首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In an earlier paper the evolution of a magnetic field was considered which permeates an electrically conducting fluid and its non-conducting surroundings. It was shown how the tensorial Green's function of the initial value problem posed by the governing equations can be constructed. The present paper gives a more detailed analysis of the case where the fluid occupies the interior of a sphere. The construction is carried out for arbitrary motions of the fluid. More special results are derived for differential rotation with angular velocity depending only on the radius, and explicit expressions of Green's functions are given for rigid body rotation.  相似文献   

2.
In two earlier papers (BRÄUER and RÄDLER 1986, 1987) the evolution of a magnetic field was considered which pervades an electrically conducting fluid and its non-conducting surroundings. A construction principle for Green's functions of the corresponding initial value problem was proposed, and worked out for the case in which the fluid fills a spherical region. Now the principle is applied to the case of a fluid body occupying a half-space. Green's functions are constructed for arbitrary motions of the fluid. More concrete results are derived for shear flow, and explicit expressions of Green's functions are given for rigid body motion.  相似文献   

3.
The evolution of a magnetic field is considered which pervades an electrically conducting fluid and its non-conducting surroundings under the influence of electromotive forces due to internal motion and other causes. The governing equations -- among which the induction equation of magnetohydrodynamics is the most prominent -- pose an initial value problem for the magnetic flux density. Properties of this initial value problem and of the solving Green's function are reviewed and a general construction principle for the Green's function is given. Detailed treatment of cases where the fluid occupies a sphere or an evenly bounded half-space are presented in two subsequent papers  相似文献   

4.
回顾总结了7种Hansen系数及其导数的直接计算方法,比较分析了这些方法的计算效率和计算稳定性.研究表明:Hansen系数的递推关系可以用来判别计算结果的稳定性.最后指出, Wnuk方法(双精度计算)和McClain方法(4精度计算)是稳定的,可以用来计算人造卫星轨道摄动.由于大多数人造卫星采用小偏心率轨道,需要计算无奇点摄动,推荐使用McClain方法1 (4精度计算).  相似文献   

5.
Seven direct calculation methods of Hansen coefficients and their derivatives are reviewed. The computational efficiencies of these methods are compared, and their computational stabilities are analyzed. We show that the recursion relations of Hansen coefficients can be used to determine the stabilities of calculation results. Finally, it is pointed out that Wnuk's method (double precision computation) and McClain's methods (quadruple precision computation) are stable, which can be used to calculate orbit perturbations. Because of small orbital eccentricities of most satellites, the perturbation calculations without singularities are required, and McClain's first method (quadruple precision computation) is recommended.  相似文献   

6.
Hansen coefficients are used in expansions of the elliptic motion. Three methods for calculating the coefficients are studied: Tisserand's method, the Von Zeipel-Andoyer (VZA) method with explicit representation of the polynomials required to compute the Hansen coefficients, and the VZA method with the values of the polynomials calculated recursively. The VZA method with explicit polynomials is by far the most rapid, but the tabulation of the polynomials only extends to 12th order in powers of the eccentricity, and unless one has access to the polynomials in machine-readable form their entry is laborious and error-prone. The recursive calculation of the VZA polynomials, needed to compute the Hansen coefficients, while slower, is faster than the calculation of the Hansen coefficients by Tisserand's method, up to 10th order in the eccentricity and is still relatively efficient for higher orders. The main advantages of the recursive calculation are the simplicity of the program and one's being able to extend the expansions to any order of the eccentricity with ease. Because FORTRAN does not implement recursive procedures, this paper used C for all of the calculations. The most important conclusion is recursion's genuine usefulness in scientific computing.  相似文献   

7.
The current paper deals with the investigation of the gravitational potential of heterogeneous ellipsoids and its extension to the tensor potential, since little attention has been given to this point in the last century. In this view, both integral Newton's and integral MacLaurin's theorems are formulated in tensor form. The generalization is extended to heterogeneous homeoids and focaloidally striated ellipsoids, respectively. A discontinuity in the tensor potential is found across a homogeneous, infinitely thin focaloid, which vanishes in the spherical limit. The potential‐energy tensors related to focaloidally striated ellipsoids are expressed in integral form, depending on the density profile. All the results are particularized to the spherical limit, for which both Newton's and MacLaurin's theorems hold. With the aim of illustrating the procedure, an explicit calculation of the potential‐energy tensors is outlined in the special case of homogeneous, spherical configurations. Finally, an application is made to the Coma cluster of galaxies.  相似文献   

8.
Within the framework of quantum mechanics in a curved space-time the transitions between energy levels of a charged particle (elementary particle, atomic nucleus) being in a Schwarzschild field are considered. The DeWitt conservative self-force acting on the charge is taken into account. Energy and intensity of the electric dipole radiation are calculated for charged particles in the field of miniholes with masses ranging from 1014 to 10−5 g.  相似文献   

9.
10.
The paper deals with a spatially homogeneous and isotropic FRW space-time filled with perfect fluid and dark energy components. The two sources are assumed to interact minimally, and therefore their energy momentum tensors are conserved separately. A special law of variation for the Hubble parameter proposed by Berman (Nuovo Cimento B 74:182, 1983) has been utilized to solve the field equations. The Berman’s law yields two explicit forms of the scale factor governing the FRW space-time and constant values of deceleration parameter. The role of dark energy with variable equation of state parameter has been studied in detail in the evolution of FRW universe. It has been found that dark energy dominates the universe at the present epoch, which is consistent with the observations. The physical behavior of the universe has been discussed in detail.  相似文献   

11.
The influence of free static spherically symmetric quintessence on particle motion in the Schwarzschild-quintessence space-time has been studied by numerical calculation. In the Schwarzschild space-time, the particle motion can be determined by an effective potential. However, this potential is dependent on the quintessence’s state parameter w q . We find that when the quintessence’s state parameter w q is in the range of $[-\frac{1}{3},0]$ , the massive particle’s motion is just like that in the Schwarzschild space-time. And when $-1\leqslant w_{q}<-\frac{1}{3}$ , a maximum unstable circular orbit exists for every L, and no matter how small L is, the scattering state exists, which leads to the accelerating expansion of our universe. The exists of the maximum orbit can even explain why galaxies is in a ball.  相似文献   

12.
New physical principles for an explanation of seasonal variations in the Earth's rate of rotation are proposed. It is thought that the variations are caused by a variation of the total energy of the Earth's atmosphere in the course of the planet's revolution about the Sun in elliptic orbit. Jacobi's virial equation for the Earth's atmosphere is derived from the Eulerian equations. The virial theorem is obtained. The existence of the relationship between Jacobi's function and potential energy of the atmosphere is confirmed. In the framework of this relationship, Jacobi's equation is reduced to the equation of unperturbed virial oscillations. The solution of the above-mentioned equation expresses the periodic virial oscillations of Jacobi's function (moment of inertia) of the Earth's atmosphere with time. The solution of the perturbed virial oscillation problem of the atmosphere-solid Earth system is obtained. The perturbation term in Jacobi's virial equation regards, in explicit form, the energy changes occurring in the atmosphere in the course of the planet's revolution about the Sun in elliptic orbit. The annual and semi-annual periodic variations in the Earth's rate of rotation can be considered as an astrometrical result following from the obtained solution. A satisfactory accord of the theoretical results with experimental data is shown.  相似文献   

13.
In this paper, we investigate a variation law for Hubble’s parameter in the curved, expanding background of spatially homogeneous, anisotropic Bianchi type I space-time. By choosing a particular form of the generalized Hubble’s parameter, which gives an early deceleration and late time acceleration for the anisotropic Bianchi type I cosmological model, we show that the model approaches isotropy and tends to a de Sitter universe at late times. The cosmological term asymptotically tends to a genuine cosmological constant and the solution is consistent with recent observations.  相似文献   

14.
In this paper it is confirmed once more that there exists the general solution of Laplace's equation in ellipsoidal coordinates which satisfies the Stäckel theorem and which was derived earlier by M. Jarov-Jarovoi and S. J. Madden. The author interprets physically the general solution in real space as potentials of layers of charge and double layers in which the distribution of densities is defined by Green's formula.  相似文献   

15.
Two definitions of gravitational energy, Einstein's pseudo-tensor expression of energy in curved space-time and Lynden-Bell and Katz's (LBK) definition, are shown to give equivalent results, as applied to spherically-symetric static systems in the presence of arbitary sources. The conjectured expression for energy density of field plus matter for general static space times, given by Katz, Lynden-Bell, and Israel (KLBI), is applied to a system with internal and external Schwarzschild metric, and also to a vacuum dominated space-time with the De Sitter metric. The physical contents of the KLBI-expression is discussed by analyzing the Newtonian limit in a space filled with matter.  相似文献   

16.
Abstract— Many solar system processes involve a metallic liquid, and the composition of the metallic liquid, such as the liquid's concentrations of S, P, and C, will influence the partitioning of elements during such processes. We present a method for parameterizing solid metal‐liquid metal partition coefficients for siderophile (metal‐loving) elements as a function of the metallic liquid composition. Our parameterization method is based on an older theory of Jones and Malvin (1990), which stated that the metallic liquid is composed of metal and non‐metal‐bearing domains, and the domains are the dominant influence on the partitioning behavior. By revising the means by which the metal domains are calculated, our revised parameterization method is able to match experimental partitioning data from the Fe‐Ni‐S, Fe‐Ni‐P, Fe‐Ni‐S‐P, and Fe‐Ni‐C systems. Mathematical expressions were derived for the solid metal‐liquid metal partitioning of 13 siderophile elements. Elements that are chalcophile (S‐loving), P‐loving, or C‐loving prefer the non‐metal‐bearing domains in the metallic liquid and, consequently, aren't fit by the parameterization method presented here. Possible applications for our parameterization method include modeling the crystallization of iron meteorites, planetary differentiation, and the solidification of Earth's inner core.  相似文献   

17.
We present coefficients for the calculation of the continuous emission spectra of H  i , He  i and He  ii due to electron–ion recombination. Coefficients are given for photon energies from the first ionization threshold for each ion to the   n = 20  threshold of hydrogen  (36.5 μm)  , and for temperatures  100 ≤  T ≤ 105 K  . The emission coefficients for He  i are derived from accurate ab initio photoionization data. The coefficients are scaled in such a way that they may be interpolated by a simple scheme with uncertainties less than 1 per cent in the whole temperature and wavelength domain. The data are suitable for incorporation into photoionization/plasma codes and should aid with the interpretation of spectra from the very cold ionized gas phase inferred to exist in a number of gaseous clouds.  相似文献   

18.
The functional analytic method of solution is applied to investigation of the radiative transfer equation in spectral lines. A problem of scattering in the spectral line with the frequency redistribution in anisotropic-scattering infinite and semi-infinite media is considered. Continuum absorption in the line is also taken into account.The solution is presented as the exponential function of the operatorA and the functional calculus is developed. The eigenfunction and the expansion coefficients, in terms of which the explicit solution is expressed, have been found. The nonlinear equation and the explicit expressions for theX-function are derived. The albedo problem with the determined expansion coefficients and the intensity of the emergent radiation is given as an example.  相似文献   

19.
In this paper, we have used a square root formulation of the Wheeler-De Witt equation to quantize a minisuperspace model consisting of the Bianchi-I type universe with a radiation field source. We have derived a wavefunction with a conserved current and a positive-definite probability density.

We have also explored the third quantization of the Bianchi type universe using a procedure usual in the quantum field theory of curved space-time. We have given the wave function that satisfies the Wheeler-De Witt equation. By regarding the wave function as the universe field operator in a minisuperspace, we have not only circumvented the difficulty of a probabilistic interpretation in quantum cosmology, we have also reached the conclusion that multiple universes would result. We have estimated the average number of universes produced from ‘nothing’, and have given their distribution, which turned out to be a Planck distribution.  相似文献   


20.
A general method to quantize strings in curved space-times is exposed. It treats the space-time metric exactly and the string excitations small as compared with the energy scale of the geometry. The method is applied to cosmological (de Sitter) and black-hole (Schwarzschild) geometries. The critical dimension decreases in one for de Sitter and stays unaltered for black-holes as compared with flat space-time values. Bogoliubov transformations in the context of string theory are derived and the Bogoliubov coefficients describing elastic and inelastic scattering and excitation of modes are computed explicitely. The string-black-hole cross section is derived and a pair mode creation phenomena is found. The quantization and scattering of strings in shockwave geometries (ultrarelativistic boosted black-holes or Aichelburg-Sexl space time) is found to be exactly solvable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号