首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 1 index of the solar Ca II K line is compared with the core-to-wing ratio of satellite measurements of the Mg II h and k lines. The correlation coefficient r = 0.976 for the Nimbus-7 Mg II ratio during solar cycle 21 andr = 0.99 for the NOAA9 Mg II ratio in cycle 22. Linear regression analysis for the full dynamic range of both data sets is used to combine the Nimbus-7 and NOAA9 Mg II data. These relations permit the ground-based Ca K index to estimate the solar UV flux.  相似文献   

2.
For more than a decade total solar irradiance has been monitored simultaneously from space by different satellites. The detection of total solar irradiance variations by satellite-based experiments during the past decade and a half has stimulated modeling efforts to help identify their causes and to provide estimates of irradiance data, using proxy indicators of solar activity, for time intervals when no satellite observations exist. In this paper total solar irradiance observed by the Nimbus-7/ERB, SMM/ACRIM I, and UARS/ACRIM II radiometers is modeled with the Photometric Sunspot Index and the Mg II core-to-wing ratio. Since the formation of the Mg II line is very similar to that of the Ca II K line, the Mg core-to-wing ratio, derived from the irradiance observations of the Nimbus-7 and NOAA9 satellites, is used as a proxy for the bright magnetic elements. It is shown that the observed changes in total solar irradiance are underestimated by the proxy models at the time of maximum and during the beginning of the declining portion of solar cycle 22 similar to behavior just before the maximum of solar cycle 21. This disagreement between total irradiance observations and their model estimates is indicative of the fact that the underlying physical mechanism of the changes observed in the solar radiative output is not well-understood. Furthermore, the uncertainties in the proxy data used for irradiance modeling and the resulting limitation of the models should be taken into account, especially when the irradiance models are used for climatic studies.  相似文献   

3.
This paper presents a statistical comparison of the solar total irradiance measured from the Nimbus-7, the Solar Maximum Mission (SMM), the Earth Radiation Budget Satellite (ERBS), and the Upper Atmosphere Research Satellite (UARS) spacecraft platforms, for the period 1985 –1992. The mean irradiance, standard deviation, and the correlation among the daily irradiance remained high during periods of high solar activity. Linear regression models are established to estimate the irradiance measurements from one platform by the others. The results are consistent with the observations. However, the Nimbus-7 ERB responses show a drift during 1989–1992. The absolute irradiance observed by each instrument varies within the uncertainty associated with the corresponding radiometer.  相似文献   

4.
Although solar ultraviolet (UV) irradiance measurements have been made regularly from satellite instruments for almost 20 years, only one complete solar cycle minimum has been observed during this period. Solar activity is currently moving through the minimum phase between cycles 22 and 23, so it is of interest to compare recent data taken from the NOAA-9 SBUV/2 instrument with data taken by the same instrument during the previous solar minimum in 1985–1986. NOAA-9 SBUV/2 is the first instrument to make continuous solar UV measurements for a complete solar cycle. Direct irradiance measurements (e.g., 205 nm) from NOAA-9 are currently useful for examining short-term variations, but have not been corrected for long-term instrument sensitivity changes. We use the Mgii proxy index to illustrate variability on solar cycle time scales, and to provide complementary information on short-term variability. Comparisons with contemporaneous data from Nimbus-7 SBUV (1985–1986) and UARS SUSIM (1994–1995) are used to validate the results obtained from the NOAA-9 data. Current short-term UV activity differs from the cycle 21–22 minimum. Continuous 13-day periodicity was observed from September 1994 to March 1995, a condition which has only been seen previously for shorter intervals during rising or maximum activity levels. The 205 nm irradiance and Mgii index are expected to track very closely on short time scales, but show differences in behavior during the minimum between cycles 22 and 23.  相似文献   

5.
We have compared total solar irradiance from Nimbus-7 with ground-based photometry from the San Fernando Observatory (SFO) for 109 days between June 1 and December 31, 1988. We have also included in some analyses NOAA-9 SBUV2 data orF10.7 radio flux. The Nimbus-7 data are from orbital samples, averaged to the mean time of observation at SFO. Using the same parameters as in Chapmanet al. (1992), the multiple regression gives anR 2 = 0.9131 and a solar minimum irradiance,S 0, = 1371.76 ± 0.18 W m–2 for the best fit.  相似文献   

6.
The Global Ozone Monitoring Experiment (GOME) is the first of a series of European satellite instruments monitoring global ozone and other relevant trace constituents in the UV/visible spectral range. On 20 April 1995, the European Space Agency (ESA) launched the GOME from Kourou, French Guyana, aboard the second European Remote Sensing satellite (ERS-2). In order to obtain the geometric albedo from the backscattered terrestrial radiance measurements, a solar irradiance measurement sequence in the spectral range between 240 nm and 790 nm is carried out once every day. The GOME solar irradiance is recorded at a moderate spectral resolution (0.2–0.4 nm), thus providing an excellent opportunity to contribute to the long-term investigation of solar flux variation associated with the 11-year solar activity cycle from space, which started in 1978 with SBUV (Solar Backscatter UV Experiment) observations on Nimbus-7 and covers solar cycles 21 and 22. This paper briefly describes the GOME spectrometer and measurement mode which are relevant to the solar viewing. Preliminary results from the solar irradiance measurements between 1995 and 1997 and comparisons to SSBUV-8 (Shuttle SBUV) in January 1996 are presented. Solar activity indices used as proxies for solar flux variation are often used to find a correlation with observed variation in atmospheric quantities, for instance, total ozone. Initial results from the GOME Mgii (280 nm) and Caii K (393 nm) solar activity index calculation are presented and discussed. The coupling of solar irradiance variability to global change is a current source of scientific and public concern. This study shows that GOME/ERS-2 (1995–2001) and the next generation of European remote sensing instruments, SCIAMACHY and GOME/METOP, have the potential to provide continuity in the measurements of solar irradiance from space well into the next century.  相似文献   

7.
3He is an intermediate product in the proton-proton chain, and standard models of the Sun predict a large bulge of enhanced 3He abundance near M r /M 0 = 0.6 in the contemporary Sun. The relatively low abundance of 3He at the solar surface, which is derived from solar wind observations, poses severe constraints to non-standard solar models.Direct measurements of the 3He abundance in the solar atmosphere are extremely difficult, whereas indirect measurements, e.g., in the solar wind, have been performed with considerable precision. The interpretation of solar wind observations with respect to solar surface abundances has been greatly improved in recent years. Abundance measurements have been performed under a large variety of solar wind conditions and refined models have been developed for the transport processes in the chromosphere and the transition region and for the processes occurring in the solar corona. From these measurements we estimate the present isotopic number ratio 3He/4He to be (4.1 ± 1.0) × 10–4 at the solar surface, corresponding to the weight abundance X 3 = (9.0 ± 2.4) × 10–5. The zero-age Main-Sequence abundance of 3He (after burning of D) might have been slightly lower (by about 10 to 20%) than the present-day value.Non-standard solar models involving mild turbulent diffusion (Lebreton and Maeder, 1987) could account for a slow secular increase of the 3He/4He ratio in the solar atmosphere. On the other hand it is difficult to reconcile models with severe mass loss as proposed by Guzik, Willson, and Brunish (1987) with this constraint. The slowing down of the solar rotation during the early Main-Sequence evolution was accompanied by stronger differential rotation probably implying a more effective mixing of the inner parts. Again, the surface abundance of 3He imposes severe limits on the evolution of the distribution of momentum within the early Sun.  相似文献   

8.
Analyses based on irradiance observations from space within the last one and a half decades have discovered variations in the entire solar spectrum and at UV wavelengths on time scales of minutes to decades. In this paper we analyze the distribution of the measuring uncertainties and daily fluctuations in total solar irradiance measured by the Nimbus-7/ERB and SMM/ACRIM I radiometers as a function of solar cycle. Changes in solar total irradiance and its surrogates shorter than the solar rotation have also been considered as noise and have been removed from the data. Our results show that the noise (both instrumental and solar noise) changes as a function of the solar cycle, being higher during high solar activity conditions. The analysis of the scatter plot diagrams between the data and their standard deviation, the so-called dispersion diagrams, provides a useful tool to estimate and predict the time of solar maximum and minimum activity conditions.Deceased on October 13, 1994.  相似文献   

9.
Abstract— The He, Ne, and Ar compositions of 32 individual interplanetary dust particles (IDPs) were measured using low‐blank laser probe gas extraction. These measurements reveal definitive evidence of space exposure. The Ne and Ar isotopic compositions in the IDPs are primarily a mixture between solar wind (SW) and an isotopically heavier component dubbed “fractionated solar” (FS), which could be implantation‐fractionated solar wind or a distinct component of the solar corpuscular radiation previously identified as solar energetic particles (SEP). Space exposure ages based on the Ar content of individual IDPs are estimated for a subset of the grains that appear to have escaped significant volatile losses during atmosphere entry. Although model‐dependent, most of the particles in this subset have ages that are roughly consistent with origin in the asteroid belt. A short (<1000 years) space exposure age is inferred for one particle, which is suggestive of cometary origin. Among the subset of grains that show some evidence for relatively high atmospheric entry heating, two possess elevated 21Ne/22Ne ratios generated by extended exposure to solar and galactic cosmic rays. The inferred cosmic ray exposure ages of these particles exceeds 107 years, which tends to rule out origin in the asteroid belt. A favorable possibility is that these 21Ne‐rich IDPs previously resided on a relatively stable regolith of an Edgeworth‐Kuiper belt or Oort cloud body and were introduced into the inner solar system by cometary activity. These results demonstrate the utility of noble gas measurements in constraining models for the origins of interplanetary dust particles.  相似文献   

10.
The solar soft X-ray (XUV) radiation is highly variable on both short-term time scales of minutes to hours due to flares and long-term time scales of months to years due to solar cycle variations. Because of the smaller X-ray cross sections, the solar XUV radiation penetrates deeper than the extreme ultraviolet (EUV) wavelengths and thus influences the photochemistry and ionization in the mesosphere and lower thermosphere. The XUV Photometer System (XPS) aboard the Solar Radiation and Climate Experiment (SORCE) is a set of photometers to measure the solar XUV irradiance shortward of 34 nm and the bright hydrogen emission at 121.6 nm. Each photometer has a spectral bandpass of about 7 nm, and the XPS measurements have an accuracy of about 20%. The XPS pre-flight calibrations include electronics gain and linearity calibrations in the laboratory over its operating temperature range, field of view relative maps, and responsivity calibrations using the Synchrotron Ultraviolet Radiation Facility (SURF) at the National Institute of Standards and Technology (NIST). The XPS in-flight calibrations include redundant channels used weekly and underflight rocket measurements from the NASA Thermosphere-Ionosphere-Mesosphere-Energetics-Dynamics (TIMED) program. The SORCE XPS measurements have been validated with the TIMED XPS measurements. The comparisons to solar EUV models indicate differences by as much as a factor of 4 for some of the models, thus SORCE XPS measurements could be used to improve these models.  相似文献   

11.
The satellite total solar irradiance (TSI) database provides a valuable record for investigating models of solar variation used to interpret climate changes. The 35-year ACRIM total solar irradiance (TSI) satellite composite time series has been revised using algorithm updates based on 13 years of accumulated mission experience and corrections to ACRIMSAT/ACRIM3 results for scattering and diffraction derived from recent testing at the Laboratory for Atmospheric and Space Physics/Total solar irradiance Radiometer Facility (LASP/TRF). The net correction lowers the ACRIM3 scale by ~3000 ppm, in closer agreement with the scale of SORCE/TIM results (average total solar irradiance ≈1361.5 W/m2). Differences between the ACRIM and PMOD TSI composites are investigated, particularly the decadal trending during solar cycles 21–22 and the Nimbus7/ERB and ERBS/ERBE results available to bridge the ACRIM Gap (1989–1992), are tested against a set of solar proxy models. Our findings confirm the following ACRIM TSI composite features: (1) The validity of the TSI peak in the originally published ERB results in early 1979 during solar cycle 21; (2) The correctness of originally published ACRIM1 results during the SMM spin mode (1981–1984); (3) The upward trend of originally published ERB results during the ACRIM Gap; (4) The occurrence of a significant upward TSI trend between the minima of solar cycles 21 and 22 and (5) a decreasing trend during solar cycles 22–23. The same analytical approach does not support some important features of the PMOD TSI composite: (1) The downward corrections applied to the originally published ERB and ACRIM1 results during solar cycle 21; (2) The step function sensitivity change in ERB results at the end-of-September 1989; (3) The downward trend of ERBE results during the ACRIM Gap and (4) the use of ERBE results to bridge the ACRIM Gap. Our analysis provides a first order validation of the ACRIM TSI composite approach and its 0.037 %/decade upward trend during solar cycles 21–22. The implications of increasing TSI during the global warming of the last two decades of the 20th century are that solar forcing of climate change may be a significantly larger factor than represented in the CMIP5 general circulation climate models.  相似文献   

12.
Fast Fourier analysis of the detrended record of solar irradiance obtained by the Nimbus-7 cavity pyrheliometer shows a rich spectrum of significant frequencies between about 30 and 850 nHz (periods between 13 and 400 days). Wolff and Hickey (1987a, b), elaborating on a model developed by Wolff (1974a, b, 1976, 1983, 1984), suggest that many of these peaks arise due to interference of rigidly rotating global solar oscillations (r- and g-modes). Their model fit is quite good in the region above about 135 nHz, but less satisfactory below this threshold. We note that the FFT spectrum of d2 L/d2 t, the second derivative of angular momentum of the solar inertial motion, contains peaks matching the large peaks in the irradiance spectrum below 400 nHz with periods near 0.08, 0.24, 0.65, and about 1 yr. We discuss the origins of the peaks in the d2 L/d2t spectra and review some previous studies bearing on the question of a possible relationship of solar motion and solar activity. The future persistence of the observed spectral peaks of irradiance with periods near 0.24 and 0.65 yr will provide a key test for this hypothesis.  相似文献   

13.
Kondratyev  K. Ya  Nikolsky  G. A. 《Solar physics》1983,89(1):215-222
Solar Physics - As has been shown by observations from the Nimbus-7 and SMM satellites, the non-periodic, comparatively rapid decreases of the solar constant (to 0.25%) are mainly determined by the...  相似文献   

14.
Solar empirical models based on regression of two variability indices for radiation from the photosphere and chromosphere fit total solar irradiance (TSI) observations with accuracy comparable to the precision reported for the observations themselves. However, the physical meaning of the fitting coefficients and their stability during different phases of the solar cycle has not been examined in detail. We test the stability of the coefficients in regression models of the VIRGO TSI observations over the nine years from the minimum of Cycle 23 in 1996 through the maximum to 2005. We also show how the coefficients converge to the ‘`best fit’' using a search in the coefficient space. Analysis of TSI variability in different phases of this cycle shows little change in regression models as long as the time periods used in the regression are long enough to show the slow solar cycle variation in TSI. We extend our analysis to TSI observations from ERB, ACRIM2, ACRIM3, DIARAD, and TIM. The regression models from these time series show large systematic differences in fitting coefficients for the plage and sunspot indices that we used. These differences are significantly larger than the estimated uncertainties in the coefficients and point to the difficulty of combining observations from different instruments to create an accurate composite TSI record over several solar cycles. Our results clearly demonstrate the improvement in precision of TSI measurements from the Nimbus 7 ERB in Cycle 22 to the latest SORCE TIM data in Cycle 23.  相似文献   

15.
Ruzmaikin  A. 《Solar physics》1998,181(1):1-12
We report observations of the large-scale spatial dependence of the Sun's luminosity variations over the period 1993–1995. The measurements were made using a new scanning disk solar photometer at Big Bear Solar Observatory, specially designed to measure large-scale brightness variations at the 10–4 level. Since the level of solar activity was very low for the entire observation period, the data show little solar cycle variation. However, the residual brightness signal I/I (after subtracting the mean, first, and second harmonics) does show a strong dependence on heliocentric angle, peaking near the limb. This is as one would expect if the residual brightness signal (including the excess brightness coming from the active latitudes) were primarily facular in origin. Additional data over the next few years, covering the period from solar minimum to maximum, should unambiguously reveal the large-scale spatial structure of the solar cycle luminosity variations.  相似文献   

16.
The frequencies of solar p-modes are known to change over the solar cycle. There is also recent evidence that the relation between frequency shift of low-degree modes and magnetic flux or other activity indicators differs between the rising and falling phases of the solar cycle, leading to a hysteresis in such diagrams. We consider the influence of the changing large-scale surface distribution of the magnetic flux on low-degree ( l ≤3) p-mode frequencies. To that end, we use time-dependent models of the magnetic flux distribution and study the ensuing frequency shifts of modes with different order and degree as a function of time. The resulting curves are periodic functions (in simple cases just sine curves) shifted in time by different amounts for the different modes. We show how this may easily lead to hysteresis cycles comparable to those observed. Our models suggest that high-latitude fields are necessary to produce a significant difference in hysteresis between odd- and even-degree modes. Only magnetic field distributions within a small parameter range are consistent with the observations by Jiménez-Reyes et al. Observations of p-mode frequency shifts are therefore capable of providing an additional diagnostic of the magnetic field near the solar poles. The magnetic distribution that is consistent with the p-mode observations also appears reasonable compared with direct measurements of the magnetic field.  相似文献   

17.
William R. Ward 《Icarus》1981,47(2):234-264
Secular resonances in the early solar system are studied in an effort to establish constraints on the time scale and/or method of solar nebula dispersal. Simplified nebula models and dispersal routines are employed to approximate changes in an assumed axisymmetric nebula potential. These changes, in turn, drive an evolutionary sequence of Laplace-Lagrange solutions for the secular variations of the solar system. A general feature of these sequences is a sweep of one or more giant planet resonances through the inner solar system. Their effect is rate dependent; in the linearized models considered, characteristic dispersal times ≤O(104?5 years) are required to avoid the generation of terrestrial eccentricities and inclinations in excess of observed values. These times are short compared to typical estimates of the accretion time scales [i.e., ~O(107?9 years)] and may provide an important boundary condition for developing models of nebula dispersal and solar system formation in general.  相似文献   

18.
Judit Pap 《Solar physics》1987,112(1):181-193
Measurements of the Nimbus-7/ERB and SMM/ACRIM radiometers indicated several dips in the total solar irradiance in 1983 and in the first part of 1984. The dips in 1983, which should have a real solar origin, were selected according to the peaks of the projected areas of the active sunspot groups above the 2 error limit of their data set. In the first part of 1984 the sunspot activity was strong and few irradiance dips with relatively large amplitudes were observed. In the second part of 1984 the sunspot activity disappeared and at that time the solar constant only fluctuated around its mean.  相似文献   

19.
Total Solar Irradiance Measurement and Modelling during Cycle 23   总被引:1,自引:0,他引:1  
S. Mekaoui  S. Dewitte 《Solar physics》2008,247(1):203-216
During solar cycle 23, which is now close to its end, variations of the total solar irradiance were measured by six different instruments, providing four independent time series of the irradiance variation over the complete solar cycle. A new composite time series constructed using five of these six instruments provides unprecedented instrument stability for the study of the open question of solar irradiance variations between minima. An independent analysis of the different composite time series is performed through an empirical proxy model fit. The new composite is fitted with 0.96 correlation (R 2=93%) and RMS error of 0.15 W m−2, thus reaching the limit of the individual instrument stabilities. Both the measurements and the model indicate that for the current cycle the minimum irradiance level has not yet been reached. Therefore we use the model to extrapolate measurements up to 2008 when the minimum irradiance level is expected. If we assume that there will be no changes in the solar irradiance from 2006 to 2008 that are not captured by the regression model, it can be predicted that there will be no variation of the solar minimum irradiance level during cycle 23 with an uncertainty of ±0.14 W m−2.  相似文献   

20.
Two 9400-year long 10Be data records from the Arctic and Antarctic and a 14C record of equal length were used to investigate the periodicities in the cosmic radiation incident on Earth throughout the past 9400 years. Fifteen significant periodicities between 40 and 2320 years are observed in the 10Be and 14C records, there being close agreement between the periodicities in each record. We found that the periodic variations in the galactic cosmic radiation are the primary cause for periods <?250 years, with minor contributions of terrestrial origin possible >?250 years. The spectral line for the Gleissberg (87-year) periodicity is narrow, indicating a stability of ≈?0.5 %. The 9400-year record contains 26 Grand Minima (GM) similar to the Maunder Minimum, most of which occurred as sequences of 2?–?7 GM with intervals of 800?–?1200 years in between, in which there were no GM. The intervals between the GM sequences are characterised by high values of the modulation function. Periodicities <?150 years are observed in both the GM intervals and the intervals in between. The longer-period variations such as the de Vries (208-year) cycle have high amplitudes during the GM sequences and are undetectable in between. There are three harmonically related pairs of periodicities (65 and 130 years), (75 and 150 years), and (104 and 208 years). The long periodicities at 350, 510, and 708 years closely approximate 4, 6, and 8 times the Gleissberg period (87 years). The well-established properties of cosmic-ray modulation theory and the known dependence of the heliospheric magnetic field on the solar magnetic fields lead us to speculate that the periodicities evident in the paleo-cosmic-ray record are also present in the solar magnetic fields and in the solar dynamo. The stable, narrow natures of the Gleissberg and other periodicities suggest that there is a strong “frequency control” in the solar dynamo, in strong contrast to the variable nature (8?–?15 years) of the Schwabe (11-year) solar cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号