首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Bivalves are often the dominant macrobenthos species in exposed sandy beach environments. However, our understanding of their recruitment processes before post-settlement stages on sandy beaches with highly energetic environments is incomplete. To clarify the characteristics of the free-swimming planktonic stage that affects recruitment efficiency in sandy shore ecosystems, we investigated the temporal (weekly–biweekly) variation of bivalve planktonic larval concentration coupled with oceanographic conditions on an exposed sandy shore on the sea of Kashima-nada, Japan, from summer 2003 to autumn 2005. Larvae were observed throughout the year, but the surge of larval concentration composed of sandy beach and sessile bivalves occurred most prominently in summer, from August to September. The peak concentration of larvae during this season was more than 1000 times higher than in other seasons. The larval concentration was positively correlated with water temperature and northward wind velocity and negatively correlated with each of the nutrient concentrations. On the other hand, chlorophyll a concentration and salinity seemed to have little effect on the larval concentration. Based on this fundamental knowledge, further investigations about planktonic larvae in sandy beaches are needed.  相似文献   

2.
Since transport of planktonic larvae is essential to the maintenance and expansion of many marine species, we examined the spatial and temporal distribution of green porcelain crab Petrolisthes armatus (Gibbes, 1850) larvae and the possible underlying physical and behavioral mechanisms using a combination of field observations and numerical modeling. The field study consisted of observations of larval abundance and distribution as well as hydrographic surveys of the Satilla River estuary on the east coast of the USA in August 2006. Larvae were found throughout the water column within the tributaries but primarily at depth in the main river. A numerical model was used to examine the effect of flow and possible larval behavior responsible for the observed distribution and the consequences for larval retention in the estuary. Model results that included downward larval movement are consistent with the field observations, supporting the hypothesis that P. armatus larvae vertically migrate within the water column, which aids in their retention within the estuary.  相似文献   

3.
The larval fish assemblage was investigated in the shallow, nearshore region of a proposed marine protected area in eastern Algoa Bay, temperate South Africa, prior to proclamation. Sampling was conducted at six sites along two different depth contours at ∼5 m and ∼15 m to assess shore association. Larvae were collected by means of stepped oblique bongo net tows deployed off a ski-boat, twice per season for 2 years between 2005 and 2007. In total, 6045 larval fishes were collected representing 32 families and 78 species. The Gobiidae, Cynoglossidae, Clupeidae, Engraulidae and Sparidae were the dominant fish families. Catches varied significantly among seasons peaking in spring with a mean of ∼200 larvae/100 m3. Mean overall larval density was higher along the deeper contour, at ∼15 m (40 larvae/100 m3). The preflexion stage of development dominated catches at the ∼5 m (80%) and ∼15 m (73%) depth contours. Body lengths of Argyrosomus thorpei, Caffrogobius gilchristi, Diplodus capensis, Heteromycteris capensis and Solea turbynei, all estuary associated species, were larger at the shallow sites nearer to shore. Larvae of coastal species that produce benthic eggs dominated catches (75%) in the shallow sites (∼5 m) but were less abundant (32%) farther from shore at the deeper (∼15 m) sites. All developmental stages of D. capensis, Engraulis capensis, H. capensis, Sardinops sagax and two Pomadasys species were found in the study area. It appears that some species use the shallow nearshore as a nursery area.  相似文献   

4.
The structure of the summer larval fish assemblage off the eastern coast of Tunisia and its relation to environmental conditions was studied, from ichthyoplankton samples taken during a survey conducted between 23rd June and 9th July 2008. A total of 68 larval fish taxa were identified, 52 to species level. The taxonomic composition and abundance of the larval fish assemblage showed high spatial heterogeneity. Mesoscale hydrographic features, such as eddies, seem to play an important role in the spatial distribution of fish larvae in the area, enhancing concentration and retention. The larval fish assemblage was dominated by the small pelagic species Sardinella aurita (26.6% of the total larval fish abundance), followed by Engraulis encrasicolus (22.6%), Spicara spp. (8.6%) and Mullus barbatus (6.8%). Shannon–Weaver index (H′) ranged between 0 and 2.62. The highest values were found offshore, at 95 miles east of Sousse, over depths around 250 m. The diversity was higher in this region as a result of transport by currents and retention by eddies. It has also been shown that the eastern coast of Tunisia is a spawning ground for the tuna species Auxis rochei, Thunnus thynnus and Thunnus alalunga. Larvae of mesopelagic fishes represented 5.46% of the total abundance, with Cyclothone braueri, Ceratoscopelus maderensis and Lampanyctus crocodilus being the most important species. Canonical correspondence analysis (CCA) indicated that depth was the most important environmental factor in explaining species distribution.  相似文献   

5.
Larvae (leptocephali) of Gnathophis habenatus (Richardson, 1848) and G. incognitas Castle, 1963 occur off Castlepoint throughout most of the year (not sampled December‐February), In general they are smallest in late summer (March) and ilargest in mid‐spring (October‐November), with metamorphosis to the juvenile in early summer of the year of spawning. The two species therefore have a larval life of approximately 10 months. The early life of these two species in Australian waters, and of G. capensis (Kaup) off southern Africa, agrees well with these observations. Eel eggs collected in the East Cape region of New Zealand and tentatively identified as those of Gnathophis confirm the spawning times (March—April) suggested by the sizes of leptocephali.  相似文献   

6.
Mytilopsis leucophaeata, an invasive bivalve species, causes fouling problems by settling on submerged constructions and in cooling water circuits in brackish water. To predict spat fall we studied the larval occurrence and settlement of this species in the brackish Noordzeekanaal canal in the Netherlands for several years (1989–1992), while measuring water temperature, salinity and chlorophyll a levels. Larvae were collected monthly by means of a plankton net drawn across the whole width of the canal. Settled spat were collected from PVC panels exposed for one month. Larvae first appeared in May or June, and reached maximum numbers in June or July, before disappearing in October, November or even December. The larval period started at a water temperature of 14 °C, reached maximum numbers at 19–23 °C and ended when it fell below 9 °C. No larvae were observed anymore until the temperature rose to 14 °C in the spring of the next year. Spat fall (June–November) was related to the water temperature in April. If the water temperature in April was lower than 12.5 °C, spat fall started in July, while if temperature was already higher in April, it started a month earlier. The spat fall period started at 15 °C, with maximum numbers at 20–24 °C, and ended when the water temperature dropped below 5 °C. Redundancy analysis (RDA) demonstrated a strong relationship between larval and spat densities and water temperature.  相似文献   

7.
《Journal of Sea Research》2011,65(4):473-486
One of the present concerns of fish biologists involves defining and identifying nursery habitats in the context of conservation and resource management strategies. Fish nursery studies usually report upon nursery occupation during the latter juvenile stages, despite the fact that recruitment to nurseries can start early in life, during the larval phase. Here we investigated the use of a temperate estuarine nursery area, the Lima estuary (NW Portugal), by initial development stages of flatfish species before and after metamorphosis, integrating the larval and juvenile phases. The Lima estuarine flatfish community comprised twelve taxa, seven of which were present as pelagic larvae, six as juveniles and three as adults. There was a general trend of increasing spring–summer abundance of both larvae and juveniles, followed by a sharp winter decrease, mainly of larval flatfishes. The Lima estuary was used by Solea senegalensis, Platichthys flesus and Solea solea as a nursery area, with direct settlement for the two first species. In contrast, indirect settlement was suggested for S. solea, with metamorphosis occurring outside the estuarine area. Estuarine recruitment of S. senegalensis varied between years, with young larvae occurring in the estuary throughout a prolonged period that lasted 6–9 months, corroborating the protracted spawning season. P. flesus, the second most abundant species, exhibited a typical spring estuarine recruitment, without inter-annual variations. Developed larvae arrived in the estuary during spring, whereas the 0-group juveniles emerged in the following summer period. The present study contributes new insight to our understanding of the economically important S. senegalensis, and highlights the importance of integrating the planktonic larval phase into traditional flatfish nursery studies.  相似文献   

8.
南海北部上层鱼类浮游生物多样性和丰度的季节变化   总被引:1,自引:0,他引:1  
The objective of this study was to investigate the seasonal variations of ichthyoplankton diversity and abun-dance in the northern South China Sea based on the data collected during summer, winter and spring. In total, 95 taxa of larval fishes were identified. The greatest number of species was recorded in spring, followed by summer and winter. The number of species was distributed mainly in the coastal waters from the east of Leizhou Peninsula to the southeast of Hainan Island during the surveyed periods of summer and spring, but in the offshore waters during winter. The abundance of larval fish was lowest in winter, increased in spring, and reached the maximum in summer. High abundance of larval fish was generally restricted to coastal waters with the isobaths less than 50 m. Seasonal variations of larval fish richness, abundance and diversity index were significant (P〈0.001). Carangidae was the most common and abundant taxon in summer and winter, whileSardinella sp.,Thrissa mystax andLeiognathus sp. were dominant in spring. High diversity and abundance of larval fish might be attributed to increased temperature and coastal upwelling in spring and summer.  相似文献   

9.
Pronounced seasonality is a characteristic feature of polar ecosystems, but seasonal studies in the high-Arctic pack-ice zone are still scarce because of logistical constraints. During six expeditions (1994–2003) to the Fram Strait area between Greenland and Svalbard in winter, spring, early summer, late summer and autumn, the sub-ice habitat and fauna below the pack ice (0–1 m depth) were analyzed for seasonal patterns. Both environmental variables such as ice cover, temperature, salinity and chlorophyll a (chl a), as well as species composition, abundance and biomass of the sub-ice fauna showed distinct seasonal dynamics. Most species of the sub-ice fauna were found in early summer, followed by autumn, spring and late summer; the lowest number occurred in winter. The sub-ice fauna was dominated by copepod nauplii during all seasons. Next numerous was the small pelagic copepod Oithona similis, followed by occassional swarms of Pseudocalanus minutus and Calanus spp. Abundances of the sympagic fauna in the sub-ice water layer were much lower, with ectinosomatid copepods being usually the most numerous sympagic group. In the course of the year, total abundances of the sub-ice fauna showed a steep increase from the earliest sampling dates towards the end of winter/beginning of spring reaching maximum numbers then, and a decrease to minimum numbers in early summer. A second peak occurred in late summer, followed by a decrease towards autumn. This significant trend was due to the abundances of copepod nauplii and Oithona similis. Sympagic species were virtually absent during winter, and increased significantly in spring and early and late summer. A factor analysis revealed the variables ice cover and thickness, water temperature and salinity, as well as chl a as the major controlling factors for the seasonal patterns in different groups and species of the sub-ice fauna. Because of the special environmental conditions in the sub-ice habitat, and the unique species composition characterized by small taxa, young stages, and sympagic species, the seasonal dynamics of the Arctic sub-ice fauna differ substantially from those of the epipelagic zooplankton community in the Arctic Ocean.  相似文献   

10.
于2006年冬至2007年秋分四个季度对海南万宁小海近岸表层海水的弧菌种类分布及数量变化进行了调查.共分离到27种弧菌属细菌,其中副溶血弧菌、创伤弧菌、溶藻弧菌、霍乱弧菌、河流弧菌和拟态弧菌6种弧菌为主要弧菌.在6种主要弧菌中,溶藻弧菌、副溶血弧菌和霍乱弧菌在夏季和秋季检出率较高;河流弧菌在春季和夏季的检出率较高;拟态...  相似文献   

11.
The larvae of two carangid fishes, silver trevally (Pseudocaranx dentex) and yellowtail scad (Trachurus novaezelandiae), were compared among coastal water masses and the East Australian Current (EAC). Samples followed a north to south gradient including a southern region of upwelling, generated as the EAC separated from the coast. Mean larval carangid densities were greater in the mixed layer (10-30 m) than the surface, but there was no difference between inshore and offshore stations or along latitudinal gradients. Overall, P. dentex recent larval growth over two days pre-capture was faster than T. novaezelandiae, and faster at inshore, coastal stations than in the EAC. Integrated larval growth rate (mm d−1) was usually faster at inshore stations for both species. T. novaezelandiae were enriched in both nitrogen (??15N) and carbon (??13C) stable isotopes relative to P. dentex. Larvae of both species captured within the upwelling region were enriched in ??15N and depleted in ??13C relative to other sites. Recent larval growth had a significant positive relationship with fluorescence (as a proxy of chlorophyll a biomass), and integrated larval growth rate had a significant positive relationship with fluorescence and larval isotope (??15N) composition. Recent and integrated growth of larval T. novaezelandiae and P. dentex was enhanced by EAC separation and upwelling, and also in coastal water; stimulated by food availability, and potentially through exploitation of a different trophic niche.  相似文献   

12.
Larvae of estuarine organisms continually face possible export from the parent estuary. Retention of larvae of the estuarine crab Rhithropanopeus harrisii was investigated in the upper Newport River estuary, North Carolina. All of the developmental stages occurred in the same area of the estuary with similar horizontal distributions, and the concentrations of intermediate and late stages were not greatly reduced from those of the first larval stage. This was strong evidence for the continuous retention of larvae in the upper estuary.To determine mechanisms by which retention might be effected, field studies of the vertical distributions and migrations of these larvae were made. The four zoeal stages had similar but complex vertical migration patterns, which varied from study to study. These migrations centered on the depth of no net flow, reducing longitudinal transport during development. Cross-spectral analysis of the larval migrations and the environmental cycles of light, salinity and current speed revealed that each of these external cycles affected larval depth. Megalopae of R. harrisii also migrated vertically, but they were present in much lower concentrations than the zoeal stages, an indication of a change to benthic existence in this final larval form.  相似文献   

13.
The invasive red alga Grateloupia turuturu Yamada could turn Vibrio parahaemolyticus into nonculturable state in live algal culture. In order to elucidate the mechanism of such an effect, a series of culture experiments were performed in this investigation based on three hypothesized causes, namely bacterial attachment, production of reactive oxygen species (ROS) and the discharge of water soluble secondary metabolic compounds. The results reveal that attachment to the thallus surface of G. turuturu was the major reason for the decrease of V. parahaemolyticus in seawater. Further investigations show that V. parahaemolyticus attachment to the surface of algal thallus in live cultures of seaweeds was a common phenomenon. However, the disappearance of the culturability of V. parahaemolyticus occurred only on the thallus of G. turuturu over 72 h among all six algal species tested. Electron microscopic scanning shows that most of V. parahaemolyticus attached to G. turuturu changed from the initial normal bacilli to coccoid-shape after 72 h. The enclosure experiments by enclosing the algal thallus in tubes demonstrate that the nonculturability of V. parahaemolyticus in the water of live culture of G. turuturu occurred after the physical contact of the V. parahaemolyticus to the alga. The capacity of G. turuturu in affecting the culturability of V. parahaemolyticus was not influenced after inhibition of photosynthesis by treatment of 3''-(3,4-dichlorophenyl)-1'',1''-dimethyl urea (DCMU) at non-lethal levels. Production of reactive oxygen species after addition of live culture of bacteria was excluded by on-line analyzing the oxidation of dichlorohydrofluorescein (DCFH) to dichlorofluorescein (DCF) in the presence of peroxidase on a VersaFluor fluorometer.  相似文献   

14.
The utilisation of a brackish estuarine marsh by nekton was investigated over a semi-lunar cycle in August 1994. Nekton migrating in and out of the intertidal creeks of the marsh ‘Het Verdronken Land van Saeftinghe’ in the Westerschelde estuary, SW Netherlands, was sampled passively during seven complete tidal cycles. Sampling one tidal cycle yielded three consecutive flood samples and four consecutive ebb samples. Sampling occurred every 2–3 days, covering diel, tidal and semi-lunar situations, thus allowing comparison of tidal, diel and semi-lunar influences on the composition of the intertidal fauna.Two different tidal-migration modes were observed. The mysid shrimp, Mesopodopsis slabberi, showed maximum abundance around high tide. For the remaining common species, the mysid (Neomysis integer), the shrimp (Palaemonetes varians), the crab (Carcinus maenas) and the goby (Pomatoschistus microps) and the amphipod (Corophium volutator), highest densities were recorded during lower water heights. The faunal assemblage shifts between the different tidal stages.On two occasions, consecutive day and night samples were taken. Total densities were higher during the night samples. During spring tide, difference in community composition was noticed between the night and the day samples. During neap tide, day–night differences were less clear. Recorded total densities were highest during spring tide and lowest during neap tide. At maximum water levels, a drop in total density was observed. A shift in community composition occurred between spring and neap tides.  相似文献   

15.
《Oceanologica Acta》2002,25(1):13-22
This paper is the first to describe the spatio-temporal changes of mesozooplankton in the Seine estuary. Monthly samples were collected along the estuary in 1996 in order to analyse the seasonal changes of the mesozooplankton community and to identify the major environmental parameters that may influence the spatial distribution of zooplankton in this megatidal estuary. Statistical analysis (canonical correspondence analysis) showed that salinity was the main factor correlated with the longitudinal distribution of zooplankton. Marine species (Temora longicornis, barnacle larvae…) were located in the outer part of the estuary, while more oligohaline species (Eurytemora affinis) were recorded in the inner part of the estuary. A mixed zone was characterised by the presence of the neritic copepods Acartia spp. and Eurytemora affinis. The marine species (e.g. T. longicornis, Oikopleura dioica, Barnacle larvae) showed maximum abundance at the end of spring (June) while the most abundant estuarine species, E. affinis, peaked in late winter-spring and declined with the onset of summer. This copepod dominated the estuarine zooplankton throughout the year, and found in the Seine estuary very high favourable conditions to exhibit ultimate abundances (> 190 000 ind m–3) which is one order of magnitude higher than those found in other European estuaries. It represented the main prey for major planktonivorous species such as suprabenthic and fish species located living in the upstream zone of the Seine estuary.  相似文献   

16.
The occurrence of fish larvae and the effect of diel and tidal variation on catches was studied at about biweekly intervals for a year in Whangateau Harbour, a small well mixed northern New Zealand estuary. Larvae from 31 taxa were identified. The annual pattern of larval occurrence was typical for fish in temperate waters, with a major peak of abundance in early summer. For six taxa, larval densities were significantly greater in night-time than in daytime catches, and analysis of length-frequency distributions suggested that for two species this was due to daytime net avoidance.No significant differences were found between the densities of larvae caught on flood and ebb tides, but changes in length-frequency distributions were significant for two species. Recently hatched larvae of an unidentified goby were found leaving the harbour, where they were probably spawned, while older larvae of this species appeared to be recruiting back in. Larvae of the flounder Rhobosolea plebeia were also apparently recruiting into the harbour. In the absence of a two-layered circulation pattern larvae relied upon tidal transport for recruitment, and probaby ensured their retention by rapidly settling to the bottom.  相似文献   

17.
Seasonal and short-term variability of environmental parameters influence the spawning strategies of fish species. In this study, the spawning strategies and the transport of early stages of the two Cape hake species off South Africa were investigated. Distribution of eggs and larvae of Merluccius paradoxus and M. capensis was analysed in order to derive more detailed and species-specific information on spawning season, spawning location, and transport of early stages. Samples were collected during three pilot surveys between January and October 2007 and during an extensive survey in September/October 2008 in the southern Benguela upwelling system off South Africa. Eggs and larvae of M. paradoxus were found in greater numbers than those of M. capensis during all surveys. Highest abundances were found from September to October, indicating one spawning peak for M. paradoxus during late austral winter to spring. The western Agulhas Bank was identified as the primary spawning ground, and smaller spawning events occurred on the West Coast. Larvae of both species were mainly distributed in subsurface waters between 25 and 100 m. More than 50% of all larvae caught had a total length between 3 and 4 mm and size increased significantly with decreasing latitude. Merluccius capensis were found closer inshore than M. paradoxus, indicating that early stages of the two species followed separate drift routes. We assume that this distribution pattern most likely evolved from differences in spawning location and phenology. The spawning strategies of M. paradoxus and M. capensis are well adapted to a time-frame of optimal transport conditions favourable for larval survival in the highly variable environment of the southern Benguela upwelling system, but the peak spawning of the two species is separated in time and space.  相似文献   

18.
Tautog, Tautoga onitis, is an abundant species of fish in estuaries of the northeastern United States. Planktonic tautog larvae are abundant in summer in these estuaries, but there is little information on rates of growth of tautog larvae feeding on natural assemblages of food in the plankton. We examined abundance and growth of larval tautog and environmental factors during weekly sampling at three sites along a nearshore‐to‐offshore transect in Buzzards Bay, Massachusetts, USA during summer 1994. This is the first study of a robust sample size (336 larvae) to estimate growth rates of field‐caught planktonic tautog larvae feeding on natural diets, using the otolith daily‐growth‐increment method. The study was over the entire summer period when tautog larvae were in the plankton. The sampling sites contrasted in several environmental variables including temperature, dissolved oxygen (DO), and chlorophyll a concentration. There was a temporal progression in the abundance of tautog larvae over the summer, in relation to location and temperature. Tautog larvae were first present nearshore, with a pronounced peak in abundance occurring at the nearshore sites during the last 2 weeks in June. Larvae were absent at this time further offshore. From late June through August, larval abundance progressively decreased nearshore, but increased offshore although never approaching the abundance levels observed at the nearshore sites. The distribution and abundance of tautog larvae appeared to be related to a nearshore‐to‐offshore seasonal warming trend and a nearshore decrease in DO. Otoliths from 336 larvae ranging from 2.3 to 7.7 mm standard length had otolith increment counts ranging from 0 to 19 increments. Growth of larval tautog was estimated at 0.23 mm·day?1, and length of larvae prior to first increment formation was estimated at 2.8 mm indicating that first increment formation occurs 3–4 days after hatching at 2.2 mm. Despite spatial and temporal differences in environmental factors, there were no significant differences in growth rates at any of three given sites over time, or between sites. Because larval presence only occurred at a narrow range of temperature (17–23.5 °C) and DO (6.5–9.3 mg·l?1), in situ differences in growth did not appear to be because of differences in larval distribution and abundance patterns relative to these parameters.  相似文献   

19.
《Journal of Sea Research》1999,41(3):189-201
Abundance of larvae and primary plantigrades in the blue mussel Mytilus edulis L. was studied quantitatively in the western part of the Dutch Wadden Sea. Observations were made in seven years between 1981 and 1996. In general, a first large peak of larvae appeared in May, followed by one or more much smaller peaks until September. For pelagic larvae an approximate life time of four to six weeks was calculated (on average about five weeks). Pelagic larvae appeared to have a relatively higher survival chance at low larval concentrations than at high concentrations. No relation could be demonstrated between time of larval peaks and spring tides. Year-to-year differences in abundance of plantigrades did not predict mussel recruitment success on nearby tidal flats.  相似文献   

20.
Temporal patterns of larval brooding and settlement were investigated in a flat oyster (Ostrea chilensis) population in Tasman Bay, central New Zealand. The proportion of the population brooding larvae and larval settlement rates were monitored over 26 months. A peak period of brooding activity began in late spring and continued through summer. Maximum rates of 17% and 23% of adult oysters brooding larvae occurred in November and December, and an estimated 55–78% of adult oysters incubated larvae over the entire summer breeding period. These proportions of brooders are higher than those previously reported for Tasman Bay. A very low level of brooding activity (1%) occurred during winter. Temporal trends in larval settlement closely tracked brooding patterns. Settlement was greatest between November and January, and there were very low rates in winter. The seasonal breeding pattern in the population was intermediate between northern and southern populations, confirming a latitudinal gradient of reproductive behaviour for O. chilensis in New Zealand. Results are useful in optimising the timing of substrate deployment in an enhancement programme for the oyster fishery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号