首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By using the solar magnetic ?eld data of Wilcox Observatory from 1975 to 2010, the short-time periodicities of solar mean magnetic ?elds during solar maximum and minimum years are analyzed. The results reveal that the solar magnetic ?elds mainly exhibit the approximate periods of 9 d, 13 d, and 27 d. During maximal solar activity the period about 27 d is most conspicuous, while during minimal solar activity the most evident period is approximately 13.5 d (except the solar minimum in the years 1984-1986). These results imply that solar active regions exhibit evidently different distributions in the periods of maxima and minima of solar activity.  相似文献   

2.
Simultaneous solar total irradiance observations performed by absolute radiometers on board satellites during the quiet-Sun period between solar cycles 21 and 22 (1985–1987), are analyzed to determine the solar total irradiance at 1 AU for the solar minimum. During the quiet-Sun period the total solar irradiance, UV irradiance, and the various solar activity indices show very little fluctuation. However, the absolute value of the solar total irradiance derived from the observations differ within the accuracy of the radiometers used in the measurements. Therefore, the question often arises about a reference value of the solar total irradiance for use in climate models and for computation of geophysical, and atmospheric parameters. This research is conducted as a part of the Solar Electromagnetic Radiation Study for Solar Cycle 22 (SOLERS22). On the basis of the study we recommended a reference value of 1367.0 ± 0.04 W m-2 for the solar total irradiance at 1 AU for a truly quiet Sun. We also find that the total solar irradiance data for the quiet-Sun period reveals strong short-term irradiance variations.  相似文献   

3.
Although solar ultraviolet (UV) irradiance measurements have been made regularly from satellite instruments for almost 20 years, only one complete solar cycle minimum has been observed during this period. Solar activity is currently moving through the minimum phase between cycles 22 and 23, so it is of interest to compare recent data taken from the NOAA-9 SBUV/2 instrument with data taken by the same instrument during the previous solar minimum in 1985–1986. NOAA-9 SBUV/2 is the first instrument to make continuous solar UV measurements for a complete solar cycle. Direct irradiance measurements (e.g., 205 nm) from NOAA-9 are currently useful for examining short-term variations, but have not been corrected for long-term instrument sensitivity changes. We use the Mgii proxy index to illustrate variability on solar cycle time scales, and to provide complementary information on short-term variability. Comparisons with contemporaneous data from Nimbus-7 SBUV (1985–1986) and UARS SUSIM (1994–1995) are used to validate the results obtained from the NOAA-9 data. Current short-term UV activity differs from the cycle 21–22 minimum. Continuous 13-day periodicity was observed from September 1994 to March 1995, a condition which has only been seen previously for shorter intervals during rising or maximum activity levels. The 205 nm irradiance and Mgii index are expected to track very closely on short time scales, but show differences in behavior during the minimum between cycles 22 and 23.  相似文献   

4.
The time variations in the latitudinal distribution of the rotation of active regions and coronal holes are investigated. The synoptic maps obtained from observations in the He I 1083 nm line at Kitt Peak Observatory over almost three solar cycles are used as observational data. A Fourier analysis of the time series constructed from synoptic maps has yielded the following results. The rotation of active regions differs significantly from the rotation of coronal holes in all parameters: the set of the most significant rotation periods, their latitudinal distribution, and time variations. The rotation of active regions and coronal holes is characterized by variations from cycle to cycle, a time-varying north-south asymmetry. The power spectra for consecutive cycles of solar activity differ significantly for both epochs of high activity and minima. Analysis of the total power of the spectra within four selected intervals of periods from 21 to 33 days has shown that the total power is highest in the intervals of periods 24–27 and 27–30 days. This is valid for both active regions and coronal holes. The correlation between the total powers in the above intervals of periods changes noticeably with time. Long-lived or successively appearing active regions with rotation periods in the range 24–30 days are typical of the time of a sharp decrease in the total equivalent width of active regions. This includes not only the decline time of the 11-year cycles, but also the minima between recurrent activity maxima during one cycle. A predominance of long-lived coronal holes as their total equivalent width decreases is noticeable for coronal holes with rotation periods in the interval 30–33 days. All of the above results suggest that the rotation of solar structures is determined mainly by the subphotospheric sources of specific structures, not by the rotation of the main volumes of solar plasma of the quiet Sun.  相似文献   

5.
The pressure-corrected hourly counting rate data of ground-based super neutron monitor stations, situated in different latitudes, have been employed to study the characteristics of the long-term variation of cosmic-ray diurnal anisotropy for a long (44-year) period (1965?–?2008). Some of these super neutron monitors are situated in low latitudes with high cutoff rigidity. Annual averages of the diurnal amplitudes and phases have been obtained for each station. It is found that the amplitude of the diurnal anisotropy varies with a period of one solar activity cycle (11 years), whereas the diurnal phase varies with a period of 22 years (one solar magnetic cycle). The average diurnal amplitudes and phases have also been calculated by grouping the days on the basis of ascending and descending periods of each solar cycle (Cycles 20, 21, 22, and 23). Systematic and significant differences are observed in the characteristics of the diurnal variation between the descending periods of the odd and even solar cycles. The overall vector averages of the descending periods of the even solar cycles (20 and 22) show significantly smaller diurnal amplitudes compared to the vector averages of the descending periods of the odd solar cycles (21 and 23). In contrast, we find a large diurnal phase shift to earlier hours only during the descending periods of even solar cycles (20 and 22), as compared to almost no shift in the diurnal phase during the descending periods of odd solar cycles. Further, the overall vector average diurnal amplitudes of the ascending period of odd and even solar cycles remain invariant from one ascending period to the other, or even between the even and odd solar cycles. However, we do find a significant diurnal phase shift to earlier hours during the ascending periods of odd solar cycles (21 and 23) in comparison to the diurnal phase in the ascending periods of even solar cycles (20 and 22).  相似文献   

6.
G. Feulner 《Solar physics》2013,282(2):615-627
The Mauna Loa Observatory record of direct-beam solar irradiance measurements for the years 1958?–?2010 is analysed to investigate the variation of clear-sky terrestrial insolation with solar activity over more than four solar cycles. The raw irradiance data exhibit a marked seasonal cycle, extended periods of lower irradiance due to emissions of volcanic aerosols, and a long-term decrease in atmospheric transmission independent of solar activity. After correcting for these effects, it is found that clear-sky terrestrial irradiance typically varies by ≈?0.2±0.1 % over the course of the solar cycle, a change of the same order of magnitude as the variations of the total solar irradiance above the atmosphere. An investigation of changes in the clear-sky atmospheric transmission fails to find a significant trend with sunspot number. Hence there is no evidence for a yet unknown effect amplifying variations of clear-sky irradiance with solar activity.  相似文献   

7.
A “Solar Dynamo” (SODA) Index prediction of the amplitude of Solar Cycle 25 is described. The SODA Index combines values of the solar polar magnetic field and the solar spectral irradiance at 10.7 cm to create a precursor of future solar activity. The result is an envelope of solar activity that minimizes the 11-year period of the sunspot cycle. We show that the variation in time of the SODA Index is similar to several wavelet transforms of the solar spectral irradiance at 10.7 cm. Polar field predictions for Solar Cycles 21?–?24 are used to show the success of the polar field precursor in previous sunspot cycles. Using the present value of the SODA index, we estimate that the next cycle’s smoothed peak activity will be about \(140 \pm30\) solar flux units for the 10.7 cm radio flux and a Version 2 sunspot number of \(135 \pm25\). This suggests that Solar Cycle 25 will be comparable to Solar Cycle 24. The estimated peak is expected to occur near \(2025.2 \pm1.5\) year. Because the current approach uses data prior to solar minimum, these estimates may improve as the upcoming solar minimum draws closer.  相似文献   

8.
O. White  G. Kopp  M. Snow  K. Tapping 《Solar physics》2011,274(1-2):159-162
Given the numerous ground-based and space-based experiments producing the database for the Cycle 23??C?24 Minimum epoch from September 2008 to May 2009, we have an extraordinary opportunity to understand its effects throughout the heliosphere. We use solar radiative output in this period to obtain minimum values for three measures of the Sun??s radiative output: the total solar irradiance, the Mg ii index, and the 10.7 cm solar radio flux. The derived values are included in the research summaries as a means to exchange ideas and data for this long minimum in solar activity.  相似文献   

9.
The diurnal variation of cosmic ray intensity, based on the records of two neutron monitor stations at Athens (Greece) and Oulu (Finland) for the time period 2001 to 2014, is studied. This period covers the maximum and the descending phase of the solar cycle 23, the minimum of the solar cycles 23/24 and the ascending phase of the solar cycle 24.These two stations differ in their geographic latitude and magnetic threshold rigidity. The amplitude and phase of the diurnal anisotropy vectors have been calculated on annual and monthly basis.From our analysis it is resulted that there is a different behaviour in the characteristics of the diurnal anisotropy during the different phases of the solar cycle, depended on the solar magnetic field polarity, but also during extreme events of solar activity, such as Ground Level Enhancements and cosmic ray events, such as Forbush decreases and magnetospheric events. These results may be useful to Space Weather forecasting and especially to Biomagnetic studies.  相似文献   

10.
Calculations of the magnetic field in the potential approximation (using Bd technology (Rudenko, 2001)) were used to study the time variations of several parameters of the large-scale magnetic field in the solar atmosphere during the last four cycles. Synoptic maps (SMs) for the radial component Br of the calculated magnetic field were plotted at 10 heights between the solar surface (R = R ) and the source (R = 2.5R ). On these SMs, we marked the 10-degree latitudinal areas. The following (averaged within the zone) characteristics of the magnetic field were determined corresponding to these zones: Sp, Sm; S +fields , where Sp is the positive value of Br, Sm is the averaged modulus of the negative Br; S +fields is the percentage of latitudinal zones with positive Br. The analysis of temporal variations in the magnitude of S points to different origins of the large-scale magnetic field in the near-equatorial and polar regions of the solar atmosphere. The analysis of temporal variations of S +fields showed that there were almost no periods with a mixed polarity at R = 2.5R during the 21st and 22nd solar cycles and in an ascending phase of the 23rd cycle. However, beginning from the maximum of the 23rd cycle, a mixed polarity in the equatorial region was observed until the end of the long minimum of activity. We hypothesized that this could be a precursor for a long minimum between the 23rd and 24th solar cycles. It was shown that during the maximum phase of the 24th solar cycle the magnetic field at R = R is much less than that during the maximum phase of the 23rd cycle, and in the region from 55° to 75°, this difference reaches an order of magnitude.  相似文献   

11.
What the Sunspot Record Tells Us About Space Climate   总被引:1,自引:0,他引:1  
The records concerning the number, sizes, and positions of sunspots provide a direct means of characterizing solar activity over nearly 400 years. Sunspot numbers are strongly correlated with modern measures of solar activity including: 10.7-cm radio flux, total irradiance, X-ray flares, sunspot area, the baseline level of geomagnetic activity, and the flux of galactic cosmic rays. The Group Sunspot Number provides information on 27 sunspot cycles, far more than any of the modern measures of solar activity, and enough to provide important details about long-term variations in solar activity or “Space Climate.” The sunspot record shows: 1) sunspot cycles have periods of 131± 14 months with a normal distribution; 2) sunspot cycles are asymmetric with a fast rise and slow decline; 3) the rise time from minimum to maximum decreases with cycle amplitude; 4) large amplitude cycles are preceded by short period cycles; 5) large amplitude cycles are preceded by high minima; 6) although the two hemispheres remain linked in phase, there are significant asymmetries in the activity in each hemisphere; 7) the rate at which the active latitudes drift toward the equator is anti-correlated with the cycle period; 8) the rate at which the active latitudes drift toward the equator is positively correlated with the amplitude of the cycle after the next; 9) there has been a significant secular increase in the amplitudes of the sunspot cycles since the end of the Maunder Minimum (1715); and 10) there is weak evidence for a quasi-periodic variation in the sunspot cycle amplitudes with a period of about 90 years. These characteristics indicate that the next solar cycle should have a maximum smoothed sunspot number of about 145 ± 30 in 2010 while the following cycle should have a maximum of about 70 ± 30 in 2023.  相似文献   

12.
We propose a minimum level of the smoothed values for the solar constant during a period of low sunspot activity as a new additional criterion for determining the time of a minimum between solar cycles. An indicator for the time of a minimum between cycles is the time at which a minimum level in the average monthly values of the integral flux of solar radiation smoothed over thirteen months (when the last four values of the flux are greater than the previous minimum point) is achieved. We successfully tested the new criterion to determine the time of the previous minima between cycles 21 and 22, 22 and 23, and 23 and 24.  相似文献   

13.
Total solar irradiance (TSI) is the primary quantity of energy that is provided to the Earth. The properties of the TSI variability are critical for understanding the cause of the irradiation variability and its expected influence on climate variations. A deterministic property of TSI variability can provide information about future irradiation variability and expected long-term climate variation, whereas a non-deterministic variability can only explain the past.This study of solar variability is based on an analysis of two TSI data series, one since 1700 A.D. and one since 1000 A.D.; a sunspot data series since 1610 A.D.; and a solar orbit data series from 1000 A.D. The study is based on a wavelet spectrum analysis. First, the TSI data series are transformed into a wavelet spectrum. Then, the wavelet spectrum is transformed into an autocorrelation spectrum to identify stationary, subharmonic and coincidence periods in the TSI variability.The results indicate that the TSI and sunspot data series have periodic cycles that are correlated with the oscillations of the solar position relative to the barycenter of the solar system, which is controlled by gravity force variations from the large planets Jupiter, Saturn, Uranus and Neptune. A possible explanation for solar activity variations is forced oscillations between the large planets and the solar dynamo.We find that a stationary component of the solar variability is controlled by the 12-year Jupiter period and the 84-year Uranus period with subharmonics. For TSI and sunspot variations, we find stationary periods related to the 84-year Uranus period. Deterministic models based on the stationary periods confirm the results through a close relation to known long solar minima since 1000 A.D. and suggest a modern maximum period from 1940 to 2015. The model computes a new Dalton-type sunspot minimum from approximately 2025 to 2050 and a new Dalton-type period TSI minimum from approximately 2040 to 2065.  相似文献   

14.
The solar ultraviolet irradiance measurements in the 120–400 nm wavelength range are reviewed and compared showing still important discrepancies between the irradiance values deduced from the most recent observations.The possible variations of the solar ultraviolet irradiances with the 27-day rotation period of the Sun and with the 11-year activity cycle are presented and discussed on the basis of the available irradiation fluxes obtained during the rising phase of solar cycle 21.The spectral features of both kinds of variation are clearly related to the solar atmospheric layer from which the corresponding radiation is emitted.Proceedings of the 14th ESLAB Symposium on Physics of Solar Variations, 16–19 September 1980, Scheveningen, The Netherlands.  相似文献   

15.
The X1- and X2- or higher class ?ares in solar cycles 21, 22, and 23 from 1986 to 2008 have been analyzed statistically in this paper. It is found in the statistical study that the number of the X1-class ?ares accounted for 52.71% of total X- and higher class ?ares, while, the number of the X2- and higher class ?ares accounted for 47.29% of total X- and higher class ?ares. No matter whether the X1- and X2- or higher class ?ares, most of them occured in the descending phases of the solar cycles. Moreover, the weaker the intensity of the solar cycle, the higher the ratio of the ?ares occurred in the descending phase of the solar cycle, and the stronger the intensity of solar ?ares, the higher the ratio of the ?ares occurred in the descending phases of the solar cycles. In addition, the phase difference between the peak of the smoothed monthly mean number of sunspots and that of the X-class ?ares has been calculated, which shows that the smoothed monthly mean number of the X1-class ?ares had a very noticeable time advance of 1 month with respect to that of sunspots in the cycles 21 and 22, but there was a time lag of 13 months in the cycle 23, while, for the X2- and higher class ?ares, there was a time lag of 9 months in the cycle 21, but a one-month time advance existed in the cycle 22, and again a time lag of 32 months appeared in the cycle 23.  相似文献   

16.
Employing the synoptic maps of the photospheric magnetic fields from the beginning of solar cycle 21 to the end of 23, we first build up a time – longitude stackplot at each latitude between ±35°. On each stackplot there are many tilted magnetic structures clearly reflecting the rotation rates, and we adopt a cross-correlation technique to explore the rotation rates from these tilted structures. Our new method avoids artificially choosing magnetic tracers, and it is convenient for investigating the rotation rates of the positive and negative fields by omitting one kind of field on the stackplots. We have obtained the following results. i) The rotation rates of the positive and negative fields (or the leader and follower polarities, depending on the hemispheres and solar cycles) between latitudes ±35° during solar cycles 21–23 are derived. The reversal times of the leader and follower polarities are usually not consistent with the years of the solar minimum, nevertheless, at latitudes ±16°, the reversal times are almost simultaneous with them. ii) The rotation rates of the three solar cycles averaged over each cycle are calculated separately for the positive, negative and total fields. The latitude profiles of rotation of the positive and negative fields exhibit equatorial symmetries with each other, and those of the total fields lie between them. iii) The differences in rotation rates between the leader and follower polarities are obtained. They are very small near the equator, and increase as latitude increases. In the latitude range of 5° – 20°, these differences reach 0.05 deg day−1, and the mean difference for solar cycle 22 is somewhat smaller than cycles 21 and 23 in these latitude regions. Then, the differences reduce again at latitudes higher than 20°.  相似文献   

17.
Total Solar Irradiance Measurement and Modelling during Cycle 23   总被引:1,自引:0,他引:1  
S. Mekaoui  S. Dewitte 《Solar physics》2008,247(1):203-216
During solar cycle 23, which is now close to its end, variations of the total solar irradiance were measured by six different instruments, providing four independent time series of the irradiance variation over the complete solar cycle. A new composite time series constructed using five of these six instruments provides unprecedented instrument stability for the study of the open question of solar irradiance variations between minima. An independent analysis of the different composite time series is performed through an empirical proxy model fit. The new composite is fitted with 0.96 correlation (R 2=93%) and RMS error of 0.15 W m−2, thus reaching the limit of the individual instrument stabilities. Both the measurements and the model indicate that for the current cycle the minimum irradiance level has not yet been reached. Therefore we use the model to extrapolate measurements up to 2008 when the minimum irradiance level is expected. If we assume that there will be no changes in the solar irradiance from 2006 to 2008 that are not captured by the regression model, it can be predicted that there will be no variation of the solar minimum irradiance level during cycle 23 with an uncertainty of ±0.14 W m−2.  相似文献   

18.
The periodicity of climatic processes along the Russian Arctic Ocean coast has been studied by analyzing the tree-ring chronologies for the regions close to the northern timberline. The wavelet analysis of annual series of conifer tree rings for the period 1458–1975 has revealed climatic oscillations with periods of 20–25 years. The amplitudes and periods of climatic oscillations in the region of Russian Arctic Ocean proved to exhibit appreciable changes. Especially strong climatic variations in comparison with the recent ones were found to occur during the Maunder minimum epoch when the period of oscillations increased from 22–23 years to 24–29 years, and oscillations with periods of 15 years appeared. After the Maunder minimum, the periods of oscillations and their amplitudes again decreased, and the 15–16-year maximum disappeared. Analysis of solar activity based on of radiocarbon (14C) concentration in annual tree rings has revealed a similar pattern in changes of periodicity before, during, and after the Maunder minimum. This suggests that quasi-bidecadal climatic oscillations and variations in solar activity can be connected with each other. A possible solar forcing of periodic climatic processes and its nonlinear influence on the atmosphere-ocean-continental system are discussed. The intense quasi-bidecadal climatic oscillations can be, in all probability, interpreted as resulting from amplification of a weak solar signal in the atmosphere-ocean system that has its own noises whose frequencies are close to the 22–23-year solar cycles.  相似文献   

19.
The satellite total solar irradiance (TSI) database provides a valuable record for investigating models of solar variation used to interpret climate changes. The 35-year ACRIM total solar irradiance (TSI) satellite composite time series has been revised using algorithm updates based on 13 years of accumulated mission experience and corrections to ACRIMSAT/ACRIM3 results for scattering and diffraction derived from recent testing at the Laboratory for Atmospheric and Space Physics/Total solar irradiance Radiometer Facility (LASP/TRF). The net correction lowers the ACRIM3 scale by ~3000 ppm, in closer agreement with the scale of SORCE/TIM results (average total solar irradiance ≈1361.5 W/m2). Differences between the ACRIM and PMOD TSI composites are investigated, particularly the decadal trending during solar cycles 21–22 and the Nimbus7/ERB and ERBS/ERBE results available to bridge the ACRIM Gap (1989–1992), are tested against a set of solar proxy models. Our findings confirm the following ACRIM TSI composite features: (1) The validity of the TSI peak in the originally published ERB results in early 1979 during solar cycle 21; (2) The correctness of originally published ACRIM1 results during the SMM spin mode (1981–1984); (3) The upward trend of originally published ERB results during the ACRIM Gap; (4) The occurrence of a significant upward TSI trend between the minima of solar cycles 21 and 22 and (5) a decreasing trend during solar cycles 22–23. The same analytical approach does not support some important features of the PMOD TSI composite: (1) The downward corrections applied to the originally published ERB and ACRIM1 results during solar cycle 21; (2) The step function sensitivity change in ERB results at the end-of-September 1989; (3) The downward trend of ERBE results during the ACRIM Gap and (4) the use of ERBE results to bridge the ACRIM Gap. Our analysis provides a first order validation of the ACRIM TSI composite approach and its 0.037 %/decade upward trend during solar cycles 21–22. The implications of increasing TSI during the global warming of the last two decades of the 20th century are that solar forcing of climate change may be a significantly larger factor than represented in the CMIP5 general circulation climate models.  相似文献   

20.
In the previous study (Hiremath, Astron. Astrophys. 452:591, 2006a), the solar cycle is modeled as a forced and damped harmonic oscillator and from all the 22 cycles (1755–1996), long-term amplitudes, frequencies, phases and decay factor are obtained. Using these physical parameters of the previous 22 solar cycles and by an autoregressive model, we predict the amplitude and period of the present cycle 23 and future fifteen solar cycles. The period of present solar cycle 23 is estimated to be 11.73 years and it is expected that onset of next sunspot activity cycle 24 might starts during the period 2008.57±0.17 (i.e., around May–September 2008). The predicted period and amplitude of the present cycle 23 are almost similar to the period and amplitude of the observed cycle. With these encouraging results, we also predict the profiles of future 15 solar cycles. Important predictions are: (i) the period and amplitude of the cycle 24 are 9.34 years and 110 (±11), (ii) the period and amplitude of the cycle 25 are 12.49 years and 110 (±11), (iii) during the cycles 26 (2030–2042 AD), 27 (2042–2054 AD), 34 (2118–2127 AD), 37 (2152–2163 AD) and 38 (2163–2176 AD), the sun might experience a very high sunspot activity, (iv) the sun might also experience a very low (around 60) sunspot activity during cycle 31 (2089–2100 AD) and, (v) length of the solar cycles vary from 8.65 years for the cycle 33 to maximum of 13.07 years for the cycle 35.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号