other parts of the globe and are probably caused by variations in the dipole part of the geomagnetic field.  相似文献   

20.
Rotation of the geomagnetic field about an optimum pole   总被引:2,自引:0,他引:2  
Since 1693, when Halley proposed that secular change was the result of the westward drift of the main field, his simple model has undergone many refinements. These include different drift rates for dipole and non-dipole parts; separation into drifting and standing parts; latitudinal dependence of drift rate; northward drift of the dipole; and non-longitudinal rotations of the individual harmonics of the geomagnetic field. Here we re-examine the model of Malin and Saunders, in which the main field is rotated about an optimum pole which does not necessarily coincide with the geographical pole. The optimum pole and rotation angle are those that bring the main field for epoch T 1 closest to that for T 2 , as indicated by the coefficients of correlation between the spherical harmonic coefficients for the two epochs, after rotation. Malin and Saunders examined the pole positions and rates of rotation using data from 1910 to 1965, and noticed a number of trends. We show that these trends are confirmed by recent IGRF models, spanning the interval 1900–2000 and to degree and order 10. We also show that the effect of the level of truncation is small.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号