首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Thirty-two weather diaries written in astronomical calendars in central Europe in the late fifteenth and sixteenth centuries are presented and discussed. Systematic weather observations were promoted by the rise of planetary astronomy and its application in astro-meteorology. The practice of keeping weather diaries spread from Cracow (Poland) to Ingolstadt (Germany) and from there to other universities. The data obtained from these sources provided the backbone for setting up series of precipitation indices for Poland, Germany and Switzerland. Monthly statistics of days with precipitation, snowfall and frost were computed by counting the relevant entries in the most important diaries. The results were compared with either those obtained from instrumental measurements in the same place or with those from modern instrumental measurements in a neighbouring place. The final results show that autumn was considerably colder in the early sixteenth century. April was considerably drier and July was wetter during the period 1508-1531 than during 1901-1960. In order to highlight the impact of weather patterns on grain prices in a year of crisis, the timing of wet and dry spells in southern Poland and southern Germany is compared for the year 1529. Winters became 1.7°C colder from 1564 to 1576 and the month of July tended to be wetter than in 1901-1960. Details noted in the diaries kept between 1585 and 1600 by the astronomers Brahe (near Copenhagen) and Fabricius (in the Ostfriesland region of northwestern Germany) closely agree. It rained more often in June and July and temperatures dropped. The winter months were more frequently dominated by winds from easterly directions, the frequency of snowfall was higher and a deficit occurred in precipitation. This points to a higher frequency of high pressure in the Fennoscandian area with cold air advection from the east or northeast.  相似文献   

2.
Many studies have observed changes in the frequency and intensity of precipitation extremes and floods during the last decade(s). Natural variability by climate oscillations partly determines the observed evolution of precipitation extremes. Based on a technique for the identification and analysis of changes in extremes, this paper shows that precipitation extremes have oscillatory behaviour at multidecadal time scales. The analysis is based on a unique dataset of 108 years of 10-minute precipitation intensities at Uccle (Brussels), not affected by instrumental changes. We also checked the consistency of the findings with long precipitation records at 724 stations across Europe and the Middle East. The past 100 years show for northwestern Europe, both in winter and summer, larger and more precipitation extremes around the 1910s, 1950–1960s, and more recently during the 1990s–2000s. The oscillations for southwestern Europe are anti-correlated with these of northwestern Europe, thus with oscillation highs in the 1930–1940s and 1970s. The precipitation oscillation peaks are explained by persistence in atmospheric circulation patterns over the North Atlantic during periods of 10 to 15 years.  相似文献   

3.
The article in hand presents a comparative analysis of unweighted thermic and hygric index series of different European regions (northern Switzerland, Germany, the Czech Republic, northern Italy, ancient Hungary, Poland and Spain). Besides methodological aspects about the formation of indices, especially the progress as well as the question of similarity development of these series in the 16th century are discussed and shown on the balance sheet. It becomes evident that with respect to the temperature on the level of unweighted indices the European regions of Germany, the Czech Republic and Switzerland are very similar during all seasons. In winter and summer these correlations are especially evident, during the transitional seasons they are smaller. Larger differences exist between the central European core region and the adjacent areas of research. In principle, the hygric differences are larger than the thermic ones.In the course of the sixteenth century marked cooling phases occurred during all seasons with increasing accentuation. These phases were typical for the climate of the Little Ice Age. In addition to this long-term analysis, some outstanding years of extreme weather like those of 1540, 1573 and 1587 are presented, in the course of which questions of climatic impact are included. Finally, recent instrumental data was used to conduct an analysis that compared the similarities between the respective regions and the similarities between the empirical data and indices. On the one hand, this confirmed the spatial pattern, on the other hand the usability of the indices.  相似文献   

4.
Intra- to multi-decadal (IMD) variation in terrestrial precipitation during 1901–98 was evaluated here by sampling annual precipitation rankings over 6–30 year moving time windows and converting those rankings to Mann-Whitney U statistics. Those U statistics were then used to identify the most significant concentrations of wet and dry years relative to a null hypothesis that assumes stationary climate variability. This time series analysis approach served as the basis of a climate survey method used to identify IMD precipitation regimes over continental areas, and was also used to evaluate IMD variation in time series of annual precipitation spatially averaged over those areas. These methods showed a highly significant incidence of wet years over North America during 1972–98, with 8 of the 10 wettest years of 1901–98 occurring during that 27-year period. A comparably significant incidence of late century wetness was also found over a northern Europe grid region, with 7 of the 10 wettest years occurring during 1978–98. Although significant wet and dry regimes were also found over other land areas in the last decades of the 20th century, the late century North American and northern European wet periods stood out as the most statistically significant found here during 1901–98. It is suggested that these recent wet periods are actually terrestrial evidence of a single multi-decadal precipitation mode extending across the North Atlantic, and the most observable evidence of an even broader pattern of recent North Atlantic climate change.  相似文献   

5.
Ram R. Yadav 《Climate Dynamics》2011,36(7-8):1453-1462
Tree-ring-width data of Himalayan cedar [Cedrus deodara (Roxb.) G. Don] from 11 homogeneous moisture stressed sites in the monsoon shadow zone of the western Himalaya were used to develop a mean chronology extending back to ad 1353. The chronology developed using Regional Curve Standardization method is the first from the Himalayan region of India showing centennial-scale variations. The calibration of ring-width chronology with instrumental precipitation data available from stations close to the tree ring sampling sites showed strong, direct relationship with March?CApril?CMay?CJune (MAMJ) precipitation. This strong relationship was used to supplement the instrumental precipitation data back to ad 1410. The precipitation reconstruction showed extended period of drought in fifteenth and sixteenth centuries. Increasingly pluvial conditions were recorded since eighteenth century, with the highest precipitation in the early part of the nineteenth century. The decreasing trend in reconstructed precipitation in the last decade of the twentieth century, consistent with the instrumental records, is associated with the decreasing trend in frequency of western disturbances. MAMJ precipitation over the monsoon shadow zone in the western Himalaya is directly associated with the North Atlantic Oscillation (NAO) and NINO3-SST index of El Nino-Southern Oscillation (ENSO), the leading modes of climate variability influencing climate over large parts of the Northern Hemisphere. However, the relationship between ENSO and MAMJ precipitation collapsed completely during 1930?C1960. The breakdown in this relationship is associated with the warm phase of Atlantic Multidecadal Oscillation (AMO). A spectral analysis of reconstructed MAMJ precipitation indicates frequencies in the range of the variability associated with modes of NAO, ENSO and AMO.  相似文献   

6.
We use long instrumental temperature series together with available field reconstructions of sea-level pressure (SLP) and three-dimensional climate model simulations to analyze relations between temperature anomalies and atmospheric circulation patterns over much of Europe and the Mediterranean for the late winter/early spring (January–April, JFMA) season. A Canonical Correlation Analysis (CCA) investigates interannual to interdecadal covariability between a new gridded SLP field reconstruction and seven long instrumental temperature series covering the past 250 years. We then present and discuss prominent atmospheric circulation patterns related to anomalous warm and cold JFMA conditions within different European areas spanning the period 1760–2007. Next, using a data assimilation technique, we link gridded SLP data with a climate model (EC-Bilt-Clio) for a better dynamical understanding of the relationship between large scale circulation and European climate. We thus present an alternative approach to reconstruct climate for the pre-instrumental period based on the assimilated model simulations. Furthermore, we present an independent method to extend the dynamic circulation analysis for anomalously cold European JFMA conditions back to the sixteenth century. To this end, we use documentary records that are spatially representative for the long instrumental records and derive, through modern analogs, large-scale SLP, surface temperature and precipitation fields. The skill of the analog method is tested in the virtual world of two three-dimensional climate simulations (ECHO-G and HadCM3). This endeavor offers new possibilities to both constrain climate model into a reconstruction mode (through the assimilation approach) and to better asses documentary data in a quantitative way.  相似文献   

7.
8.
We present seasonal precipitation reconstructions for European land areas (30°W to 40°E/30–71°N; given on a 0.5°×0.5° resolved grid) covering the period 1500–1900 together with gridded reanalysis from 1901 to 2000 (Mitchell and Jones 2005). Principal component regression techniques were applied to develop this dataset. A large variety of long instrumental precipitation series, precipitation indices based on documentary evidence and natural proxies (tree-ring chronologies, ice cores, corals and a speleothem) that are sensitive to precipitation signals were used as predictors. Transfer functions were derived over the 1901–1983 calibration period and applied to 1500–1900 in order to reconstruct the large-scale precipitation fields over Europe. The performance (quality estimation based on unresolved variance within the calibration period) of the reconstructions varies over centuries, seasons and space. Highest reconstructive skill was found for winter over central Europe and the Iberian Peninsula. Precipitation variability over the last half millennium reveals both large interannual and decadal fluctuations. Applying running correlations, we found major non-stationarities in the relation between large-scale circulation and regional precipitation. For several periods during the last 500 years, we identified key atmospheric modes for southern Spain/northern Morocco and central Europe as representations of two precipitation regimes. Using scaled composite analysis, we show that precipitation extremes over central Europe and southern Spain are linked to distinct pressure patterns. Due to its high spatial and temporal resolution, this dataset allows detailed studies of regional precipitation variability for all seasons, impact studies on different time and space scales, comparisons with high-resolution climate models as well as analysis of connections with regional temperature reconstructions. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

9.
The severity and frequency of sixteenth-century floods of the Rhine, the Main, the middle and upper Elbe with its tributaries, rivers of northern and central Italy, the Garonne and rivers in Catalonia and Andalusia are analyzed using documentary evidence. The basic topographical and hydrological characteristics of the rivers investigated as well as the synoptic causes of their flooding during the instrumental period are presented. Different examples of modifications of the run-off process due to anthropogenic activity are discussed. Prevalence in flood occurrence during the second half of the sixteenth century in comparison to the first half is typical for central European and Andalusian rivers (mainly in the 1560s and 1590s) and agrees with the evolution of precipitation patterns. On the other hand, Italian and Catalonian rivers, in part, had a higher occurrence of floods during the first half of the century. Changes in the flooding seasons in both halves of the century are not unambiguous. Results of an analysis on a broader European scale show floods to be a random natural phenomena with limited areal extent defined by the spatial influence of forcing meteorological factors (continuous heavy rains, sudden melting of thick snow cover, etc.). Despite some limitations of documentary evidence, series of reconstructed historical floods are valuable sources of proxy data which can be utilized for the study of the flooding fluctuations in the pre-instrumental period.  相似文献   

10.
Temperature reconstructions from Europe for the past 500 years based on documentary and instrumental data are analysed. First, the basic documentary data sources, including information about climate and weather-related extremes, are described. Then, the standard palaeoclimatological reconstruction method adopted here is discussed with a particular application to temperature reconstructions from documentary-based proxy data. The focus is on two new reconstructions; January–April mean temperatures for Stockholm (1502–2008), based on a combination of data for the sailing season in the Stockholm harbour and instrumental temperature measurements, and monthly Central European temperature (CEuT) series (1500–2007) based on documentary-derived temperature indices of the Czech Republic, Germany and Switzerland combined with instrumental records from the same countries. The two series, both of which are individually discussed in greater detail in subsequent papers in this special edition, are here compared and analysed using running correlations and wavelet analysis. While the Stockholm series shows a pronounced low-frequency component, the CEuT series indicates much weaker low-frequency variations. Both series are analysed with respect to three different long-period reconstructions of the North Atlantic Oscillation (NAO) and are compared with other European temperature reconstructions based on tree-rings, wine-harvest data and various climate multiproxies. Correlation coefficients between individual proxy-based series show weaker correlations compared to the instrumental data. There are also indications of temporally varying temperature cross-correlations between different areas of Europe. The two temperature reconstructions have also been compared to geographically corresponding temperature output from simulations with global and regional climate models for the past few centuries. The findings are twofold: on the one hand, the analysis reinforces the hypothesis that the index-data based CEuT reconstruction may not appropriately reflect the centennial scale variations. On the other hand, it is possible that climate models may underestimate regional decadal variability. By way of a conclusion, the results are discussed from a broader point of view and attention is drawn to some new challenges for future investigations in the historical climatology in Europe.  相似文献   

11.
This paper discusses patterns of annual and monthly precipitation variability at seven weather stations in east central Europe (1851–2007). Precipitation patterns were compared to three simple regional indices of atmospheric circulation, i.e., western circulation, southern circulation and the cyclonicity (C) index and a relationship between precipitation and the North Atlantic Oscillation index was identified. Correlations of the monthly records and multiple regression, using a principal components’ analysis, helped determine the statistical significance of the dependence of precipitation on the circulation indices. The Mann–Kendall test revealed no trend to change in any of the precipitation series, but a certain spatial regularity could be discerned in the phase of the annual periodic component. A common feature of the variability in central European annual precipitation is the dry period identified in the 1980s and the first half of the 1990s. In the northern part of the region, above-average precipitation was noted from the 1960s through to the mid-1970s as a result of the frequent prevalence of depressions. South of the divide, the wettest period was recorded at the turn of 1930s/1940s. After a number of very wet years in the last decade of the twentieth century and the beginning of the twenty-first century, precipitation began to fall at all of the region’s weather stations. The C index is the strongest circulation-linked factor influencing precipitation in central Europe and it accounts for more than 40% of the variance in spatially averaged wintertime precipitation.  相似文献   

12.
Two weather records kept at Nassau, Bahamas, from 1811 to 1837, and from 1838 to 1845, respectively, are analyzed and compared to 20th century reference periods. The average annual temperature of the period is 24.2°C (±0.65°C), which is 0.4°C lower than 1961–1990 and 0.1°C lower than 1901–1920, the coolest period in the 20th century. Cold periods occurred from 1812–1819 and 1835–1839. A warmer phase prevailed between these two episodes and another warm episode occurred in 1840–1842. Temperature fell after the volcanic eruptions of Tambora (April, 1815) and Coseguina (January, 1835). The maximum cooling after Tambora is estimated at 1.0°C (±0.56°) and after Coseguina is estimated at 0.4°C (±0.56°). The post-Tambora cooling is in line with previous estimates (Robock, personal communication). The 1810s were a period of extreme drought at Nassau and are unequalled in later years. Rainfall frequency was below contemporary (1812–1837) averages from 1812–1820 and 1836–1837 but was above average from 1821–1835. Moist (dry) periods occurred almost simultaneously with warm (cool) periods. The months of October, November, and April show the greatest (negative) deviations in precipitation frequency. Gale force winds were 85% more frequent than from 1901–1960. Much of this increase took place in the months of September through November and represents an increase in tropical cyclone frequency in the Nassau area above that of 1901–1960. Resultant winds show a tendency towards greater northerly components than in the 20th century, especially during the winter months. The increase in northerly wind components, temperatures below the 20th-century average, and reduction in rainfall frequency in the winter half of the year indicates a synoptic situation in which high pressure was more frequent over the southeast North American continent.  相似文献   

13.
An assessment of Canadian prairie drought: past, present, and future   总被引:1,自引:1,他引:0  
Within Canada, the Canadian Prairies are particularly drought-prone mainly due to their location in the lee of the western cordillera and distance from large moisture sources. Although previous studies examined the occurrence of Canadian Prairie droughts during instrumental, pre-instrumental and to a lesser extent, future periods, none have specifically focused on all time three scales. Using two different drought indicators, namely the Palmer Drought Severity Index (PDSI) and Standardized Precipitation Index (SPI), this investigation assesses the variability of summer drought duration and intensity over a core region of the Prairies during (a) the pre-instrumental record extending back several centuries (inferred from tree rings), (b) the instrumental record (1901–2005), and (c) the twenty-first century using statistically downscaled climate variables from several Atmosphere–Ocean Global climate models with multiple emission scenarios. Results reveal that observed twentieth century droughts were relatively mild when compared to pre-settlement on the Prairies, but these periods are likely to return (and even worsen) in the future due to the anticipated warming during the course of the twenty-first century. However, future drought projections are distinctly different between the two indices. All PDSI-related model runs show greater drought frequency and severity mainly due to increasing temperatures. Conversely, the precipitation-based SPI indicates no significant changes to future summer drought frequency although there tends to be a higher persistence of multi-year droughts in central and southern portions of Canadian Prairies. These findings therefore stress the importance of considering anticipated warming trends when assessing future regional-scale drought, especially given the uncertainties and lack of consistency in future precipitation signals among climate models. This study can be considered an initial step toward quantifying and understanding Canadian Prairie drought occurrence and severity over several centuries as determined from paleo, instrumental, and climate model data sources.  相似文献   

14.
A monthly index based on the persistence of the westerly winds over the English Chanel is constructed for 1685–2008 using daily data from ships’ logbooks and comprehensive marine meteorological datasets. The so-called Westerly Index (WI) provides the longest instrumental record of atmospheric circulation currently available. Anomalous WI values are associated with spatially coherent climatic signals in temperature and precipitation over large areas of Europe, which are stronger for precipitation than for temperature and in winter and summer than in transitional seasons. Overall, the WI series accord with the known European climatic history, and reveal that the frequency of the westerlies in the eastern Atlantic during the twentieth century and the Late Maunder Minimum was not exceptional in the context of the last three centuries. It is shown that the WI provides additional and complementary information to the North Atlantic Oscillation (NAO) indices. The analysis of WI series during the industrial era indicates an overall good agreement with the winter and high-summer NAO, with the exception of several multidecadal periods of weakened correlation. These decoupled periods between the frequency and the intensity of the zonal flow are interpreted on the basis of several sources of non-stationarity affecting the centres of the variability of the North Atlantic and their teleconnections. Comparisons with NAO reconstructions and long instrumental indices extending back to the seventeenth century suggest that similar situations have occurred in the past, which call for caution when reconstructing the past atmospheric circulation from climatic proxies. The robustness and extension of its climatic signal, the length of the series and its instrumental nature make the WI an excellent benchmark for proxy calibration in Europe and Greenland.  相似文献   

15.
Both increasing and decreasing 20th century growth trends have been reported in forests throughout Europe, but only for few species and areas suitable modelling techniques have been used to distinguish individual tree growth (operating on a local scale) from growth change due to exogenous factors (operating on a broad geographical scale). This study relates for the first time observed growth changes, in terms of basal area increment (BAI) of dominant trees of pedunculate oak, common beech and Scots pine, in north-west European temperate lowland forests (Flanders) to climate, atmospheric CO2 and tropospheric O3 concentrations, N deposition, site quality and forest structure for more than a century (the period 1901?C2008), applying mixed models. Growth change during the 20th century is observed for oak (increasing growth) and beech (increasing growth until the 1960s, growth decline afterwards), but not for pine. It was possible to relate growth change of oak and beech to climate time series and N deposition trends. Adding time series for CO2 and O3 concentration did not significantly improve model results. For oak and beech a switch from positive to negative growth response with increasing nitrogen deposition throughout time is observed. Growth increase for oak is mainly determined by the interaction between growing season temperature and soil water recharge. It is reasonable to assume that the observed growth trend for oak will continue for as long as early season water availability is not compromised. The decreasing trend in summer relative air humidity observed since the 1960s in the study area can be a main cause of recent beech BAI decrease. A further growth decline of beech can be expected, independent of site quality.  相似文献   

16.
Zonal circulation indices with monthly and seasonal resolutions are calculated based on gridded monthly mean sea-level pressure (SLP) reconstructed back to 1780 by Jones et al. (1999): an overall zonal index for the whole European area between 30°W and 40°E, a normalized index for the North Atlantic Oscillation (NAO), and a similar index for Central Europe. For most of the early time up to the mid-nineteenth century we get preferred negative anomalies in the NAO index for winter and preferred positive ones for summer. The turning points in cumulative anomalies - during the 1850s for winter and during the 1870s for summer - indicate a transition period in circulation modes from the "Little Ice Age" to the recent climate in Europe. Running correlations (time windows of 21 years with time steps of one year) between zonal indices and regional temperature time series from Central England, Stockholm and two Central European regions are all indicating major instationarities in these relationships with a particular decline in winter correlations around the turn from the nineteenth to the twentieth centuries. Aspects of different circulation patterns linked with these variabilities are discussed.  相似文献   

17.
Climate variability and change in Bulgaria during the 20th century   总被引:1,自引:1,他引:1  
Summary Climate data used for climate variability and change analyses, must be homogeneous, to be accurate. The data currently used in the Météo-France homogenization procedure, which does not require computation of regional reference series, was applied to precipitation and average air temperature series in Bulgaria. The Caussinus-Mestre method, with a double-step procedure, was used to detect multiple breaks and outliers in the long-term series of precipitation and average air temperature. A two factor linear model was applied for break correction. The homogenization procedure was run till all or most break risk was gone. Analysis of climate variability and change in Bulgaria during the 20th century was done on already homogenized precipitation and average air temperature series. The statistical significance of the trends obtained was evaluated by the coefficient of Spearman rank correlation. The variations of annual precipitation in Bulgaria showed an overall decrease. The country has experienced several drought episodes during the 20th century, most notably in the 1940s and 1980s. Seasonal precipitation in spring shows a positive trend at most weather stations across the country. The trend for summer and autumn precipitation is negative. A statistically significant increasing trend of winter precipitation in north Bulgaria was detected. No significant warming trend in the country was found during the last century inspite of the warming observed during the last two decades. Summer in Bulgaria tends to be warmer from the beginning of the 1980s. There is a statistically significant increasing trend of average air temperature during the winter season at the weather stations near the Danube river (north Bulgaria) during the periods 1901–2000 and 1931–2000.  相似文献   

18.
宁夏河东沙地近百年来气候背景变化分析   总被引:1,自引:1,他引:1  
利用贺兰山树木年轮指数与河东沙地盐池代表站的年降水量及气温距平建立相关关系,对河东沙地近百年的降水量及气温距平序列进行拟合延长,分析河东沙地近百年来气候变化大趋势。同时利用河东沙地范围内6个代表性站气象资料,对近50年来河东沙地气候变化特征作较详细的分析。结果表明:河东沙地在30年代之前为干冷期;30年代以后逐渐向暖湿方向发展,一直持续到50年代中期;50年代中期以后是一个典型的寒冷湿润时期;60年代以后是一个相对干冷时期;80年代中期至今是近百年里的一个相对干暖时期。另外,在河东沙地不同时间、不同方位上气温、降水量、蒸发量、空气相对湿度及平均风速均存在着较大差异。  相似文献   

19.
This work analyses the climatic information of 607 weather anomalies belonging to a large documentary sources heritage of the continental southern Italy during the period 1675–1868. The collected information, mainly originating in Samnium River Region (SRR), were codified to obtain quantitative indices representative of a preliminary reconstruction of the precipitation anomalies. Historical written records of weather conditions that affect agriculture and living conditions have been taken as a proxy for instrumental observations of the relative wetness and dryness. As a consequence a numerical index was established to characterize the rainfall regime and its evolution. So, for the first time a series of the precipitation anomalies in SRR–continental southern Italy during the second half of the Little Ice Age was generated, and subsequently jointed to the instrumental series (1869–2002). Afterwards, in order to identify possible climatic change situations from 1675 today Normalized Cumulative Anomalies (NCA)–serie's and Climograms were produced. This historical period offered a sufficient range of natural variability in climate and circulation together with their relationships. Wettest period were detected in the 19th century, while that driest in the 18th century. However, the Mediterranean climate appearing from our study is far more complex than can be captured by a simple classification. In this way, the final picture is one switching between significantly different climate modes becoming apparent on several space-time-scales during the Late Little Ice Age.  相似文献   

20.
We developed calibration models and reconstructed climate for sites in the central and eastern Canadian High Arctic using dendroclimatological and stable isotope analysis techniques on the dwarf-shrub, Cassiope tetragona. Our results may suggest complex temporal and spatial patterns of climate change in the region over the past century. For sites on Bathurst and Devon Islands, we reconstructed fall mean and June–July mean temperature using multiple linear regression analysis that explained 54?% and 40?% of the variance, respectively. The predictor variables included annual growth, annual production of leaves, flower buds and annual δ13C values for the Bathurst Island model, and annual growth and δ13C values for the Devon Island model. Both models revealed warmer than average temperatures throughout the mid-20th century, followed by a cooling trend from the early 1960s and mid-1970s at the Devon and Bathurst Island sites, respectively. Temperatures remained cool until the early 1980s and then increased until 1998/1999 at both sites. Our models are supported by other paleoclimate proxies and the instrumental record from the Canadian Arctic. For sites on Axel Heiberg and Bathurst Islands, we developed models using multivariate regresssion for February and March total precipitation that explained 44?% and 42?% of the variance, respectively. The Axel Heiberg Island model included annual production of flowers and flower buds, as well as annual δ13C values as predictor variables, while the Bathurst Island model only included the annual production of flower buds as a predictor. Both models showed lower than average precipitation from the early to mid-1900s, followed by increasing precipitation from the late 1980s to 1998/1999. Our precipitation models, supported by instrumental and proxy data, suggest a trend of increasing late-winter/early spring precipitation in the late 20th century. The lack of a single detectable climate signal across the study sites suggests local climate, topography, genetic variation and/or ecological conditions may dictate, in part, site responses and result in a heterogeneous climatescape over space and time. Yet, like other arctic paleoclimate proxies, chronology error and temporal discrepancies may complicate our interpretations. However, comparisons with other arctic proxies and the meteorological record suggest our models have also registered a regional climate signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号