首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Scapolite–wollastonite–grossular bearing calc-silicate rocks from the Vellanad area in the Kerala Khondalite Belt (KKB) of Southern India preserve a number of reaction textures which help to deduce their PT–fluid history. Textures include calcite+plagioclase±quartz symplectites after scapolite, grossular+quartz coronas between wollastonite and plagioclase, grossular coronas between wollastonite and plagioclase+calcite that replace former scapolite, and grossular blebs replacing anorthite+calcite+quartz pseudomorphs of scapolite. Garnet coronas are also observed between clinopyroxene and wollastonite or scapolite or plagioclase. The reactions, apart from those involving clinopyroxene, can be modelled in the simple CaO–Al2O3–SiO2–CO2 system and interpreted using partial reaction grids constructed for the activities of end-members in the analysed phases. The reaction topologies produced are good approximations for the peak as well as retrograde mineral assemblages and reaction textures. For the compositions of the phases present in this study, the medium pressure calc-silicate assemblages are defined by the stable pseudo-invariant points [Qtz], [Mei] and [Grs]. The textural features interpreted using these activity-corrected grids indicate a phase of isobaric cooling from about 835°C to 750°C at 6 kbar in the Vellanad area. This is inconsistent with earlier studies on other lithologies from the KKB, most of which imply a post-peak PT path involving near-isothermal decompression. However, as the temperatures obtained for the KKB from the calc-silicates are higher than those previously deduced from metapelites and garnet–orthopyroxene assemblages, the phase of near-isobaric cooling reported here is inferred to have proceeded prior to the onset of the decompression documented from studies of other rock types.  相似文献   

2.
V. Mathavan  G. W. A. R. Fernando   《Lithos》2001,59(4):217-232
Grossular–wollastonite–scapolite calc–silicate granulites from Maligawila in the Buttala klippe, which form part of the overthrusted rocks of the Highland Complex of Sri Lanka, preserve a number of spectacular coronas and replacement textures that could be effectively used to infer their P–T–fluid history. These textures include coronas of garnet, garnet–quartz, and garnet–quartz–calcite at the grain boundaries of wollastonite, scapolite, and calcite as well as calcite–plagioclase and calcite–quartz symplectites or finer grains after scapolite and wollastonite respectively. Other textures include a double rind of coronal scapolite and coronal garnet between matrix garnet and calcite. The reactions that produced these coronas and replacement textures, except those involving clinopyroxene, are modelled in the CaO–Al2O3–SiO2–CO2 system using the reduced activities. Calculated examples of TXCO2 and PXCO2 projections indicate that the peak metamorphic temperature of about 900–875 °C at a pressure of 9 kbar and the peak metamorphic fluid composition is constrained to be low in XCO2 (0.1<XCO2<0.30). Interpretation of the textural features on the basis of the partial grids revealed that the calc–silicate granulites underwent high-temperature isobaric cooling, from about 900–875 °C to a temperature below 675 °C, following the peak metamorphism. The late-stage cooling was accompanied by an influx of hydrous fluids. The calc–silicate granulites provide evidence for high-temperature isobaric cooling in the meta-sediments of the Highland Complex, earlier considered by some workers to be confined exclusively to the meta-igneous rocks. The coronal scapolite may have formed under open-system metasomatism.  相似文献   

3.
Petrology of high-pressure granulites from the eastern Himalayan syntaxis   总被引:36,自引:0,他引:36  
The eastern Himalayan syntaxis, situated at the eastern terminus of the Himalayas, is the least-known segment of the Himalayas. Recent research in this area has revealed that the syntaxis consists of the Gangdise, the Yarlung Zangbo, and the Himalayan units, each of which is bounded by faults. The Himalayan unit, the northernmost exposed part of the Indian plate, mainly contains amphibolite facies rocks, marked by the assemblages staurolite+kyanite+plagioclase+biotite+muscovite±sillimanite and garnet+amphibole+plagioclase, in the south; to the north, low- to medium-pressure granulite grade pelitic gneisses and marbles are present and are characterized by the assemblages garnet+sillimanite+K-feldspar+plagioclase or antiperthite+biotite+quartz±spinel±cordierite±orthopyroxene in gneisses, and anorthite+diopside±wollastonite and plagioclase+diopside+quartz+phlogopite+calcite in marbles. Within this unit, the Namula thrust system is a series of moderately north-dipping structures that displaced the granulite facies rocks southwards over the amphibolite facies rocks. High-pressure granulites occur as relics within these granulite facies rocks and contain garnet–kyanite granulite and garnet clinopyroxenite. The peak assemblage of the garnet–kyanite granulite includes garnet (core part)+kyanite+ternary feldspar+quartz+rutile. Sillimanite+garnet (rim part)+K-feldspar+ oligoclase+ilmenite+biotite and spinel+albite+biotite or spinel+cordierite±orthopyroxene, which are coronas around sillimanite and garnet, are retrograde products of this peak assemblage. Another peak assemblage includes very-high-Ca garnet (CaO 32–34 wt%, Alm10±Grs>80) and diopside (CaO 22–24 wt%), scapolite, meionite, quartz, and accessory Al-bearing titanite (Al2O3 4–4.5 wt%). The diopside has kink bands. Partial or complete breakdown of Ca-rich garnet during post-peak metamorphism produced pseudomorphs and coronas consisting of fine-grained symplectic intergrowths of hedenbergite and anorthite. Thermobarometric estimates in combination with reaction textures, mineral compositions, and recent experimental studies indicate that these peak assemblages were formed at P=c. 1.7–1.8 GPa, T =c. 890 °C, and the retrograde assemblages experienced near-isothermal decompression to P=0.5±0.1 GPa, T =850±50 °C. The whole-rock compositions indicate that marble and pelite are plausible candidates for the protoliths. These facts suggest the following (1) sedimentary rocks were transported to upper-mantle depths and equilibrated at those conditions to form these high-pressure granulites, which were then emplaced into the crust quickly. During the rapid exhumation of these rocks, the earlier high-pressure assemblages were overprinted by the later low- to medium-pressure assemblages, that is, the high-pressure granulite belt formed in the syntaxis. (2) The Namula thrust system is an important tectonic boundary in the syntaxis, or even in the Higher Himalaya more generally.  相似文献   

4.
Grandite garnet-rich calcsilicate rocks from the Lower Calcsilicate Unit of the regionally metamorphosed Reynolds Range Group (central Australia) crop out along a strike-parallel section in which a transition zone from M22 amphibolite to granulite facies rocks is exposed. Across this transition the grandite-rich layers do not show systematic changes in mineral assemblages, compositions and modes, or stable isotope compositions. These layers are deformed by F22 folds that are associated with the peak of regional low-pressure/high-temperature metamorphism. Therefore, the grandite-rich layers appear to pre-date regional metamorphism and to have acted as closed chemical systems during prograde M22 metamorphism. Mineral assemblages in the grandite-rich layers are consistent with their formation through the infiltration of oxidized, water-rich fluids (Xco2 < 0.1–0.3; log fo2 -16 to -14). The stable isotope values of calcite (Δ13C=-4.2 to -0.8%0 PDB; Δ18O = 10.5–14.0%0 V-SMOW) and bulk-silicate fractions (Δ18O = 6.1 to 10.8%) of the grandite-rich layers are most consistent with the infiltrating fluid being from a magmatic source. It is most likely that fluid infiltration occurred during the pre-M22 contact metamorphism (M21) that affected much of the Reynolds Range Group. The preservation of these assemblages is probably due to their high variance and little pervasive fluid-rock interaction having occurred during M22. The clinopyroxene- and feldspar-rich calcsilicate rocks that host the grandite-rich layers contain poikiloblastic grandite garnet that formed during prograde M22 metamorphism. Thin marbles that locally occur with the grandite-rich layers contain a third garnet generation that is post- or late M22. This grossular-rich garnet occurs in coronas around calcite, plagioclase, clinopyroxene, wollastonite and scapolite. These coronas are consistent with cooling and/or compression. However, because the marble assemblages are themselves overprinted by M21 grandite-rich layers the development of coronal garnet does not reflect a continuous P-T-t path. Rather, it more probably reflects the partial re-equilibration of M21 contact metamorphic assemblages to post-M22 conditions.  相似文献   

5.
Fe‐rich metapelitic granulites of the Musgrave Block, central Australia, contain several symplectic and coronal reaction textures that post‐date a peak S2 metamorphic assemblage involving garnet, sillimanite, spinel, ilmenite, K‐feldspar and quartz. The earliest reaction textures involve spinel‐ and quartz‐bearing symplectites that enclose garnet and to a lesser extent sillimanite. The symplectic spinel and quartz are in places separated by later garnet and/or sillimanite coronas. The metamorphic effects of a later, D3, event are restricted to zones of moderate to high strain where a metamorphic assemblage of garnet, sillimanite, K‐feldspar, magnetite, ilmenite, quartz and biotite is preserved. Quantitative mineral equilibria calculations in the system K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3 (KFMASHTO) using Thermocalc 3.0 and the accompanying internally consistent dataset provide important constraints on the influence of TiO2 and Fe2O3 on biotite‐bearing and spinel‐bearing equilibria, respectively. Biotite‐bearing equilibria are shifted to higher temperatures and spinel‐bearing equilibria to higher pressures and lower temperatures in comparison to the equivalent equilibria in K2O–FeO–MgO–Al2O3–SiO2–H2O (KFMASH). The sequence of reaction textures involving spinel is consistent with a D2 P–T path that involved a small amount of decompression followed predominantly by cooling within a single mineral assemblage stability field. Thus, the reaction textures reflect changes in modal proportions within an equilibrium assemblage rather than the crossing of a univariant reaction. The D3 metamorphic assemblage is consistent with lower temperatures than those inferred for D2.  相似文献   

6.
A quartz-absent magnesian paragneiss layer from Mount Sones, in the Archaean Napier complex of Enderby Land, Antarctica, contains the stable divariant FMAS assemblage sapphirine (X Mg=78) — cordierite (X Mg=87) — garnet (X Mg=51) — sillimanite. Rare green spinel (X Mg=53.5, ZnO=2.65wt%) occurs as inclusions mainly within sapphirine, but also within sillimanite and garnet. Late thin coronas of cordierite (X Mg=90.5) mantle sapphirine in contact with extensively exsolved anorthoclase. The mineral textures are interpreted to indicate the former stability of a hypersthene-quartz absent assemblage followed by the development of the FMAS equilibrium assemblage sapphirine-cordierite-garnet-sillimanite (sp, hy, qz) and further divariant reaction involving the consumption of sapphirine. The (sp, hy, qz) assemblage uniquely defines the stable P-T reaction topology appropriate to granulites from the Napier Complex, as this paragenesis is allowed in the grids of Hensen (1971, 1986) but is not possible in other grids which assume the stability of a sapphirine-absent ([sa]) FMAS invariant point involving the phases spinel, garnet, hypersthene, cordierite, sillimanite and quartz. The observed mineral assemblages and textures are consistent with peak metamorphism between the [sp] and [hy] invariant points of Hensen (1971), at temperatures of 930–990° C, followed by cooling on a lower dP/dT trajectory towards the (sp, qz) univariant line. The initial spinel-bearing assemblage was stabilized by Zn and to a lesser extent by Ni and Cr, and hence does not require a marked decrease in temperature and increase in pressure to produce the (sp, hy, qz) assemblage. It is inferred that fO 2 conditions substantially lower than those used in the experiments of Annersten and Seifert (1981) prevailed in the high-grade metamorphism in the Napier Complex.  相似文献   

7.
A new quantitative approach to constraining mineral equilibria in sapphirine‐bearing ultrahigh‐temperature (UHT) granulites through the use of pseudosections and compatibility diagrams is presented, using a recently published thermodynamic model for sapphirine. The approach is illustrated with an example from an UHT locality in the Anápolis–Itauçu Complex, central Brazil, where modelling of mineral equilibria indicates peak metamorphic conditions of about 9 kbar and 1000 °C. The early formed, coarse‐grained assemblage is garnet–orthopyroxene–sillimanite–quartz, which was subsequently modified following peak conditions. The retrograde pressure–temperature (PT) path of this locality involves decompression across the FeO–MgO–Al2O3–SiO2 (FMAS) univariant reaction orthopyroxene + sillimanite = garnet + sapphirine + quartz, resulting in the growth of sapphirine–quartz, followed by cooling and recrossing of this reaction. The resulting microstructures are modelled using compatibility diagrams, and pseudosections calculated for specific grain boundaries considered as chemical domains. The sequence of microstructures preserved in the rocks constrains a two‐stage isothermal decompression–isobaric cooling path. The stability of cordierite along the retrograde path is examined using a domainal approach and pseudosections for orthopyroxene–quartz and garnet–quartz grain boundaries. This analysis indicates that the presence or absence of cordierite may be explained by local variation in aH2O. This study has important implications for thermobarometric studies of UHT granulites, mainly through showing that traditional FMAS petrogenetic grids based on experiments alone may overestimate PT conditions. Such grids are effectively constant aH2O sections in FMAS‐H2O (FMASH), for which the corresponding aH2O is commonly higher than that experienced by UHT granulites. A corollary of this dependence of mineral equilibria on aH2O is that local variations in aH2O may explain the formation of cordierite without significant changes in PT conditions, particularly without marked decompression.  相似文献   

8.
Mid-Proterozoic ( 1000 Ma) granulite facies calc-silicates fromthe Rauer Group, East Antarctica, contain grossular-wollastonite-scapolite-dinopyroxene( + quartz or calcite) assemblages which preserve symplectiteand corona textures typically involving the growth of secondarywollastonite. The textures include (1) wollastonite rims betweenquartz and calcite; (2) wollastonite-plagioclase rims and intergrowthsbetween quartz and scapolite; (3) wollastonite-scapolite-clinopyroxeneinter-growths replacing grossular; and (4) wollastonite-plagioclasesymplectites replacing grossular or earlier symplectites (3). Reactions between grossular, scapolite, wollastonite, calcite,quartz, anorthite, and vapour, have been modelled in the CaO-Al2O3SiO2-H2O-CO2and more complex systems using the internally consistent data-setof Holland & Powell (1990). Reactions producing scapoliteand wollastonite consume vapour as temperature increases (i.e., carbonation), in agreement with the results of Moecher &Essene (1990). These calc-silicates can therefore behave asfluid sinks under high-grade conditions. Conversely, they maybe important fluid sources on cooling and contribute to theformation of post-metamorphic CO2rich fluid inclusions in isobaricallycooled granulites. P-T-CO2 diagrams calculated for typical phase compositions (e.g., garnet, scapolite) demonstrate that the observed texturesare a record of near-isothermal decompression at 800–850 C, consistent with P—rpath determinations based on otherrock types from the Rauer Group. For example, texture (2) resultsfrom crossing the reaction Scapolite + Quartz = Wollastonite + Plagioclase + V on decompression, at 6. 5–7 kb, 820 C, and aCO2 of0–4–0–5. Furthermore, correlations betweenmodes of product phases (e. g., wollastonitexlinopyroxene) andreactant garnet composition preclude open-system behaviour inthe formation of these textures, consistent with post-peak vapour-absentreactions such as Grossular + Calcite + Quartz = Wollastonite + Scapolite occurring on decomposition at high temperatures (>800C). Reaction textures developed in calc-silicates from other granuliteterranes often involve the formation of grossular ( + quartz calcite) as rims on wollastonite-scapolite, or replacementof wollastonite by calcite-quartz. These textures have developedprincipally in response to cooling below 780–810 C andmay be signatures of near-isobaric cooling. Infiltration ofhydrous fluid is not a necessary condition for the productionof garnet coronas in wollastonite-scapolite granulites. *Present address: Department of Earth Sciences, University ofMelbourne, Parkville, Victoria 3052, Australia  相似文献   

9.
This study investigates marbles and calcsilicates in Central Dronning Maud Land (CDML), East Antarctica. The paleogeographic positioning of CDML as part of Gondwana is still unclear; however, rock types, mineral assemblages, textures and P–T conditions observed in this study are remarkably similar to the Kerala Khondalite Belt in India. The CDML marbles and calcsilicates experienced a Pan-African granulite facies metamorphism at c. 570 Ma and an amphibolite facies retrogression at c. 520 Ma. The highest grade assemblage in marbles is forsterite+spinel+calcite+dolomite, in calcsilicates the assemblages are diopside+spinel, diopside+garnet, scapolite+wollastonite+clinopyroxene±quartz, scapolite±anorthite±calcite+clinopyroxene+wollastonite. These assemblages constrain the peak metamorphic conditions to 830±20 °C, 6.8±0.5 kbar and X CO2>0.46. During retrogression, highly fluoric humite-group minerals (humite, clinohumite, chondrodite) replaced forsterite, and garnet rims formed at the expense of scapolite during reactions with wollastonite, calcite or clinopyroxene but without involvement of anorthite. Metamorphic conditions were about 650 °C, 4.5±0.7 kbar, 0.2< X CO2fluid<0.36, and the co-existence of garnet, clinopyroxene, wollastonite and quartz constrains fO2 to FMQ-1.5 log units. Mineral textures indicate a very limited influx of H2O-rich fluid during amphibolite facies retrogression and point to significant variations of fluid composition in mm-sized areas of the rock. Gypsum was observed in two samples; it probably replaced metamorphic anhydrite which appears to have formed under amphibolite facies conditions. The observed extensive anorogenic magmatism (anorthosites, A-type granitoids) and the character of metamorphism between 610 and 510 Ma suggest that the crustal thermal structure was characterized by a long-lived (50–100 Ma) rise of the crustal geotherm probably caused by magmatic underplating.  相似文献   

10.
K. K. Podlesskii 《Petrology》2010,18(4):350-368
Consistent thermodynamic data on the properties of pure mineral end members and the mixing properties of solid solutions in the system FeO-MgO-Al2O3-SiO2 were employed to simulate phase relations of sapphirine, garnet, spinel, orthopyroxene, cordierite, quartz, Al silicates, and corundum. Compositional variations of the solid solutions with temperature notably modify the topology of the P-T diagrams, which differ from the petrogenetic grids widely used in the literature. It is worth noting that the evaluation of P-T metamorphic conditions based on reaction relations in sapphirine-bearing assemblages cannot be so far considered reliable enough. The lower stability limit of the sapphirine + quartz assemblage in the system in question is possibly located at much lower P-T parameters: at least 835°C and ∼6 kbar. The sapphirine + kyanite assemblage can be stable at temperatures below 860°C and a pressure of ∼11 kbar, and the stability field of the sapphirine + olivine assemblage is narrow and constrained to temperatures no higher than ∼800°C.  相似文献   

11.
Meta‐anorthosite bodies are typical constituents of the Neoproterozoic Eastern Granulites in Tanzania. The mineral assemblage (and accessory components) is made up of clinopyroxene, garnet, amphibole; scapolite, epidote, biotite, rutile, titanite, ilmenite and quartz. Within the feldspar‐rich matrix (70–90% plagioclase), mafic domains with metamorphic corona textures were used for P–T calculations. Central parts of these textures constitute high‐Al clinopyroxene – which is a common magmatic mineral in anorthosites – and is therefore assumed to be a magmatic relict. The clinopyroxene rims have a diopsidic composition and are surrounded by a garnet corona. Locally the pyroxene is surrounded by amphibole and scapolite suggesting that a mixed CO2–H2O fluid was present during their formation. Thermobarometric calculations give the following conditions for the metamorphic peak of the individual meta‐anorthosite bodies: Mwega: 11–13 kbar, 850–900 °C; Pare Mountains: 12–14 kbar, 850–900 °C; Uluguru Mountains: 12–14 kbar, 850–900 °C. The P–T evolution of these bodies was modelled using pseudosections. The amount and composition of the metamorphic fluid and <0.5 mol.% fluid in the bulk composition is sufficient to produce fluid‐saturated assemblages at 10 kbar and 800 °C. Pseudosection analysis shows that the corona textures most likely formed under fluid undersaturated conditions or close to the boundary of fluid saturation. The stabilities of garnet and amphibole are dependent on the amount of fluid present during their formation. Mode isopleths of these minerals change their geometry drastically between fluid‐saturated and fluid‐undersaturated assemblages. The garnet coronae developed during isobaric cooling following the metamorphic peak. The cooling segment is followed by decompression as indicated by the growth of amphibole and plagioclase. The estimated of the metamorphic fluid is ~0.3–0.5. Although the meta‐anorthosites have different formation ages (Archean and Proterozoic) they experienced the same Pan‐African metamorphic overprint with a retrograde isobaric cooling path. Similar P–T evolutionary paths are known from the hosting granulites. The presented data are best explained by a tectonic model of hot fold nappes that brought the different aged anorthosites and surrounding rocks together in the deep crust followed by an isobaric cooling history.  相似文献   

12.
High-Mg–Al, silica-undersaturated metapelites from theOygarden Group of islands, East Antarctica, preserve clear evidencefor the stable coexistence of the assemblage orthopyroxene +corundum in natural rocks. The quartz-absent metapelite occursas pods and isolated layers within a high-strain zone relatedto deformation during the c. 0·93 Ga Rayner StructuralEpisode. Assemblages that include orthopyroxene, corundum, sapphirine,sillimanite, cordierite, garnet and kornerupine are developedacross a pre-existing compositional zoning, leading to contrastingmineral Fe–Mg ratios. The assemblage orthopyroxene–corundumis shown to exist in only a very restricted range of bulk compositionsand PT histories. Simplified qualitative FMAS grids havebeen constructed for kornerupine-absent and -present systems,illustrating MAS terminations and divariant equilibria thathelp to describe the mineral assemblage and reaction history.Reaction textures that include coronas of sapphirine and sillimaniteseparating orthopyroxene and corundum, and symplectites of orthopyroxene+ sapphirine ± cordierite/plagioclase, orthopyroxene+ sillimanite ± cordierite/plagioclase and orthopyroxene+ sapphirine + sillimanite embaying garnet, imply a clockwisePTt evolution. Conditions of P > 9–10kbar and T  相似文献   

13.
Calc-silicate boudins from the Rauer Group, East Antarctica, were metamorphosed under granulite facies conditions during late Proterozoic (ca. 1,000 Ma) M3 metamorphism. Boudin cores contain low to moderate aCO 2 assemblages including wollastonite, grossularandradite (grandite) garnet, clinopyroxene, scapolite, plagioclase, quartz±calcite. Petrological and stable isotopic evidence suggests that these core assemblages resulted from pre-peak M3 infiltration of water-rich fluids; there is no evidence for a pervasive fluid phase under peak M3 conditions. The boudins are separated from the surrounding Fe-rich pelites and semi-pelites by a series of concentric, high-variance reaction zones developed under peak M3 conditions. Variations in mineral assemblage, mineral composition and whole rock composition across these zones suggest that they formed by diffusional masstransfer, controlled principally by a chemical potential gradient in Ca across the original calc-silicate-paragneiss lithological boundary. As a consequence of the nearcomplete decarbonation of the calc-silicatesbefore the M3 peak, development of the diffusion-controlled reaction zones did not liberate significant CO2 during granulite facies metamorphism. Similar calcite-poor, low aCO 2 calc-silicate horizons in other granulite facies terrains are unlikely to have been important local fluid sources during deep crustal metamorphism.  相似文献   

14.
Granulite facies metasedimentary gneiss exposed on Jetty Peninsula, east Antarctica, contains assemblages involving garnet-sillimanite-biotite-cordierite-spinel-ilmenite-rutile and garnet-orthopyroxene-cordierite-biotite, as well as quartz and K-feldspar. Peak assemblages involve garnet + sillimanite + ilmenite (±rutile) and garnet + orthopyroxene. P-T calculations suggest formation conditions of approximately 800d? C at 7-7.5 kbar. Cooling from peak conditions is suggested by biotite + garnet (±sillimanite) overprinting some peak assemblages. A subsequent increase in temperature is inferred from the formation of cordierite + garnet + biotite + ilmenite, garnet + sillimanite + cordierite + ilmenite and cordierite + orthopyroxene assemblages during D2. In slightly zincian bulk compositions, hercynitic spinel + cordierite + sillimanite constitutes the peak D2 assemblage. Average pressure calculations indicate peak pressures of 5.9 ±0.4 kbar at 700d? C for the cordierite-bearing D2 assemblages. Available radiometric data suggest that peak metamorphism occurred at c. 1000 Ma and D2 occurred after 940 ± 20 Ma. The following two possibilities exist for the metamorphic evolution. (1) The formation of the lower pressure cordierite-bearing assemblages is associated with a separate metamorphic event (M2), unrelated to the peak assemblage (M1), and the lower pressure assemblages have no relevance in terms of a single tectonothermal event. (2) The cordierite-bearing assemblages formed during a progression from peak conditions. In this case, the lower pressure assemblages reflect a broadly decompressional metamorphic evolution, during which temperatures fluctuated. Comparison with P-T paths from granulites of similar age in adjacent areas suggests that the second possibility should be preferred. The cooling interval between peak conditions and the development of cordierite-bearing coronas and symplectites suggests affinities with isobarically cooled granulites of similar age immediately to the west, and the low-P/high-T post-peak conditions are similar to the later stages of decompressional paths recognized in much of east Antarctica.  相似文献   

15.
Abstract Three types of mineral associations are described from calc-silicate granulites from the Eastern Ghats, India, where geothermobarometry in associated rocks suggests extremely high P–T conditions of metamorphism ( c . 9 ± 1 kbar, 950° C). These mineral associations are: (i) calcite + quartz + scapolite + plagioclase, (ii) calcite + scapolite + wollastonite + porphyroblastic garnet + coronal garnet and (iii) calcite + quartz + wollastonite + scapolite + porphyroblastic garnet + coronal garnet, all coexisting with K-feldspar, titanite and clinopyroxene. The first two associations evolved through nearly isobaric cooling retrograde paths, whereas the third evolved through a nearly isothermal decompression path followed by an isobaric cooling retrograde path. Textural and compositional characteristics suggest the following mineral reactions in the calc-silicate granulites: calcite + quartz = wollastonite + CO2, calcite + plagioclase = scapolite, calcite + scapolite + wollastonite = porphyroblastic garnet ± quartz + CO2, CaTs + wollastonite = coronal garnet (association ii) and wollastonite + scapolite = coronal garnet (association iii) + quartz + CO2. Andradite content in garnet was buffered by the redox equilibria wollastonite + hedenbergite + O2= andradite + quartz (association iii) and wollastonite + andradite + CaTs + scapolite = hedenbergite + calcite + grossular + O2 (association ii). The contrasting mineral parageneses have been ascribed to interplay of variables such as X CO2, f O2, f HCl in the fluid, bulk Na content and the nature of the retrograde P–T–X CO2 paths through which the rocks evolved.  相似文献   

16.
ABSTRACT Sequential reaction textures in Archaean garnet-corundum-sapphirine granulites from the Central Zone of the Limpopo Belt document a progression from early, coarse-grained, high-pressure (P > 9.5 kbar) granulite-facies assemblages (M1) to late, low-pressure (P <6 kbar) granulite-facies sub-assemblages (M2). The stable M1 assemblage was garnet (57% pyrope; Mg/(Mg + Fe) = 62) + sapphirine + corundum + gedrite + phlogopite + rutile. Late-M1 boron-free kornerupine grew at the expense of garnet and corundum, and coexisted with garnet, sapphirine and gedrite. Partial or complete breakdown of coarse garnet and kornerupine during M2 resulted in the development of pseudomorphs and coronas consisting of fine-grained symplectic intergrowths of cordierite, gedrite and sapphirine (later, spinel). The majority of reaction textures can be explained in terms of a stable reaction sequence, and a model time-sequence of mineral facies can be constructed. When compared with a qualitative petrogenetic grid of (Fe, Mg)-discontinuous reactions in the FMASH multisystem sapphirine-garnet-corundum-spinel-cordierite-gedrite-kornerupine, the facies-sequence indicates decompression at essentially constant T assuming constant a(H2O). Exhumation of M1 corundum inclusions during M2 breakdown of kornerupine resulted in production of metastable spinel by a disequilibrium reaction with gedrite. A second disequilibrium reaction of the spinel with cordierite produced sapphirine. The operation of such reaction while pressure was decreasing (the opposite dP from that implied by the texture if assumed to be the product of an equilibrium reaction) has serious implications for the use of reaction textures in the construction of P-T vectors. Garnet-biotite thermometry on garnet interiors and phlogopite inclusions in corundum yields temperatures of ca. 850°C for the M1 stage. A minimum late-M1 pressure of ca. 7 kbar is indicated by the former association of kornerupine and corundum. Relict M1 kyanites reported by other workers indicate a minumum early-M1 pressure of 9.5 kbar, implying metamorphism at depths of at least 33 km (probably 38km). The high-pressure granulite-facies metamorphism was followed by an almost isothermal pressure decrease of > 5 kbar, indicative of rapid uplift. The P-T path is interpreted as the product of a single metamorphic cycle which probably took place in response to tectonic thickening of the crust. Such a process contrasts with the extensional origin recently proposed for isobarically cooled granulite-facies terranes.  相似文献   

17.
Mineral textures in metapelitic granulites from the northern Prince Charles Mountains, coupled with thermodynamic modelling in the K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3 (KFMASHTO) model system, point to pressure increasing with increasing temperature on the prograde metamorphic path, followed by retrograde cooling (i.e. an anticlockwise P–T path). Textural evidence for the increasing temperature part of the path is given by the breakdown of garnet and biotite to form orthopyroxene and cordierite in sillimanite‐absent rocks, and through the break‐down of biotite and sillimanite to form spinel, cordierite and garnet in more aluminous assemblages. This is equated to the advective addition of heat from the regional emplacement of granitic and charnockitic magmas dated at c. 980 Ma. A subsequent increase in pressure, inferred from the break‐down of spinel and quartz to sillimanite, cordierite and garnet in aluminous rocks, is attributed to crustal thickening related to upright folding dated at 940–910 Ma. The terrane attained peak metamorphic temperatures of c. 880 °C at pressures of c. 6.0–6.5 kbar during this event. Subsequent cooling is inferred from the localised breakdown of cordierite and garnet to form biotite and sillimanite that developed in the latter stages of the same event. The textural observations described are interpreted via the application of P–T and P–T–X pseudosections. The latter show that most rock compositions preserve only fragments of the overall P–T path; a result of different rock compositions undergoing mineral assemblage changes, or changes in mineral modal abundance, on different sections of the P–T path. The results also suggest that partial melting during granulite facies metamorphism, coupled with melt loss and dehydration, initiated a switch from pervasive ductile, to discrete ductile/brittle deformation, during retrograde cooling.  相似文献   

18.
Kyanite‐bearing paragneisses from the Manicouagan Imbricate Zone and its footwall (high‐P belt of the central Grenville Province) preserve evidence of partial melting with development of metamorphic textures involving biotite–garnet ± kyanite ± plagioclase ± K‐feldspar–quartz. Garnet in these rocks displays a variety of zoning patterns with respect to Ca. Pseudosection modelling in the Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O (NCKFMASHTO) system using measured bulk rock compositions accounts for the textural evolution of two aluminous and two sub‐aluminous samples from the presumed thermal peak to conditions at which retained melt solidified. The prograde features are best explained by pseudosections calculated with compositions to account for melt loss. The intersection of isopleths of grossular content and Fe/(Fe + Mg) relating to large porphyroblasts of garnet provide constraints on the PT conditions of the metamorphic peak. These PT estimates are considered to be minima because of the potential for diffusional modification of the composition of garnet at high‐T and during the early stages of cooling. However, they are consistent with textural observations and pseudosection topology, with peak assemblages best preserved in rocks for which the calculated pseudosections predict only small changes in mineral proportions in the PT interval, in which retrograde reactions are inferred to have occurred between the thermal peak and the solidus. Maximum PT conditions (14.5–15.5 kbar and 840–890 °C) and steep retrograde PT paths inferred for rocks from the Manicouagan Imbricate Zone are comparable with those determined for mafic rocks from the same area. In contrast, maximum PT conditions of 12.5–13 kbar and 815–830 °C and flatter PT paths are inferred for the rocks of the footwall to the Manicouagan Imbricate Zone. The general consistency between textures, mineral compositions and the topologies of the calculated pseudosections suggests that the pseudosection approach is an appropriate tool for inferring the PT evolution of high‐P anatectic quartzo‐feldspathic rocks.  相似文献   

19.
ABSTRACT A suite of garnet-wollastonite-scapolite-bearing calcsilicate granulites from the Eastern Ghats has been investigated to document the controls of mineral reactions during the metamorphic evolution of the deep continental crust. The rocks studied show heterogeneity in modal mineralogy and phase compositions in millimetre-sized domains. Textural relations, and the compositional plots of the phases, established that the clinopyroxene exerts a strong influence on the formation and composition of garnet in the complex natural system. P-T estimates using the vapour-independent equilibria involving garnet define a near isobaric cooling path from c. 850C at c. 5.5–5.2 kbar. The deduced trajectory tallies well with the terminal segment of the overall retrograde P-T path construed from the associated rocks using well-calibrated thermobarometers. The ubiquitous occurrence of wollastonite and scapolite in the main calcsilicate body suggests low aCO2 during peak metamorphic condition. Fluid compositions constrained from mineral-fluid equilibria of the garnet-bearing assemblages show domainal variations as a function of the compositions of the solid phases, e.g. garnet and clinopyroxene. A quantitative log/CO2-log/O2 diagram has been constructed to depict the stability of the different calcsilicate assemblages as functions of the compositions and the behaviour of these fugitive species. The results of the mineral-fluid equilibria and the quantitative fluid/rock ratio calculations, in conjunction with the topological constraints, imply vapour-deficient meta-morphism in the rocks studied. It is argued that fO2 during peak metamorphism was monitored by the ambient fO2. Subsequently, during retrogression, different domains evolved independently, whereas the fluid composition was controlled by the mineral-fluid equilibria.  相似文献   

20.
High‐pressure basic granulites are widely distributed as enclaves and sheet‐like blocks in the Huaian TTG gneiss terrane in the Sanggan area of the Central Zone of the North China craton. Four stages of the metamorphic history have been recognised in mineral assemblages based on inclusion, exsolution and reaction textures integrated with garnet zonation patterns as revealed by compositional maps and compositional profiles. The P–T conditions for each metamorphic stage were obtained using thermodynamically and experimentally calibrated geothermobarometers. The low‐Ca core of growth‐zoned garnet, along with inclusion minerals, defines a prograde assemblage (M1) of garnet + clinopyroxene + plagioclase + quartz, yielding 700 °C and 10 kbar. The peak of metamorphism at about 750–870 °C and 11–14.5 kbar (M2) is defined by high‐Ca domains in garnet interiors and inclusion minerals of clinopyroxene, plagioclase and quartz. Kelyphites or coronas of orthopyroxene + plagioclase ± magnetite around garnet porphyroblasts indicate garnet breakdown reactions (M3) at conditions around 770–830 °C and 8.5–10.5 kbar. Garnet exsolution lamellae in clinopyroxene and kelyphites of amphibole + plagioclase around garnet formed during the cooling process at about 500–650 °C and 5.5–8 kbar (M4). These results help define a sequential P–T path containing prograde, near‐isothermal decompression (ITD) and near‐isobaric cooling (IBC) stages. The clockwise hybrid ITD and IBC P–T paths of the HP granulites in the Sanggan area imply a model of thickening followed by extension in a collisional environment. Furthermore, the relatively high‐pressures (6–14.5 kbar) of the four metamorphic stages and the geometry of the P–T paths suggest that the HP granulites, together with their host Huaian TTG gneisses, represent the lower plate in a crust thickened during collision. The corresponding upper‐plate might be the tectonically overlying Khondalite series, which was subjected to medium‐ to low‐pressure (MP/LP: 7–4 kbar) granulite facies metamorphism with a clockwise P–T path including an ITD segment. Both the HP and the MP/LP granulite facies events occurred contemporaneously at c. 1.90–1.85 Ga in a collisional environment created by the assembly process of the North China craton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号