首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We present an analysis of the secular variability of the longitudinal magnetic field B e in the roAp star γ Equ (HD 201601). Measurements of the stellar magnetic field B e were mostly compiled from the literature, and we appended also our 33 new B e measurements which were obtained with the 1-m optical telescope of the Special Astrophysical Observatory (Russia). All the available data cover the time period of 58 yr, and include both phases of the maximum and minimum B e. We determined that the period of the long-term magnetic B e variations equals  91.1 ± 3.6 yr  , with   B e(max) =+577 ± 31 G  and   B e(min) =−1101 ± 31 G  .  相似文献   

2.
Sunspots are caused by the eruption of magnetic flux tubes through the solar photosphere: current theories of the internal magnetic field of the Sun suggest that such tubes must rise relatively unscathed from the base of the convection zone. In order to understand how the structure of the magnetic field within a buoyant flux tube affects its stability as it rises, we have considered the quasi-two-dimensional rise of isolated magnetic flux tubes through an adiabatically stratified atmosphere. The magnetic field is initially helical; we have investigated a range of initial field configurations, varying the distribution and strength of the twist of the field.  相似文献   

3.
Observations of ε Eri (K2 V) have been made with the Space Telescope Imaging Spectrograph on the Hubble Space Telescope . The spectra obtained show a number of emission lines which can be used to determine, or place limits on, the electron density and pressure. Values of the electron pressure are required in order to make quantitative models of the transition region and inner corona from absolute line fluxes, and to constrain semi-empirical models of the chromosphere. Using line flux ratios in Si  iii and O  iv a mean electron pressure of P e= N e T e=4.8×1015 cm−3 K is derived. This value is compatible with the lower and upper limits to P e found from flux ratios in C  iii , O  v and Fe  xii . Some inconsistencies which may be because of small uncertainties in the atomic data used are discussed.  相似文献   

4.
We investigate wave amplification through the electron–cyclotron maser mechanism. We calculate absorption and emission coefficients without any approximations, also taking into account absorption by the ambient thermal plasma. A power-law energy distribution for the fast electrons is used, as indicated by X-ray and microwave observations.
We develop a model for the saturation length and amplification ratio of the maser, scan a large parameter space and calculate the absorption and emission coefficients for every frequency and angle.
Previous studies concluded that the unobservable Z mode dominates in the ν p≈ ν B region, and that millisecond spikes are produced in the region ν p ν B<0.25. We find that the observable O and X modes can produce emission in the 0.8< ν p ν B<2 region, which is expected at the footpoints of a flaring magnetic loop. The important criterion for observability is the saturation length and not the growth rate, as was assumed previously, and, even when the Z mode is the most strongly amplified, less strongly amplified O or X modes are still intense enough to be observed.
The brightness temperature computed with our model for the saturation length is found to be of order 1016 K and higher. The emission is usually at a frequency of 2.06 ν B, and at angles of 30°–60° to the magnetic field. The rise time of the amplified emission to maximum is a few tenths of a millisecond to a few milliseconds, and the emission persists for as long as new fast electrons arrive in the maser region.  相似文献   

5.
A number of independent arguments indicate that the toroidal flux system responsible for the sunspot cycle is stored at the base of the convection zone in the form of flux tubes with field strength close to 105 G. Although the evidence for such strong fields is quite compelling, how such field strength can be reached is still a topic of debate. Flux expulsion by convection should lead to about the equipartition field strength, but the magnetic energy density of a 105-G field is two orders of magnitude larger than the mean kinetic energy density of convective motions. Line stretching by differential rotation (i.e., the “Ω effect” in the classical mean-field dynamo approach) probably plays an important role, but arguments based on energy considerations show that it does not seem feasible that a 105-G field can be produced in this way. An alternative scenario for the intensification of the toroidal flux system in the overshoot layer is related to the explosion of rising, buoyantly unstable magnetic flux tubes, which opens a complementary mechanism for magnetic-field intensification. A parallelism is pointed out with the mechanism of “convective collapse” for the intensification of photospheric magnetic flux tubes up to field strengths well above equipartition; both mechanisms, which are fundamentally thermal processes, are reviewed.  相似文献   

6.
Heat transfer through weakly magnetized diffuse astrophysical plasmas excites whistlers. This leads to electron whistler resonant scattering, a reduction of the electron mean free path, and heat flux inhibition. However, only whistlers propagating at a finite angle to the magnetic field (off-axis) can scatter the heat flux carrying electrons. Thus the level of heat flux inhibition along the magnetic field lines depends on the presence of off-axis whistlers.   We obtain a solution of the Boltzmann equation with the whistler wave equation and show that if εthβe ≫ 10−4, where εth is the thermal collisional Knudsen number and βe is the ratio of the electron pressure to the magnetic energy density, then scattering of heat flux carrying electrons by off-axis whistlers, which are shown to propagate at about 65δ, is efficient enough to lead to heat flux inhibition along field lines. The inhibition so obtained is proportional to (εthβe)−1.  相似文献   

7.
Coronal Flux Rope Equilibria in Closed Magnetic Fields   总被引:1,自引:0,他引:1  
Using a 2.5-dimensional ideal MHD model in Cartesian coordinates,we investigate the equilibrium properties of coronal magnetic flux ropes in background magnetic fields that are completely closed.The background fields are produced by a dipole,a quadrupole,and an octapole,respectively,located below the photosphere at the same depth.A magnetic flux rope is then launched from below the photo-sphere,and its magnetic properties,i.e,the annular magnetic fluxφp and the axial magnetic fluxφz,are controlled by a single emergence parameter.The whole sys-tem eventually evolves into equilibrium,and the resultant flux rope is characterized by three geometrical parameters:the height of the rope axis,the half-width of the rope,and the length of the vertical current sheet below the rope.It is found that the geometrical parameters increase monotonically and continuously with increasing φp and φz:no catastrophe occurs.Moreover,there exists a steep segment in the profiles of the geometrical parameters versus either φp or φz,and the faster the background field decays with height,the larger both the gradient and the growth amplitude within the steep segment will be.  相似文献   

8.
The generation of magnetic flux in the solar interior and its transport from the convection zone into the photosphere, the chromosphere, and the corona will be in the focus of solar physics research for the next decades. With 4 m class telescopes, one plans to measure essential processes of radiative magneto‐hydrodynamics that are needed to understand the nature of solar magnetic fields. One key‐ingredient to understand the behavior of solar magnetic field is the process of flux emergence into the solar photosphere, and how the magnetic flux reorganizes to form the magnetic phenomena of active regions like sunspots and pores. Here, we present a spectropolarimetric and imaging data set from a region of emerging magnetic flux, in which a proto‐spot without penumbra forms a penumbra. During the formation of the penumbra the area and the magnetic flux of the spot increases. First results of our data analysis demonstrate that the additional magnetic flux, which contributes to the increasing area of the penumbra, is supplied by the region of emerging magnetic flux. We observe emerging bipoles that are aligned such that the spot polarity is closer to the spot. As an emerging bipole separates, the pole of the spot polarity migrates towards the spot, and finally merges with it. We speculate that this is a fundamental process, which makes the sunspot accumulate magnetic flux. As more and more flux is accumulated a penumbra forms and transforms the proto‐spot into a full‐fledged sunspot (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
We analytically determine the structure of highly magnetized astrophysical jets at the origin in a region where the flow has been already collimated by an external medium, in both relativistic and non-relativistic regimes. We show that this can be achieved by solving a system of first-order ordinary differential equations that describe the transversal jet structure for a variety of external confining pressure profiles that collimate the jet to a near-cylindrical configuration. We obtain solutions for a central jet surrounded either by a self-similar wind or by an external pressure profile and derive the dependence of the velocity and the magnetic field strength along and across our jets. In particular, we find that the central core in a jet – the part of a flow with a nearly homogeneous magnetic field – must contain a poloidal field which is not much smaller than the critical value B min. This allows us to determine the magnetic flux in a core which is much smaller than the total magnetic flux. We show that for such a small core flux the solutions with a magnetic field in a core much smaller than B min are non-physical. For astrophysical objects the value of the critical magnetic field is quite large: 1 G for active galactic nuclei, 1010 G for gamma-ray bursts and 10−1 G for young stellar objects. In a relativistic case for the core field greater than or of the order of B min we show analytically that the plasma Lorentz factor must grow linearly with the cylindrical radius. For non-relativistic highly magnetized jets we propose that an oblique shock exists near the base of the jet so that the finite gas pressure plays an important role in force balance.  相似文献   

10.
In this paper we consider a random motion of magnetic bright points (MBP) associated with magnetic fields at the solar photosphere. The MBP transport in the short time range [0–20 minutes] has a subdiffusive character as the magnetic flux tends to accumulate at sinks of the flow field. Such a behavior can be rigorously described in the framework of a continuous time random walk leading to the fractional Fokker-Planck dynamics. This formalism, applied for the analysis of the solar subdiffusion of magnetic fields, generalizes the Leighton’s model.   相似文献   

11.
Observations of rapidly rotating solar-like stars show a significant mixture of opposite-polarity magnetic fields within their polar regions. To explain these observations, models describing the surface transport of magnetic flux demand the presence of fast meridional flows. Here, we link subsurface and surface magnetic flux transport simulations to investigate (i) the impact of meridional circulations with peak velocities of  ≤125 m s−1  on the latitudinal eruption pattern of magnetic flux tubes and (ii) the influence of the resulting butterfly diagrams on polar magnetic field properties. Prior to their eruption, magnetic flux tubes with low field strengths and initial cross-sections below  ∼300 km  experience an enhanced poleward deflection through meridional flows (assumed to be polewards at the top of the convection zone and equatorwards at the bottom). In particular, flux tubes which originate between low and intermediate latitudes within the convective overshoot region are strongly affected. This latitude-dependent poleward deflection of erupting magnetic flux renders the wings of stellar butterfly diagrams distinctively convex. The subsequent evolution of the surface magnetic field shows that the increased number of newly emerging bipoles at higher latitudes promotes the intermingling of opposite polarities of polar magnetic fields. The associated magnetic flux densities are about 20 per cent higher than in the case disregarding the pre-eruptive deflection, which eases the necessity for fast meridional flows predicted by previous investigations. In order to reproduce the observed polar field properties, the rate of the meridional circulation has to be of the order of 100 m s−1, and the latitudinal range from which magnetic flux tubes originate at the base of the convective zone (≲50°) must be larger than in the solar case (≲35°).  相似文献   

12.
The increasing power of computers makes it possible to model the non-linear interaction between magnetic fields and convection at the surfaces of solar-type stars in ever greater detail. We present the results of idealized numerical experiments on two-dimensional magnetoconvection in a fully compressible perfect gas. We first vary the aspect ratio λ of the computational box and show that the system runs through a sequence of convective patterns, and that it is only for a sufficiently wide box (λ ≥ 6) that the flow becomes insensitive to further increases in λ. Next, setting λ = 6, we decrease the field strength from a value strong enough to halt convection and find transitions to small-scale steady convection, next to spatially modulated oscillations (first periodic, then chaotic) and then to a new regime of flux separation, with regions of strong field (where convection is almost completely suppressed) separated by broad convective plumes. We also explore the effects of altering the boundary conditions and show that this sequence of transitions is robust. Finally, we relate these model calculations to recent high-resolution observations of solar magnetoconvection, in plage regions as well as in light bridges and the umbrae of sunspots.  相似文献   

13.
By using the sunspot time series as a proxy, we have made a detailed analysis of the mean solar magnetic field over the last two and half centuries, by means of a reconstruction of its phase space. We find evidence of a long-term trend variation of some of the solar physical processes (over a few decades) that might be responsible for the apparent erratic behaviour of the solar magnetic cycle. The analysis is done by means of a careful study of the axisymmetric dynamo model equations, where we show that the temporal counterpart of the magnetic field can be described by a self-regulated two-dimensional dynamic system, usually known as a Van der Pol–Duffing oscillator. Our results suggest that during the last two and half centuries, the velocity of the meridional flow, v p, and the efficiency of the α mechanism responsible for the conversion of toroidal magnetic field into poloidal magnetic field might have suffered variations that can explain the observed variability in the solar cycle.  相似文献   

14.
Electron temperatures derived from the He  i recombination line ratios, designated T e(He  i ), are presented for 48 planetary nebulae (PNe). We study the effect that temperature fluctuations inside nebulae have on the T e(He  i ) value. We show that a comparison between T e(He  i ) and the electron temperature derived from the Balmer jump of the H  i recombination spectrum, designated T e(H  i ), provides an opportunity to discriminate between the paradigms of a chemically homogeneous plasma with temperature and density variations, and a two-abundance nebular model with hydrogen-deficient material embedded in diffuse gas of a 'normal' chemical composition (i.e. ∼solar), as the possible causes of the dichotomy between the abundances that are deduced from collisionally excited lines and those deduced from recombination lines. We find that T e(He  i ) values are significantly lower than T e(H  i ) values, with an average difference of  〈 T e(H  i ) − T e(He  i )〉= 4000 K  . The result is consistent with the expectation of the two-abundance nebular model but is opposite to the prediction of the scenarios of temperature fluctuations and/or density inhomogeneities. From the observed difference between T e(He  i ) and T e(H  i ), we estimate that the filling factor of hydrogen-deficient components has a typical value of 10−4. In spite of its small mass, the existence of hydrogen-deficient inclusions may potentially have a profound effect in enhancing the intensities of He  i recombination lines and thereby lead to apparently overestimated helium abundances for PNe.  相似文献   

15.
Ideas and models for the appearance of photospheric magnetic structure are confronted with observational data. Some findings are: The magnetic flux emerging in an active region consists of a bundle of flux tubes which were already concentrated before penetrating into the photosphere. A model of a rising bunch of flux tubes joining into a few strands at larger depths describes the coalescence of spots near the leading and following edges of the active region while more flux may surface near the center of the region. There is no observational evidence for appreciable helical twists in the flux bundles.Throughout the region's lifetime the magnetic elements move coherently, the whole magnetic structure rotates faster than the quiet photosphere. In active regions the convective flow at scales larger than the granulation is arrested by the magnetic structure. The long-lived supergranular cells around spots and in the enhanced network in turn determine the decay properties of spots and facular clusters. The modulation of the convective flow by the magnetic structure explains the slow dispersal of faculae.The hierarchy of magnetic elements (sunspots-pores-knots-facular clusters-facular points) may be explained by a set of magnetostatic flux tube models in the top of the convection zone. The underlying assumptions are that the heat flow along the magnetic field is reduced and that there is no heat exchange across the field except by radiation.A tentative model is proposed to account for the amplification, ascent and emergence of intense flux bundles. The assumptions are: (i) the field is concentrated in toroidal bundles by differential rotation, (ii) in the deep convection zone flux bundles are contained by the external turbulent pressure, and (iii) for field strengths up to the equipartition value efficient lateral heat exchange is possible. After a loop has surfaced radiative cooling and subsequent convective downflow reduce the temperature in the top of the flux tubes which then contract to field strengths well above the local equipartition value. There the heat flow is channelled along the field, which creates the conditions for the magnetostatic flux tube models without requiring a blocking of the heat flow somewhere within the tubes.The paper contains a brief review on the evolution of the magnetic field from the emergence in active regions up to the enigmatic disappearance, and a list of topics for further observational investigation.  相似文献   

16.
Three-dimensional non-linear magnetoconvection in a strongly stratified compressible layer exhibits different patterns as the strength of the imposed magnetic field is reduced. There is a transition from a magnetically dominated regime, with small-scale convection in slender hexagonal cells, to a convectively dominated regime, with clusters of broad rising plumes that confine the magnetic flux to narrow lanes where fields are locally intense. Both patterns can coexist for intermediate field strengths, giving rise to flux separation: clumps of vigorously convecting plumes, from which magnetic flux has been excluded, are segregated from regions with strong fields and small-scale convection. A systematic numerical investigation of these different states shows that flux separation can occur over a significant parameter range and that there is also hysteresis. The results are related to the fine structure of magnetic fields in sunspots and in the quiet Sun.  相似文献   

17.
Motivated by recent high-resolution observations of the solar surface, we investigate the problem of non-linear magnetoconvection in a three-dimensional compressible layer. We present results from a set of numerical simulations which model the situation in which there is a weak imposed magnetic field. This weak-field regime is characterized by vigorous granular convection and spatially intermittent magnetic field structures. When the imposed field is very weak, magnetic flux tends to accumulate at the edges of the convective cells, where it forms compact, almost 'point-like' structures which are reminiscent of those observed in the quiet Sun. If the imposed field is slightly stronger, there is a tendency for magnetic flux to become concentrated into 'ribbon-like' structures which are comparable to those observed in solar plages. The dependence of these simulations upon the strength of the imposed magnetic field is analysed in detail, and the concept of the fractal dimension is used to make a further, more quantitative comparison between these simulations and photospheric observations.  相似文献   

18.
19.
Reliable measurements of the solar magnetic field are restricted to the level of the photosphere. For about half a century attempts have been made to calculate the field in the layers above the photosphere, i.e. in the chromosphere and in the corona, from the measured photospheric field. The procedure is known as magnetic field extrapolation. In the superphotospheric parts of active regions the magnetic field is approximately force-free, i.e. electric currents are aligned with the magnetic field. The practical application to solar active regions has been largely confined to constant-α or linear force-free fields, with a spatially constant ratio, α, between the electric current and the magnetic field. We review results obtained from extrapolations with constant-α force-free fields, in particular on magnetic topologies favourable for flares and on magnetic and current helicities. Presently, different methods are being developed to calculate non-constant-α or nonlinear force-free fields from photospheric vector magnetograms. We also briefly discuss these methods and present a comparison of a linear and a nonlinear force-free magnetic field extrapolation applied to the same photospheric boundary data. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Hydrostatic equilibrium of the multiphase interstellar medium in the solar vicinity is reconsidered, with the regular and turbulent magnetic fields treated separately. The regular magnetic field strength required to support the gas is consistent with independent estimates, provided that energy equipartition is maintained between turbulence and random magnetic fields. Our results indicate that a mid-plane value of B 0=4 μG for the regular magnetic field near the Sun leads to more attractive models than B 0=2 μG . The vertical profiles of both the regular and random magnetic fields contain disc and halo components, the parameters of which we have determined. The layer at 1≲| z |≲4 kpc can be overpressured and an outflow at a speed of about 50 km s−1 may occur there, presumably associated with a Galactic fountain flow, if B 0≃2 μG .
We show that hydrostatic equilibrium in a warped disc must produce asymmetric density distributions in z , in rough agreement with H  i observations in the outer Galaxy. This asymmetry may be a useful diagnostic of the details of the warping mechanism in the Milky Way and other galaxies. We find indications that gas and magnetic field pressures are different above and below the warped midplane in the outer Galaxy, and quantify the difference in terms of turbulent velocity and/or magnetic field strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号