首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We find that five sources listed in the new carbon star catalog are not really carbon-rich objects but oxygen-rich stars, because they all have the prominent 10μm silicate features in absorption and the 1612MHz OH maser emission or/and the SiO molecular features. These objects were considered as carbon stars in the catalog based only on their locations in the infrared two-color diagram. Therefore to use the infrared two-color diagram to distinguish carbon-rich stars from oxygenrich stars must be done with caution, because, in general, it has only a statistical meaning.  相似文献   

3.
We have examined the evolution of merged low-mass double white dwarfs which become low-luminosity (or high-gravity) extreme helium stars. We have approximated the merging process by the rapid accretion of matter, consisting mostly of helium, on to a helium white dwarf. After a certain mass is accumulated, a helium shell flash occurs, the radius and luminosity increase and the star becomes a yellow giant. Mass accretion is stopped artificially when the total mass reaches a pre-determined value. As the helium-burning shell moves inwards with repeating shell flashes, the effective temperature gradually increases as the star evolves towards the helium main sequence. When the mass interior to the helium‐burning shell is approximately 0.25 M, the star enters a regime where it is pulsationally unstable. We have obtained radial pulsation periods for these models.
These models have properties very similar to those of the pulsating helium star V652 Her. We have compared the rate of period change of the theoretical models with that observed in V652 Her, as well as with its position on the Hertzsprung–Russell diagram. We conclude that the merger between two helium white dwarfs can produce a star with properties remarkably similar to those observed in at least one extreme helium star, and is a viable model for their evolutionary origin. Such helium stars will evolve to become hot subdwarfs close to the helium main sequence. We also discuss the number of low-luminosity helium stars in the Galaxy expected for our evolution scenario.  相似文献   

4.
We report the serendipitous discovery of a flare star observed with the ROSAT X-ray observatory. From optical spectra, which show strong and variable emission lines of the hydrogen Balmer series and neutral helium, we classify this object as a M3.0Ve star, and estimate a distance of 52 pc from published photometry. Owing to the close proximity of the star (13.6 arcmin) to the calibration source and RS CVn binary AR Lacertae, long-term X-ray coverage is available in the ROSAT archive (∼50 h spanning 6.5 yr). Two large flare events occurred early in the mission (1990 June–July), and the end of a third flare was detected in 1996 June. One flare, observed with the Position Sensitive Proportional Counter (PSPC), had a peak luminosity L X=1.1×1030 erg s−1, an e-folding rise time of 2.2 h and a decay time of 7 h. This decay time is one of the longest detected on a dMe star, providing evidence for the possibility of additional heating during the decay phase. A large High Resolution Imager (HRI) flare (peak L X=2.9×1030 erg s−1) is also studied. The 'background' X-ray emission is also variable – evidence for low-level flaring or microflaring. We find that 59 per cent of the HRI counts and 68 per cent of the PSPC counts are caused by flares. At least 41 per cent of the HRI exposure time and 47 per cent of the PSPC are affected by detectable flare enhancement.  相似文献   

5.
6.
IRAS 01005+7910 is a cold IRAS source. We present its optical identification, photometric and spectroscopic observation results. Its optical counterpart is classified as a B2Ie star with V magnitude 10.85. Its Hα line shows the P Cygni profile.According to its location in the Galaxy (b=16.6), we consider it to be a post-AGB star or a proto-planetary nebula.  相似文献   

7.
From high-resolution spectra a non-local thermodynamic equilibrium analysis of the Mg  ii 4481.2-Å  feature is implemented for 52 early and medium local B stars on the main sequence (MS). The influence of the neighbouring line Al  iii 4479.9-Å  is considered. The magnesium abundance is determined; it is found that  log ɛ(Mg) = 7.67 ± 0.21  on average. It is shown that uncertainties in the microturbulent parameter Vt are the main source of errors in  log ɛ(Mg)  . When using 36 stars with the most reliable Vt values derived from O  ii and N  ii lines, we obtain the mean abundance  log ɛ(Mg) = 7.59 ± 0.15  . The latter value is precisely confirmed for several hot B stars from an analysis of the Mg  ii 7877-Å  weak line. The derived abundance  log ɛ(Mg) = 7.59 ± 0.15  is in excellent agreement with the solar magnesium abundance  log ɛ (Mg) = 7.55 ± 0.02  , as well as with the proto-Sun abundance  log ɛ ps (Mg) = 7.62 ± 0.02  . Thus, it is confirmed that the Sun and the B-type MS stars in our neighbourhood have the same metallicity.  相似文献   

8.
The X-ray observations of the ROSAT -PSPC All-Sky Survey have revealed bright and energetic coronae for a number of late-type main-sequence stars, many of them flare stars. We have detected 31 X-ray flares on 14 stars. A search for simultaneous X-ray and EUV (extreme ultraviolet) flares using ROSAT Wide Field Camera survey data revealed a large number of simultaneous flares. These results indicate that the heating mechanisms of the X-ray and EUV‐emitting regions of the stellar coronae are similar. We find X-ray quiescent variability for nine of the 14 stars and simultaneous X-ray and EUV quiescent variability for seven of these nine stars. These results imply that the stellar coronae are in a continuous state of low-level activity. There are tight linear correlations of X-ray flare luminosity with the 'quiescent' X-ray as well as with the stellar bolometric luminosity. The similarity between the X-ray-to‐EUV quiescent and flare luminosity ratios suggests that the two underlying spectra are also similar. Both are indeed consistent with the previously determined Einstein two-temperature models. We suggest that both the variability and spectral results could indicate that the quiescent emission is composed of a multitude of unresolved flares.  相似文献   

9.
The star WR 7a, also known as SPH 2, has a spectrum that resembles that of V Sagittae stars although no O  vi emission has been reported. The Temporal Variance Spectrum – TVS – analysis of our data shows weak but strongly variable emission of O  vi lines which is below the noise level in the intensity spectrum.
Contrary to what is seen in V Sagittae stars, optical photometric monitoring shows very little, if any, flickering. We found evidence of periodic variability. The most likely photometric period is   P phot= 0.227(±14) d  , while radial velocities suggest a period of   P spec= 0.204(±13) d  . One-day aliases of these periods can not be ruled out. We call attention to similarities with HD 45166 and DI Cru (= WR 46), where multiple periods are present. They may be associated to the binary motion or to non-radial oscillations.
In contrast to a previous conclusion by Pereira et al., we show that WR 7a contains hydrogen. The spectrum of the primary star seems to be detectable as the N  v 4604 Å  absorption line is visible. If so, it means that the wind is optically thin in the continuum and that it is likely to be a helium main sequence star.
Given the similarity to HD 45166, we suggests that WR 7a may be a qWR – quasi Wolf–Rayet – star. Its classification is WN4h/CE in the Smith, Shara & Moffat three-dimensional classification system.  相似文献   

10.
Spruit has shown that an astrophysical dynamo can operate in the non-convective material of a differentially rotating star as a result of a particular instability in the magnetic field (the Tayler instability). By assuming that the dynamo operates in a state of marginal instability, Spruit has obtained formulae which predict the equilibrium strengths of azimuthal and radial field components in terms of local physical quantities. Here, we apply Spruit's formulae to our previously published models of rotating massive stars in order to estimate Tayler dynamo field strengths. There are no free parameters in Spruit's formulae. In our models of 10- and  50-M  stars on the zero-age main sequence, we find internal azimuthal fields of up to 1 MG, and internal radial components of a few kG. Evolved models contain weaker fields. In order to obtain estimates of the field strength at the stellar surface, we examine the conditions under which the Tayler dynamo fields are subject to magnetic buoyancy. We find that conditions for Tayler instability overlap with those for buoyancy at intermediate to high magnetic latitudes. This suggests that fields emerge at the surface of a massive star between magnetic latitudes of about 45° and the poles. We attempt to estimate the strength of the field which emerges at the surface of a massive star. Although these estimates are very rough, we find that the surface field strengths overlap with values which have been reported recently for line-of-sight fields in several O and B stars.  相似文献   

11.
12.
We present the results from a 28-day IUE time-series campaign monitoring the stellar wind of the O5-type giant HD 93843. The principal aim was to study variability in the wind of a star with a normal projected rotation velocity. Systematic changes are identified, amidst continuous line-profile variability, in the absorption troughs of the Si  iv and N  v resonance lines. The patterns observed have characteristic time-scales of several days and are mimicked by fluctuations (of several 100 km s−1) in the blue wings of the saturated C  iv P Cygni profile.   Fourier analysis provides support for the repeatability of wind structures in HD 93843 on a 7.1-d 'period'. Power at this frequency is evident only at intermediate and high velocities (i.e., above ∼0.3 of the terminal velocity). The long modulation time-scale suggests that changes in the star itself probably provide the physical source for triggering the onset of wind structure. Unfortunately the rotational, photometric, pulsational and magnetic properties of HD 93843 are too poorly constrained or known to permit a more detailed interpretation of the 7.1-d wind modulation in terms of potential inhomogeneities at the stellar surface. Nevertheless, our study demonstrates that the incidence of cyclic, possibly regular, stellar-wind variability is not restricted to rapid rotators. Comparisons with other OB stars which have exhibited repetitive wind changes on 'periods' of several days suggest that the time-dependent UV properties of HD 93843 are more akin to those of the O4-type supergiant ζ Puppis.  相似文献   

13.
Intricate filamentary structure and multiple shell-like appearance are very common phenomena in Planetary Nebulae.In addition, recent observations also indicate that the individual filaments present in these objects can have larger velocities than the adjacent smooth background (Pascoli, 1992 PASP 104, 350 and paper quoted therein).We have hypothesized that non linear hydrodynamical processes existing within the nebular gas are, possibly, responsible for these structures. As a matter of fact, it is argued that such a characteristic morphology, reinterpreted as a intermingled network of solitary waves or solitons, can be spontaneously generated in Planetary Nebulae as soon as one assumes that the nebular gas is permeated by a weak magnetic field whose strength is about 10–5 to 10–4 gauss.Main results of this work and further comments will be subsequently published in Ap&SS.  相似文献   

14.
15.
In this paper we review four different types of X-ray and/or radio observations of active late-type stars. We then consider if a single magnetic source configuration – a toroidal dipole magnetic trap – can possibly explain these various different observations. We conclude that, indeed, dipole magnetic confinement (similar to the magnetic configurations of the Earth's radiation belts and the case of Jupiter and the Io torus) can explain all the diverse observational data. We take this to be very strong observational support for this type of magnetic confinement scheme. We also consider that this magnetic configuration is only likely to be established and maintained in the most active stars.  相似文献   

16.
We present a detailed analysis of seven young stars observed with the spectrograph SOPHIE at the Observatoire de Haute‐Provence for which the chemical composition was incomplete or absent in the literature. For five stars, we derived the stellar parameters and chemical compositions using our automatic pipeline optimized for F, G, and K stars, while for the other two stars with high rotational velocity, we derived the stellar parameters by using other information (parallax), and performed a line‐by‐line analysis. Chromospheric emission‐line fluxes from Caii are obtained for all targets. The stellar parameters we derive are generally in good agreement with what is available in the literature. We provide a chemical analysis of two of the stars for the first time. The star HIP 80124 shows a strong Li feature at 670.8 nm implying a high lithium abundance. Its chemical pattern is not consistent with it being a solar sibling, as has been suggested. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
For the first time we propose a real physical mechanism for 'extra mixing' in red giants that can quantitatively interpret all the known star-to-star abundance variations in globular clusters. This is Zahn's mechanism. It considers extra mixing in a radiative zone of a rotating star as a result of the joint operation of meridional circulation and turbulent diffusion. It is shown that the only free parameter, the angular velocity at the base of the convective envelope, can be so adjusted as to fit the observed abundance correlations without leading to a conflict with available data on rotation velocities of blue horizontal branch stars in the same cluster. There are two critical assumptions in our model, that the top of the radiative zone is not in synchronous rotation with the stellar surface but rotates significantly faster and that the criterion for shear instability takes a particular form. These will eventually be tested by three-dimensional hydrodynamical simulations.  相似文献   

18.
JHKL observations of the mass-losing carbon Mira variable IRAS 15194–5115 (II Lup) extending over about 18 yr are presented and discussed. The pulsation period is 575 d and has remained essentially constant over this time span. The star has undergone an extensive obscuration minimum during this time. This is complex and, like such minima in similar objects (e.g. R For), does not fit the model predictions of a simple long-term periodicity. Together with the high-resolution observations of Lopez et al., the results suggest that the obscuration changes are caused by the formation of dust clouds of limited extent in the line of sight. This is an R Coronae Borealis-type (RCB-type) model. The effective reddening law at J and H is similar to that found for R For.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号