首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present here three transit observations of HAT-P-9b taken on 14 February 2010 and 05 April 2010 UT from the University of Arizona’s 1.55 m Kuiper telescope on Mt. Bigelow. Our two light curves were obtained in the Arizona-I filter for all our observations, and underwent the same reduction process. Both transits occurred approximately 24 min earlier than expected from the ephemeris of Shporer et al. (2009). However, due to the large time span between our observed transits and those of Shporer et al. (2009), a 6.5 s shift downwards in orbital period from the value of Shporer et al. (2009) is sufficient to explain all available transit data. We find a new period of 3.922814 ± 0.000002 days for HAT-P-9b, an order of magnitude more precise than previous measurements, with no evidence for significant nonlinearities in the transit period.  相似文献   

2.
We present high-precision photometric observations of the transiting exoplanets HAT-P-40 b and HAT-P-51 b by the Rozhen 2-m telescope.The newly-observed transit of HAT-P-40 b is the first one with a complete curve.The orbital periods of the two targets were improved.We modeled the observed transits and found bigger stellar radii than those derived from the stellar models.The planet radii of HATP-40 b and HAT-P-51 b obtained from our transit solutions are bigger than the values calculated by the empirical relations for Jupiter-mass and Saturn-mass planets respectively.Their values reveal the highlyinflated nature of the two targets,especially that of HAT-P-51 b.We established that the best transit solutions correspond to a quadratic limb-darkening law.The fitted limb-darkening coefficients of HAT-P-40 are close to the theoretical ones while those of HAT-P-51 are a little different.The precise astrometric Gaia distances of the two targets are smaller by 6%–7%than the calculated values from the stellar models.We propose the Gaia distances to be used for improvement of the stellar models as well as for more reliable calculation of the parameters of the known exoplanets.  相似文献   

3.
Exoplanet observations have been performed on the automated Pulkovo Observatory telescopes. We have obtained 33 transit light curves for 16 known exoplanets and six transit observations for three exoplanet candidates discovered by the Kepler telescope. Based on our observations, we have reliably confirmed the existence of an exoplanet with an extremely large radius, R pl = 1.83 ± 0.16R Jup, in the system KOI 256 and detected a strong deviation of its orbital revolution from the theoretically predicted one. During the transit of the exoplanet WASP-12b across the stellar disk, we detected bursts that could be caused by the planet transit across spots on the star or by the presence of a satellite around this exoplanet. We detected possible periodic variations in the duration of the exoplanet transit across the stellar disk with time for HAT-P-12b that could be caused by variations in orbital inclination. The transit duration and depth, the central transit time, and the radius and orbital inclination of the planet have been estimated. The equilibrium temperature and albedo have been estimated for several exoplanets.  相似文献   

4.
Photometric observations of exoplanet transits can be used to derive the orbital and physical parameters of an exoplanet. We analyzed several transit light curves of exoplanets that are suitable for ground-based observations whose complete information is available on the Exoplanet Transit Database (ETD). We analyzed transit data of planets including HAT-P-8 b, HAT-P-16 b, HAT-P-21 b, HAT-P-22 b, HAT-P-28 b and HAT-P-30 b using the AstroImageJ (AIJ) software package. In this paper, we investigated 82 transit light curves from ETD, deriving their physical parameters as well as computing their mid-transit times for future Transit Timing Variation (TTV) analyses. The Precise values of the parameters show that using AIJ as a fitting tool for follow-up observations can lead to results comparable to the values at the NASA Exoplanet Archive (the NEA). Such information will be invaluable considering the numbers of future discoveries from ground and space-based exoplanet surveys.  相似文献   

5.
The I‐band light curve of the transit candidate, taken with CAFOS (Carlar Alto 2.2 m telescope). See R. Errmann et al., this issue, p. 345. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
We present the results of optical spectroscopy for 19 quasar candidates at photometric redshifts z phot ? 3, 18 of which enter into the Khorunzhev et al. (2016) catalog (K16). This is a catalog of quasar candidates and known type 1 quasars selected among the X-ray sources of the 3XMM-DR4 catalog of the XMM-Newton serendipitous survey. We have performed spectroscopy for a quasi-random sample of new candidates at the 1.6-m AZT-33IK telescope of the Sayan Solar Observatory and the 6-m BTA telescope of the Special Astrophysical Observatory. The spectra at AZT-33IK were taken with the new low- and medium-resolution ADAM spectrograph that was produced and installed on the telescope in 2015. Fourteen of the 18 candidates actually have turned out to be quasars; 10 of them are at spectroscopic redshifts z spec > 3. The high purity of the sample of new candidates suggests that the purity of the entire K16 catalog of quasars is probably 70–80%. One of the most distant (z spec = 5.08) optically bright (i′ ? 21) quasars ever detected in X-ray surveys has been discovered.  相似文献   

7.
The in situ measurements of the Galileo Probe Mass Spectrometer (GPMS) were expected to constrain the abundances of the cloud-forming condensible volatile gases: H2O, H2S, and NH3. However, since the probe entry site (PES) was an unusually dry meteorological system—a 5-μm hotspot—the measured condensible volatile abundances did not follow the canonical condensation-limited vertical profiles of equilibrium cloud condensation models (ECCMs) such as Weidenschilling and Lewis (1973, Icarus 20, 465-476). Instead, the mixing ratios of H2S and NH3 increased with depth, finally reaching well-mixed equilibration levels at pressures far greater than the lifting condensation levels, whereas the mixing ratio of H2O in the deep well-mixed atmosphere could not be measured. The deep NH3 mixing ratio (with respect to H2) of (6.64±2.54)×10−4 from 8.9-11.7 bar GPMS data is consistent with the NH3 profile from probe-to-orbiter signal attenuation (Folkner et al., 1998, J. Geophys. Res. 103, 22847-22856), which had an equilibration level of about 8 bar. The GPMS deep atmosphere H2S mixing ratio of (8.9±2.1)×10−5 is the only measurement of Jupiter's sulfur abundance, with a PES equilibration level somewhere between 12 and 15.5 bar. The deepest water mixing ratio measurement is (4.9±1.6)×10−4 (corresponding to only about 30% of the solar abundance) at 17.6-20.9 bar, a value that is probably much smaller than Jupiter's bulk water abundance. The 15N/14N ratio in jovian NH3 was measured at (2.3±0.3)×10−3 and may provide the best estimate of the protosolar nitrogen isotopic ratio. The GPMS methane mixing ratio is (2.37±0.57)×10−3; although methane does not condense on Jupiter, we include its updated analysis in this report because like the condensible volatiles, it was presumably brought to Jupiter in icy planetesimals. Our detailed discussion of calibration and error analysis supplements previously reported GPMS measurements of condensible volatile mixing ratios (Niemann et al., 1998, J. Geophys. Res. 103, 22831-22846; Atreya et al., 1999, Planet. Space Sci. 47, 1243-1262; Atreya et al., 2003, Planet. Space Sci. 51, 105-112) and the nitrogen isotopic ratio (Owen et al., 2001b, Astrophys. J. Lett. 553, L77-L79). The approximately three times solar abundance of NH3 (along with CH4 and H2S) is consistent with enrichment of Jupiter's atmosphere by icy planetesimals formed at temperatures <40 K (Owen et al., 1999, Nature 402 (6759), 269-270), but would imply that H2O should be at least 3×solar as well. An alternate model, using clathrate hydrates to deliver the nitrogen component to Jupiter, predicts O/H?9×solar (Gautier et al., 2001, Astrophys. J. 550 (2), L227-L230). Finally we show that the measured condensible volatile vertical profiles in the PES are consistent with column-stretching or entraining downdraft scenarios only if the basic state (the pre-stretched column or the entrainment source region) is described by condensible volatile vertical profiles that are drier than those in the equilibrium cloud condensation models. This dryness is supported by numerous remote sensing results but seems to disagree with observations of widespread clouds on Jupiter at pressure levels predicted by equilibrium cloud condensation models for ammonia and H2S.  相似文献   

8.
A slitless UBVR spectrograph has been built for use on small telescopes. Test observations on the Zeiss-600 telescope at the Terskol peak demonstrated that the spectrograph is an efficient instrument for studying high-speed processes in variable stars with a high temporal resolution. The spectrograph resolving power R ≈ 100 in the vicinity of λ = 480 nm and the error in the determination of the wavelength is approximately 3 nm. The spectrograph provides a moderate signal-to-noise ratio for stars up to 16 m . It permits one to measure equivalent widths of unblended lines down to 0.1 nm. The developed special software based on the theory of quantum statistics makes it possible to detect relative variations in the spectrum of approximately 10?5–10?6 of the bolometric flux of the star. Observations with the spectrograph made it possible to detect variations of emissions in Balmer lines and Ca II H, K lines in the EV Lac flare star in the subsecond range. The spectroscopic monitoring permits one to study stellar flares with small amplitude, to carry out a comprehensive colorimetric analysis of flare plasma, and to determine temperatures and sizes of flares in the light intensity maximum. Observations of the transit of the HAT-P-1 B exoplanet demonstrate that the chromospheric activity power of the parent star does not vary during the transit. The slitless spectrograph with a low resolving capacity opens new prospects in studying active processes occurring on stars’ surfaces.  相似文献   

9.
Observations of the Earth’s exosphere have unveiled an extended envelope of hydrogen reaching further than 10 Earth radii composed of atoms orbiting around the Earth. This large envelope increases significantly the opacity of the Earth to Lyman α (Lyα) photons coming from the Sun, to the point of making feasible the detection of the Earth’s transit signature from 1.35 pc if pointing with an 8 meter primary mirror space telescope through a clean line of sight (N H <?1017 cm??2), as we show. In this work, we evaluate the potential detectability of Earth analogs orbiting around nearby M-type stars by monitoring the variability of the Lyα flux variability. We show that, in spite of the interstellar, heliospheric and astrospheric absorption, the transit signature in M5 V type stars would be detectable with a dedicated Lyα flux monitor implemented in a 4–8 m class space telescope. Such monitoring programs would enable measuring the robustness of planetary atmospheres under heavy space weather conditions like those produced by M-type stars. A 2-m class telescope, such as the World Space Observatory, would suffice to detect an Earth-like planet orbiting around Proxima Centauri, if there was such a planet or nearby M5 type stars.  相似文献   

10.
Knowledge of the Solar Diameter Imager and Surface Mapper (SODISM) plate scale is a fundamental parameter for obtaining the solar radius. We have determined the plate scale of the telescope on the ground and in flight onboard the Picard spacecraft. The results show significant differences; the main reason is that the conditions of observation are not the same. In addition, the space environment has an impact on the performance of a metrology instrument. Therefore, calibration in space and under the same conditions of observation is crucial. The transit of Venus allowed us to determine the plate scale of the SODISM telescope and hence the absolute value of the solar radius. The transit was observed from space by the Picard spacecraft on 5?–?6 June 2012. We exploited the data recorded by SODISM to determine the plate scale of the instrument, which depends on the characteristics of optical elements (mirrors, filters, or front window). The mean plate scale at 607.1 nm is found to be 1.0643 arcseconds?pixel?1 with 3×10?4 RMS. The solar radius at 607.1 nm from 1 AU is found to be equal to 959.86 arcseconds.  相似文献   

11.
We present adaptive optic images of Uranus obtained with the 10-m W. M. Keck II telescope in June 2000, at wavelengths between 1 and 2.4 μm. The angular resolution of the images is ∼0.06-0.09″. We identified eight small cloud features on Uranus's disk, four of which were in the northern hemisphere. The latter features are ∼1000-2000 km in extent and located in the upper troposphere, above the methane cloud, at pressures between 0.5 and 1 bar. Our data have been combined with HST data by Hammel et al. (2001, Icarus153, 229-235); the combination of Keck and HST data allowed derivation of an accurate wind velocity profile. Our images further show Uranus's entire ring system: the asymmetric ? ring, as well as the three groups of inner rings (outward from Uranus): the rings 6+5+4, α+β, and the η+γ+δ rings. We derived the equivalent I/F width and ring particle reflectivity for each group of rings. Typical particle albedos are ∼0.04-0.05, in good agreement with HST data at 0.9 μm.  相似文献   

12.
Photometric observations made during the years 2000-2005 are used to determine the pole orientation of (2953) Vysheslavia, a ?15-km size member of the Koronis family. We find admissible solutions for ecliptic latitude and longitude of the rotation pole P3: βp=−64°±10° and λp=11°±8° or P4: βp=−68°±8° and λp=192°±8°. These imply obliquity values γ=154°±14° and γ=157°±11°, respectively. The sidereal rotation period is Psid=0.2622722±0.0000018 day. This result is interesting for two reasons: (i) the obliquity value between 90° and 180° is consistent with a prediction done by Vokrouhlický et al. [Vokrouhlický, D., Bro?, M., Farinella, P., Kne?evi?, Z., 2001. Icarus 150, 78-93] that Vysheslavia might have been transported to its unstable orbit by the Yarkovsky effect, and (ii) with the obliquity close to 180°, Vysheslavia seems to belong to one of the two distinct groups in the Koronis family found recently by Slivan [Slivan, S.M., 2002. Nature 419, 49-51], further supporting the case of dichotomy in the spin axis distribution in this family. We also argue against the possibility that Vysheslavia reached its current orbit by a recent collisional breakup.  相似文献   

13.
We report on observations of transit events of the transiting planets XO‐1b and TrES‐1 with a 25 cm telescope of the University Observatory Jena. With the transit timings for XO‐1b from all 50 available XO, SuperWASP, Transit Light Curve (TLC)‐Project‐ and Exoplanet Transit Database (ETD)‐data, including our own I ‐band photometry obtained in March 2007, we find that the orbital period is P = (3.941501 ± 0.000001) d, a slight change by ∼3 s compared to the previously published period. We present new ephemeris for this transiting planet. Furthermore, we present new R ‐band photometry of two transits of TrES‐1. With the help of all available transit times from literature this allows us to refine the estimate of the orbital period: P = (3.0300722 ± 0.0000002) d. Our observations will be useful for future investigations of timing variations caused by additional perturbing planets and/or stellar spots and/or moons (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
The final Deep Space 1 (DS1) mission target, comet 19P/Borrelly, was observedfrom July 28–August 1, 2000 at the CTIO-1.5 m telescope in the R filter. Theobserved lightcurve has a large peak to peak variation between 0.84 mag and1.0 mag. A period of 26.0 ± 1 hr (assuming a double-peaked lightcurve)was found using all five nights. This is in good agreement with the period of25.02 ± 0.5 hr quoted by Lamy et al. (1998) using only 6 points ofHST data and is also consistent with HST data taken around the DS1 encountertime by Weaver et al. (2002).Using the mean magnitude R = 20.8 mag and assuming a 4% albedo, we derivean effective nuclear radius of 2.6 km. The large lightcurve amplitude translates toa long to intermediate axial ratio a/b ≥ 2.2, in excellent agreement with theHST result of a/b ≥ 2.4 (Lamy et al., 1998) and with DS1 images (Soderblom et al., 2002).  相似文献   

15.
P.G.J. Irwin  N.A. Teanby 《Icarus》2010,208(2):913-926
Long-slit spectroscopy observations of Uranus by the United Kingdom InfraRed Telescope UIST instrument in 2006, 2007 and 2008 have been used to monitor the change in Uranus’ vertical and latitudinal cloud structure through the planet’s Northern Spring Equinox in December 2007.These spectra were analysed and presented by Irwin et al. (Irwin, P.G.J., Teanby, N.A., Davis, G.R. [2009]. Icarus 203, 287-302), but since publication, a new set of methane absorption data has become available (Karkoschka, E., Tomasko, M. [2010]. Methane absorption coefficients for the jovian planets from laboratory, Huygens, and HST data. Icarus 205, 674-694.), which appears to be more reliable at the cold temperatures and high pressures of Uranus’ deep atmosphere. We have fitted k-coefficients to these new methane absorption data and we find that although the latitudinal variation and inter-annual changes reported by Irwin et al. (2009) stand, the new k-data place the main cloud deck at lower pressures (2-3 bars) than derived previously in the H-band of ∼3-4 bars and ∼3 bars compared with ∼6 bars in the J-band. Indeed, we find that using the new k-data it is possible to reproduce satisfactorily the entire observed centre-of-disc Uranus spectrum from 1 to 1.75 μm with a single cloud at 2-3 bars provided that we make the particles more back-scattering at wavelengths less than 1.2 μm by, for example, increasing the assumed single-scattering albedo from 0.75 (assumed in the J and H-bands) to near 1.0. In addition, we find that using a deep methane mole fraction of 4% in combination with the associated warm ‘F’ temperature profile of Lindal et al. (Lindal, G.F., Lyons, J.R., Sweetnam, D.N., Eshleman, V.R., Hinson, D.P. [1987]. J. Geophys. Res. 92, 14987-15001), the retrieved cloud deck using the new (Karkoschka and Tomasko, 2010) methane absorption data moves to between 1 and 2 bars.The same methane absorption data and retrieval algorithm were applied to observations of Neptune made during the same programme and we find that we can again fit the entire 1-1.75 μm centre-of-disc spectrum with a single cloud model, providing that we make the stratospheric haze particles (of much greater opacity than for Uranus) conservatively scattering (i.e. ω = 1) and we also make the deeper cloud particles, again at around the 2 bar level more reflective for wavelengths less than 1.2 μm. Hence, apart from the increased opacity of stratospheric hazes in Neptune’s atmosphere, the deeper cloud structure and cloud composition of Uranus and Neptune would appear to be very similar.  相似文献   

16.
We report on the results of a 6-month photometric study of the main-belt binary C-type Asteroid 121 Hermione, performed during its 2007 opposition. We took advantage of the rare observational opportunity afforded by one of the annual equinoxes of Hermione occurring close to its opposition in June 2007. The equinox provides an edge-on aspect for an Earth-based observer, which is well suited to a thorough study of Hermione’s physical characteristics. The catalog of observations carried out with small telescopes is presented in this work, together with new adaptive optics (AO) imaging obtained between 2005 and 2008 with the Yepun 8-m VLT telescope and the 10-m Keck telescope. The most striking result is confirmation that Hermione is a bifurcated and elongated body, as suggested by Marchis, et al. [Marchis, F., Hestroffer, D., Descamps, P., Berthier, J., Laver, C., de Pater, I., 2005. Icarus 178, 450-464]. A new effective diameter of 187 ± 6 km was calculated from the combination of AO, photometric and thermal observations. The new diameter is some 10% smaller than the hitherto accepted radiometric diameter based on IRAS data. The reason for the discrepancy is that IRAS viewed the system almost pole-on. New thermal observations with the Spitzer Space Telescope agree with the diameter derived from AO and lightcurve observations. On the basis of the new AO astrometric observations of the small 32-km diameter satellite we have refined the orbit solution and derived a new value of the bulk density of Hermione of 1.4 + 0.5/−0.2 g cm−3. We infer a macroscopic porosity of ∼33 + 5/−20%.  相似文献   

17.
Jeremy Bailey  Linda Ahlsved 《Icarus》2011,213(1):218-232
We have obtained spatially resolved spectra of Titan in the near-infrared J, H and K bands at a resolving power of ∼5000 using the near-infrared integral field spectrometer (NIFS) on the Gemini North 8 m telescope. Using recent data from the Cassini/Huygens mission on the atmospheric composition and surface and aerosol properties, we develop a multiple-scattering radiative transfer model for the Titan atmosphere. The Titan spectrum at these wavelengths is dominated by absorption due to methane with a series of strong absorption band systems separated by window regions where the surface of Titan can be seen. We use a line-by-line approach to derive the methane absorption coefficients. The methane spectrum is only accurately represented in standard line lists down to ∼2.1 μm. However, by making use of recent laboratory data and modeling of the methane spectrum we are able to construct a new line list that can be used down to 1.3 μm. The new line list allows us to generate spectra that are a good match to the observations at all wavelengths longer than 1.3 μm and allow us to model regions, such as the 1.55 μm window that could not be studied usefully with previous line lists such as HITRAN 2008. We point out the importance of the far-wing line shape of strong methane lines in determining the shape of the methane windows. Line shapes with Lorentzian, and sub-Lorentzian regions are needed to match the shape of the windows, but different shape parameters are needed for the 1.55 μm and 2 μm windows. After the methane lines are modeled our observations are sensitive to additional absorptions, and we use the data in the 1.55 μm region to determine a D/H ratio of 1.77 ± 0.20 × 10−4, and a CO mixing ratio of 50 ± 11 ppmv. In the 2 μm window we detect absorption features that can be identified with the ν5 + 3ν6 and 2ν3 + 2ν6 bands of CH3D.  相似文献   

18.
The extensiveUBV observations of SV Camelopardalis by Patkos (1982) have been analysed to derive the orbital elements of the system. The data were corrected for the effect of third body (Sarma, Sarma & Abhyankar 1985) and for the ‘RS CVn’ distortion wave (Sarma, Vivekanandarao & Sarma 1988). The cleaned data were used to obtain a preliminary solution by a modified version of Wellmann method (Sarma & Abhyankar 1979) from which we concluded that the primary eclipse is a transit. The final orbital elements of SV Cam were obtained by the modified version (Sarma 1988; Sarmaet al. 1987) of WINK program by Wood (1972). The colour and median brightness variation are discussed. From the spectroscopic mass functionf(m) = 0.118 M (Hiltner 1953), the absolute dimensions of the components are found to be 0.826 Mbd & 0.592 M and 1.236 R & 0.778 R for the primary and secondary components, respectively. The age of the binary system is estimated to be 6.0 ± 1.0 × 108 years  相似文献   

19.
We present a high-performance N-body code for self-gravitating collisional systems accelerated with the aid of a new SIMD instruction set extension of the x86 architecture: Advanced Vector eXtensions (AVX), an enhanced version of the Streaming SIMD Extensions (SSE). With one processor core of Intel Core i7-2600 processor (8 MB cache and 3.40 GHz) based on Sandy Bridge micro-architecture, we implemented a fourth-order Hermite scheme with individual timestep scheme (Makino and Aarseth, 1992), and achieved the performance of ∼20 giga floating point number operations per second (GFLOPS) for double-precision accuracy, which is two times and five times higher than that of the previously developed code implemented with the SSE instructions (Nitadori et al., 2006b), and that of a code implemented without any explicit use of SIMD instructions with the same processor core, respectively. We have parallelized the code by using so-called NINJA scheme (Nitadori et al., 2006a), and achieved ∼90 GFLOPS for a system containing more than N = 8192 particles with 8 MPI processes on four cores. We expect to achieve about 10 tera FLOPS (TFLOPS) for a self-gravitating collisional system with N ∼ 105 on massively parallel systems with at most 800 cores with Sandy Bridge micro-architecture. This performance will be comparable to that of Graphic Processing Unit (GPU) cluster systems, such as the one with about 200 Tesla C1070 GPUs (Spurzem et al., 2010). This paper offers an alternative to collisional N-body simulations with GRAPEs and GPUs.  相似文献   

20.
Considering the importance of investigating the transit timing variations(TTVs) of transiting exoplanets,we present a follow-up study of HAT-P-12 b.We include six new light curves observed between2011 and 2015 from three different observatories,in association with 25 light curves taken from the published literature.The sample of the data used thus covers a time span of ~10.2 years with a large coverage of epochs(1160) for the transiting events of the exoplanet HAT-P-12 b.The light curves are utilized to determine the orbital parameters and conduct an investigation of possible TTVs.The new linear ephemeris shows a large value of reduced χ~2,i.e.X~2_(red)(23)=7.93,and the sinusoidal fitting using the prominent frequency coming from a periodogram shows a reduced χ~2 around 4.Based on these values and the corresponding O-C diagrams,we suspect the presence of a possible non-sinusoidal TTV in this planetary system.Finally,we find that a scenario with an additional non-transiting exoplanet could explain this TTV with an even smaller reduced χ~2 value of around 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号