首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 119 毫秒
1.
Numerical simulations of the evolving activity of comet Hale-Bopp are presented, assuming a porous, spherical nucleus, 20 km in radius, made of dust and gas-laden amorphous ice. The main effects included are: crystallization of amorphous ice and release of occluded gas, condensation, sublimation and flow of gases through the pores, changing pore sizes, and flow of dust grains. The model parameters, such as initial pore size and porosity, emissivity, dust grain size, are varied in order to match the observed activity. In all cases, a sharp rise in the activity of the nucleus occurs at a large heliocentric distance pre-perihelion, marked by a few orders of magnitude increase in the CO and the CO2 fluxes and in the rate of dust emission. This is due to the onset of crystallization, advancing down to a few meters below the surface, accompanied by release of the trapped gases. A period of sustained, but variable, activity ensues. The emission of water molecules is found to surpass that of CO at a heliocentric distance of 3 AU. Thereafter the activity is largely determined by the behaviour of the dust. If a dust mantle is allowed to build up, the water production rate does not increase dramatically towards perihelion; if most of the dust is ejected, the surface activity increases rapidly, producing a very bright comet. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
《Planetary and Space Science》1999,47(8-9):935-949
An analytical model of the innermost gas–dust coma region is proposed. The kinetic Knudsen layer adjacent to the surface of the cometary nucleus, where the initially non-equilibrium velocity distribution function of gas molecules relaxes to Maxwell equilibrium distribution function and, as a result, the macro-characteristics of gas and dust flows vary several-fold, is considered. The gas phase model is based on the equations for mass, momentum and energy flux conservation, and is a natural development of the Anisimov, 1968 and Cercignani, 1981 approaches. The analytical relations between the characteristics of the gas flow on the boundaries of the non-equilibrium layer and the characteristics of the returning gas flow adsorbed by the surface are determined. These values form a consistent basis both for hydrodynamic models of the inner coma and for jet force models. Three particular models are presented: (1) sublimation of a polyatomic one-component gas; (2) sublimation of a two-component polyatomic gas mixture, in both cases from a plane surface; and (3) sublimation of water ice through a porous dust mantle. We conclude that the characteristics of the gas flow emerging from the Knudsen layer over a porous dust mantle is not very sensitive to the structure of the mantle.We also treat the expansion of dust into the coma, concentrating on the interaction between a non-equilibrium gas flow and a test particle. The dynamics of a grain of idealized shape is explored by using several simplifying assumptions for the variation of the drag force. The velocity of a particle at the exterior boundary of the Knudsen layer is thus estimated. Examining various model behaviours of the drag force inside the Knudsen layer, we show that the dust velocity is not sensitive to these variations.  相似文献   

3.
The evolution of a comet nucleus is investigated, taking into account the crystallization process by which the gas trapped in the ice is released to flow through the porous ice matrix. The equations of conservation of the energy and of the masses of ice and gas are solved throughout the nucleus, to obtain the evolution of the temperature, gas pressure and density profiles. A spherical nucleus composed of cold, porous amorphous ice, with 10% of CO trapped in it, serves as initial model. Several values of density (porosity) and pore size are considered. For each combination of parameters the model is evolved for 20-30 revolutions in comet P/Halley's orbit. Two aspects of the release of gas upon crystallization are analyzed and discussed: (a) the resulting continuous outward flux with high peaks at the time of crystallization, which is a cyclic process in the low-density models and sporadic in the high-density ones; (b) the internal pressures obtained down to depths of a few tens to approximately 200 m (depending on parameters), that are found to exceed the compressional strength of cometary ice. As a result, both cracking and explosions of the overlying ice layer and ejection of gas and ice/dust grains are expected to follow crystallization. They should appear as outbursts or sudden brightening of the comet. The model of 0.2 g cm-3 density is found to reproduce quite well many of the light-curve and activity characteristics of comet P/Halley.  相似文献   

4.
The gas transport through non-volatile random porous media is investigated numerically. We extend our previous research of the transport of molecules inside the uppermost layer of a cometary surface ( [Skorov and Rickman, 1995] and [Skorov et al., 2001]). We assess the validity of the simplified capillary model and its assumptions to simulate the gas flux trough the porous dust mantle as it has been applied in cometary physics. A microphysical computational model for molecular transport in random porous media formed by packed spheres is presented. The main transport characteristics such as the mean free path distribution and the permeability are calculated for a wide range of model parameters and compared with those obtained by more idealized models. The focus in this comparison is on limitations inherent in the capillary model. Finally a practical way is suggested to adjust the algebraic Clausing formula taking into consideration the nonlinear dependence of permeability on layer porosity. The retrieved dependence allows us to accurately calculate the permeability of layers whose thickness and porosity vary in the range of values expected for the near-surface regions of a cometary nucleus.  相似文献   

5.
A model of cometary activity is developed which integrates the feedback processes involving heat, gas, and dust transport, and dust mantle development. The model includes the effects of latitude, rotation, and spin axis orientation. Results are obtained for various grain size distributions, dust-to-ice ratios, and spin axis orientations. Attention is focused on the development, change of structure and distribution of dust mantles and their mutual interaction with ice surface temperature and gas and dust production. In this model the dust mantle controls the mechanism of gas transport not onlu by its effect on the temperature but, more importantly, by its own dynamic stability. Results suggest that an initially homogeneous short-period comet with a “cosmic” dust-to-water ice ratio, typical orbit, rotation rate, and grain size distribution would develop at most only a thin (<1 mm) cyclic mantle at all points on the nucleus. Such a fully developed temporary mantle would exist throughout the diurnal cycle only beyond ~4AU. Thus, cyclic behavior would be expected for such an idealized comet, at least for most of its lifetime. Long-term irreversible mantle development on comets with typical rotation rates was not found except regionally on Encke and also on objects with perihelia ?1.5 AU. Even in these cases, free silicate exists, after a few cycles, only as relatively rare large grains and agglomerates with radii ~1 cm scattered over exposed ice. Full mantle development would require hundreds to thousands of cycles. In the case of an initially homogeneous comet Encke, this slow incipient mantle development is shown to be the direct result of its peculiar axial orientation. High obliquity appears required for long-term mantle development for typical rotation rates and perihelia ?1.5 AU. Heat conduction into the nucleus for an incompletely mantled or bald comet has been found to be very important in maintaining relatively higher ice surface temperatures, and hence fluxes, during those portions of the diurnal and orbital cycles which would otherwise be cooler. It is also shown to be at least one cause of post perihelion brightness asymmetries, especially in lower obliquity comets. Maximum heliocentric distances at which 1-μm dust, sand, pebbles, cobbles, and boulders can be permanently ejected from the subsolar point by H2O (CO2) are (in AU): 6.9 (16.8), 5.2 (11.5), 1.8 (3.0), 0.21 (0.34) and 0.07 (0.11), respectively. A detailed anatomy of temperature, gas and dust fluxes vs latitude and longitude for a homogeneous rotating comet with fixed axis is given for comparison with future observations. Most H2O flux histories deduced from brightness data are found to be in reasonable agreement with the model, allowing for uncertainty in radius and albedo. A clear exception is Encke. It is shown that the large discrepancy between Encke's observed and model predicted fluxes, based on radar cross section, can be used to evaluate the extent of exposed ice (<10%). The model is then used to place an active area so as to explain a reported sharp drop in flux on approach to the Sun at 0.78 AU. An active area or areas, <10% of the comet's surface, centered near 65°N latitude appears indicated. Although cyclic mantles are generally indicated for the set of parameters we used, our results show that a global mantle only 1 to 3 cm thick (depending on the orbit) consisting of a full range of grain sizes can cause irresversible evolution to a noncometary body. We investigated the long-term evolution of such a postulated initially thinly mantled cometary object. It was found that after the first few passes and until the end of its dynamic lifetime the object averaged <3 × 10?12 g cm?1 sec?1 H2O flux. Therefore, if cometary objects evolve into Apollo asteroids, ice should always be accessible within 10 m of the surface despite numerous close perihelion passages. The possible impact of factors not included in the model, such as initial inhomogeneities, coma scattering of radiation, and global redistribution of ejected silicate around the nucleus, are discussed.  相似文献   

6.
We present spectropolarimetry of the solid CO feature at 4.67 μm along the line of sight to Elias 16, a field star background to the Taurus dark cloud. A clear increase in polarization is observed across the feature with the peak of polarization shifted in wavelength relative to the peak of absorption. This shows that dust grains in dense, cold environments (temperatures ∼20 K or less) can align and produce polarization by dichroic absorption. For a grain model, consisting of a core with a single mantle, the polarization feature is best modelled by a thick CO mantle, possibly including 10 per cent water-ice, with the volume ratio of mantle to bare grain of ∼5. Radiative torques could be responsible for the grain alignment provided the grain radius is at least 0.5 μm. This would require the grain cores to have a radius of at least 0.3 μm, much larger than grain sizes in the diffuse interstellar medium. Sizes of this order seem reasonable on the basis of independent evidence for grain growth by coagulation, as well as mantle formation, inside dense clouds.  相似文献   

7.
The most salient features of the barred spiral galaxy NGC 7479 include the unusually strong and long bar, asymmetric spiral structure and peculiar dust lanes. The central, bar-dominated region has been robbed of neutral atomic gas. The neutral hydrogen kinematics of the strong western spiral arm are consistent with substantial non-circular motions. In contrast, the molecular gas is strongly concentrated in the nucleus and along the bar dust lanes. A molecular disc with near-circular motion is found in the nuclear area. Outside this component, the molecular gas has a strong radial velocity component consistent with inflow. The velocity gradients across the bar dust lanes show jumps of a few hundred km s-1. A comparison of the dust/gas lane morphology between the observations and numerical simulations suggests that the corotation radius is at 1.1 times the bar length. I have modelled many of the peculiar morphological and kinematic features in numerical simulations of a minor merger. The predicted position of the merging companion matches the position of a bright clump in the bar with perturbed kinematics. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
We study the pattern speed of the bar in NGC 7479 by comparing observations with numerical simulations of gas flow in a two-dimensional gravitational potential, derived from observations. The best agreement between the observations and the modelling is achieved for the fast bar pattern speed of 27 km s−1 kpc−1, when the corotation radius is at 50 arcsec, i.e. 1.1 times the radial length of the bar. This result is supported by the gas and dust lane morphologies, star formation distribution, projected velocity field and overall morphology. We find that star formation is most likely to be triggered close to the large-scale shocks and dust lanes in the bar. The net gas inflow rate in the simulations at 1-kpc radius is 4–6 M⊙ yr−1 at intermediate times.  相似文献   

9.
Augusto Carballido 《Icarus》2011,211(1):876-884
Numerical magnetohydrodynamic (MHD) simulations of a turbulent solar nebula are used to study the growth of dust mantles swept up by chondrules. A small neighborhood of the solar nebula is represented by an orbiting patch of gas at a radius of 3 AU, and includes vertical stratification of the gas density. The differential rotation of the nebular gas is replaced by a shear flow. Turbulence is driven by destabilization of the flow as a result of the magnetorotational instability (MRI), whereby magnetic field lines anchored to the gas are continuously stretched by the shearing motion. A passive contaminant mimics small dust grains that are aerodynamically well coupled to the gas, and chondrules are modeled by Lagrangian particles that interact with the gas through drag. Whenever a chondrule enters a region permeated by dust, its radius grows at a rate that depends on the local dust density and the relative velocity between itself and the dust. The local dust abundance decreases accordingly. Compaction and fragmentation of dust aggregates are not included. Different chondrule volume densities ρc lead to varying depletion and rimmed-chondrule size growth times. Most of the dust sweep-up occurs within ~1 gas scale-height of the nebula midplane. Chondrules can reach their asymptotic radius in 10–800 years, although short growth times due to very high ρc may not be altogether realistic. If the sticking efficiency Q of dust to chondrules depends on their relative speed δv, such that Q < 10?2 whenever δv > vstick  34 cm/s (with vstick a critical sticking velocity), then longer growth times result due to the prevalence of high MRI-turbulent relative velocities. The vertical variation of nebula turbulent intensity results in a moderate dependence of mean rimmed-chondrule size with nebula height, and in a ~20% dispersion in radius values at every height bin. The technique used here could be combined with Monte Carlo (MC) methods that include the physics of dust compaction, in a self-consistent MHD-MC model of dust rim growth around chondrules in the solar nebula.  相似文献   

10.
Abstract— We examined partially molten dust particles that have a solid core and a surrounding liquid mantle, and estimated the maximal size of chondrules in a framework of the shock wave heating model for chondrule formation. First, we examined the dynamics of the liquid mantle by analytically solving the hydrodynamics equations for a core‐mantle structure via a linear approximation. We obtained the deformation, internal flow, pressure distribution in the liquid mantle, and the force acting on the solid core. Using these results, we estimated conditions in which liquid mantle is stripped off from the solid core. We found that when the particle radius is larger than about 1–2 mm, the stripping is expected to take place before the entire dust particle melts. So chondrules larger than about 1–2 mm are not likely to be formed by the shock wave heating mechanism. Also, we found that the stripping of the liquid mantle is more likely to occur than the fission of totally molten particles. Therefore, the maximal size of chondrules may be determined by the stripping of the liquid mantle from the partially molten dust particles in the shock waves. This maximal size is consistent with the sizes of natural chondrules.  相似文献   

11.
Deep SCUBA observations of NGC 1275 at 450 and 850 μm along with the application of deconvolution algorithms have permitted us to separate the strong core emission in this galaxy from the fainter extended emission around it. The core has a steep spectral index and is likely caused primarily by the active galactic nucleus. The faint emission has a positive spectral index and is clearly caused by extended dust in a patchy distribution out to a radius of ∼20 kpc from the nucleus. These observations have now revealed that a large quantity of dust, ∼     (two orders of magnitude larger than that inferred from previous optical absorption measurements), exists in this galaxy. We estimate the temperature of this dust to be ∼20 K (using an emissivity index of     and the gas/dust ratio to be 360. These values are typical of spiral galaxies. The dust emission correlates spatially with the hot X-ray emitting gas, which may be a result of collisional heating of broadly distributed dust by electrons. As the destruction time-scale is short, the dust cannot be replenished by stellar mass loss and must be externally supplied, via either the infalling galaxy or the cooling flow itself.  相似文献   

12.
Sekiya and Takeda [2003, Earth Planets Space 55, 263-269] showed that the hydrodynamic gas flow around a dust aggregate larger than the mean free path of gas molecules prevents the growth of the body. In contrast to Wurm et al. [2004, Astrophys. J. 606, 983-987], we argue that this conclusion is not altered even if we take account of the effect of the flow through a porous dust aggregate.  相似文献   

13.
A fully 3-dimensional implicit numerical model for comet nucleus evolution is presented, emphasizing dust mantle formation. A spherical configuration is considered with an initial composition of amorphous H2O ice and dust, taking into account a discrete dust-grain size distribution. The model is applied to Comet 67P/Churyumov-Gerasimenko, adopting its orbital elements, rotation period and rotation axis inclination. We find that the dust mantle thickness varies over the surface from 1 cm to about 10 cm (thus lower and higher than the diurnal skin-depth, respectively). The size distribution of ejected grains varies along the orbit and is steeper than the initial one adopted for the nucleus. The crystallization front advances inward in spurts, and its depth varies between 1 and several meters. We test the effect of the thermal conductivity on the surface temperature distribution and depths of the dust mantle and crystallization front.  相似文献   

14.
L. Noack  D. Breuer  T. Spohn 《Icarus》2012,217(2):484-498
We calculated 2D and 3D mantle convection models for Venus using digitized atmosphere temperatures from the model of Bullock and Grinspoon (Bullock, M.A., Grinspoon, D.H. [2001]. Icarus 150, 19–37) to study the interaction between interior dynamics and atmosphere thermal evolution. The coupling between atmosphere and interior occurs through mantle degassing and the effect of varying concentrations of the greenhouse gas H2O on the surface temperature. Exospheric loss of hydrogen to space is accounted for as a H2O sink. The surface temperature enters the mantle convection model as a boundary condition.Our results suggest a self-consistent feedback mechanism between the interior and the atmosphere resulting in spatial–temporal surface renewal. Greenhouse warming of the atmosphere results in an increase in the surface temperature. Whenever the surface temperature reaches a critical value, the viscosity difference across the lithosphere becomes smaller than about 105 and the surface becomes locally mobile. The critical surface temperature depends on the activation energy for mantle creep, the stress exponent in the non-Newtonian mantle rheology law, and the mantle temperature. Surface renewal together with surface lava flow may explain why the surface of Venus is young on average, i.e. not older than a few hundred million years.The mobilization of the near-surface lithosphere increases the rate of heat removal from the mantle and thereby the interior cooling rate. The enhanced cooling results in a reduction of the water outgassing rates. As a consequence of decreasing water concentrations in the atmosphere, the surface temperature decreases. Our model calculations suggest that Venus should have been geologically active until recently. This is in agreement with several lines of observational evidence from thermal emissivity measurements and crater distribution analyses.  相似文献   

15.
Volcanic plumes on Jupiter's moon Io are modeled using the direct simulation Monte Carlo (DSMC) method. The modeled volcanic vent is interpreted as a “virtual” vent. A parametric study of the “virtual” vent gas temperature and velocity is performed to constrain the gas properties at the vent by observables, particularly the plume height and the surrounding condensate deposition ring radius. Also, the flow of refractory nano-size particulates entrained in the gas is modeled with “overlay” techniques which assume that the background gas flow is not altered by the particulates. The column density along the tangential line-of-sight and the shadow cast by the plume are calculated and compared with Voyager and Galileo images. The parametric study indicates that it is possible to obtain a unique solution for the vent temperature and velocity for a large plume like Pele. However, for a small Prometheus-type plume, several different possible combinations of vent temperature and velocity result in both the same shock height and peak deposition ring radius. Pele and Prometheus plume particulates are examined in detail. Encouraging matches with observations are obtained for each plume by varying both the gas and particle parameters. The calculated tangential gas column density of Pele agrees with that obtained from HST observations. An upper limit on the size of particles that track the gas flow well is found to be ∼10 nm, consistent with Voyager observations of Loki. While it is certainly possible for the plumes to contain refractory dust or pyroclastic particles, especially in the vent vicinity, we find that the conditions are favorable for SO2 condensation into particles away from the vent vicinity for Prometheus. The shadow cast by Prometheus as seen in Galileo images is also reproduced by our simulation. A time averaged frost deposition profile is calculated for Prometheus in an effort to explain the multiple ring structure observed around the source region. However, this multiple ring structure may be better explained by the calculated deposition of entrained particles. The possibility of forming a dust cloud on Io is examined and, based on a lack of any such observed clouds, a subsolar frost temperature of less than 118 K is suggested.  相似文献   

16.
We have observed broad H  i absorption in the radio galaxy 3C 293 using Multi-Element Radio Linked Interferometric Network (MERLIN) at 0.2-arcsec angular resolution and the Giant Meterwavelength Radio Telescope (GMRT) at arcsec resolution. Extensive H  i is found in absorption across the centre of this peculiar radio galaxy, allowing a detailed study of the dynamics of the neutral gas on linear scales down to ∼160 pc. In optical depth position–velocity diagrams across the central few kpc we detect a distinct velocity gradient of 179 km s−1 arcsec−1 associated with the broad absorption. This is interpreted as a ring of neutral gas rotating around the suspected position of the active galactic nucleus (AGN) . The radius of this high velocity gradient ring is found to be >0.74 arcsec (600 pc), implying an upper limit upon the enclosed mass of     , assuming a near edge-on disc with an inclination of i . The optical depth of H  i is mapped across the entire central region of 3C 293 showing enhancements of a factor of 4 in the areas that are co-spatial with dust lanes seen in Hubble Space Telescope ( HST ) imaging of this galaxy.  相似文献   

17.
I review the multiphase cooling flow equations that reduce to a relatively simple form for a wide class of self-similar density distributions described by the single parameter, k , first introduced by Nulsen. It is shown that steady-state cooling flows are not consistent with all possible emissivity profiles, which can therefore be used as a test of the theory. In combination, they provide strong constraints on the temperature profile and mass distribution within the cooling radius. The model is applied to ROSAT HRI data for three rich clusters. At one extreme ( K  ∼ 1) these show evidence for cores in the mass distribution of size 110–140 h −150 kpc and have temperatures that decline towards the flow centre. At the other ( k ∈ ∞), the mass density and gas temperature both rise sharply towards the flow centre. The former are more consistent with observations which usually show a lower emission-weighted temperature within the cooling flow than from the cluster as a whole. The requirement that the solutions have a temperature gradient that is non-increasing towards the cluster centre limits the matter density gradient to be shallower than ρgrav ∝∼  r −1.2 in the cluster core.  相似文献   

18.
A study has been undertaken of the gas-grain chemistry of protostellar disks which are sufficiently cool that in the outer regions, where the gas density is less than 1013 cm–3 and the ionization rate highest, a bimolecular chemistry resembling that of dark clouds can occur. Since the gas-grain collision rate is so high, outgassing mantle molecules effectively determine the gas phase composition at any position in the disk. In contrast to previous work, a detailed gas phase chemistry is considered along with the accretion and desorption of mantle species which is controlled locally by the dust temperature.  相似文献   

19.
A longstanding problem in thermophysical modeling of cometary nuclei has been to accurately formulate the boundary conditions at the nucleus/coma interface. A correct treatment of the problem, where the Knudsen layer gas just above the cometary surface (which is not in thermodynamic equilibrium) is modeled in parallel with the nucleus, is extremely time-consuming and has so far been avoided. Instead, simplifying assumptions regarding the coma properties are used, e.g., the surface gas density is assumed equal to zero or set to the local saturation value, and the coma backflux is neglected or given some realistic but approximate value. The resulting inaccuracy regarding the exchange of mass, energy, and momentum between the nucleus and the coma, may introduce significant errors in the calculated nucleus temperature profiles, gas production rates, and momentum transfer efficiencies. In this paper, we present a practical, accurate, and time-efficient tool which makes it possible to consider the nucleus and the innermost coma of a comet (the former assumed to consist of a porous mixture of crystalline water ice and dust) as a coupled, physically consistent system. The tool consists of interpolation tables for the surface gas density and pressure, the recondensing coma backflux, and the cooling energy flux due to diffusely scattered coma molecules. The tables cover a wide range of surface temperatures and sub-surface temperature profiles, and can be used to improve the boundary conditions used in thermophysical models. The interpolation tables have been obtained by calculating the transmission distribution functions of gas emerging from sublimating porous ice/dust mixtures with various temperature profiles, which then are used as source functions in a Direct Simulation Monte Carlo model of inelastic intermolecular collisions in the Knudsen layer.  相似文献   

20.
This review presents recent results on protoplanetary disks obtained from angularly resolved observations. Observations with mm arrays show that disks are in Keplerian rotation, with radius as large as 1000 AU. Optical images show disks to be flared. Both type of observations imply the dust in disk has evolved and grown from interstellar dust. Measurement of the gas temperature from CO isotopes indicate temperature gradient, consistent with the disk flaring and heating by the central star. Disks which appear to have started to dissipate their initial gas content have also been discovered, but their very diverse aspects leaves the dissipation process unclear. Current data mostly concern the outer disk (>50 AU), although near-IR interferometry has started to unveil the innermost regions (<1 AU). The next generation of instruments (MIDI on VLTI, ALMA) will allow to probe the intermediate regime, where planet formation is expected to occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号