首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Ocean emissions of inorganic and organic iodine compounds drive the biogeochemical cycle of iodine and produce reactive ozone-destroying iodine radicals that influence the oxidizing capacity of the atmosphere. Di-iodomethane (CH2I2) and chloro-iodomethane (CH2ICl) are the two most important organic iodine precursors in the marine boundary layer. Ship-borne measurements made during the TORERO (Tropical Ocean tRoposphere Exchange of Reactive halogens and Oxygenated VOC) field campaign in the east tropical Pacific Ocean in January/February 2012 revealed strong diurnal cycles of CH2I2 and CH2ICl in air and of CH2I2 in seawater. Both compounds are known to undergo rapid photolysis during the day, but models assume no night-time atmospheric losses. Surprisingly, the diurnal cycle of CH2I2 was lower in amplitude than that of CH2ICl, despite its faster photolysis rate. We speculate that night-time loss of CH2I2 occurs due to reaction with NO3 radicals. Indirect results from a laboratory study under ambient atmospheric boundary layer conditions indicate a k CH2I2+NO3 of ≤4 × 10?13 cm3 molecule?1 s?1; a previous kinetic study carried out at ≤100 Torr found k CH2I2+NO3 of 4 × 10?13 cm3 molecule?1 s?1. Using the 1-dimensional atmospheric THAMO model driven by sea-air fluxes calculated from the seawater and air measurements (averaging 1.8 +/? 0.8 nmol m?2 d?1 for CH2I2 and 3.7 +/? 0.8 nmol m?2 d?1 for CH2ICl), we show that the model overestimates night-time CH2I2 by >60 % but reaches good agreement with the measurements when the CH2I2 + NO3 reaction is included at 2–4 × 10?13 cm3 molecule?1 s?1. We conclude that the reaction has a significant effect on CH2I2 and helps reconcile observed and modeled concentrations. We recommend further direct measurements of this reaction under atmospheric conditions, including of product branching ratios.  相似文献   

2.
The photochemical activation of chlorine by dissolved iron in artificial sea-salt aerosol droplets and by highly dispersed iron oxide (Fe2O3) aerosol particles (mainly hematite, specific surface ~150 m2 g?1) exposed to gaseous HCl, was investigated in humidified air in a Teflon simulation chamber. Employing the radical-clock technique, we quantified the production of gaseous atomic chlorine (Cl) from the irradiated aerosol. When the salt aerosol contained Fe2O3 at pH 6, no significant Cl production was observed, even if the dissolution of iron was forced by “weathering” (repeatedly freezing and thawing for five times). Adjusting the pH in the stock suspension to 2.6, 2.2, and 1.9 and equilibrating for one week resulted in a quantifiable amount of dissolved iron (0.03, 0.2, and 0.6 mmol L?1, respectively) and in gaseous Cl production rates of ~1.6, 6, and 8?×?1021 atoms cm?2 h?1, respectively. In a further series of experiments, the pure Fe2O3 aerosol was exposed to various levels of gaseous hydrogen chloride (HCl). The resulting Cl production rates ranged from 8?×?1020 Cl atoms cm?2 h?1 (at ~4 ppb HCl) to 5?×?1022 Cl atoms cm?2 h?1 (at ~350 ppb HCl) and confirmed the uptake and conversion of HCl to atomic Cl (at HCl to Cl conversion yields of 2–5 %, depending on the relative humidity). The Fe2O3 experiments indicate that iron-induced Cl formation may be important for highly soluble combustion-aerosol particles in marine environments in the presence of gaseous HCl.  相似文献   

3.
The kinetics of the S(IV) oxidation by oxygen in the presence of Mn(II) ions and acetic acid has been studied. Experiments were carried out at 25°C, 3.5?≤?pH?≤?5.0, [S(IV)]≈1?×?10?3 mol/dm3, 1?×?10?6 mol/dm3?≤?[Mn(II)]?≤?1?×?10?5 mol/dm3, 1?×?10?6 mol/dm3?≤?[CH3COOH]?≤?1?×?10?4 mol/dm3. Based on the experimental results, rate constants and orders of the reactions were determined. Depending on the reaction conditions, the observed rate constants for the Mn(II)-catalysed S(IV) oxidation ranged between 3.91?×?10?8 and 8.89?×?10?7 (mol/dm3) s?1, and in the presence of acetic acid they ranged between 2.95?×?10?8 and 7.45?×?10?7 (mol/dm3) s?1. The reaction order in S(IV) was zero for both reactions. The effect of Mn(II) ion and acetic acid concentrations as well as an initial pH of the solution on the S(IV) oxidation rate was discussed. It was found that the rate of the S(IV) oxidation depends on the initial pH of the solution but it is independent of the pH change during the reaction. Acetic acid has a weak inhibiting effect on the Mn(II)-catalysed S(IV) oxidation. Under the experimental conditions the S(IV) oxidation rate decreased no more than twice.  相似文献   

4.
The gas phase reactions of peroxyacetyl nitrate (PAN) with OH and Cl have been studied using the discharge-flow EPR method. The rate constants are found to be k 3=(7.5±1.4)×10-14 and k 4=(3.7±1.7)×10-13 cm3 molecule-1 s-1 at 298 K, respectively. These results confirm that the OH+PAN reaction will be the dominant sink of PAN in the middle and upper troposphere, whereas the reaction Cl+PAN will be negligible in contrast with previous estimations.  相似文献   

5.
Absolute rate coefficient measurements have been carried out for the reactions of Cl atoms with propene and a series of 3-halopropenes, at room temperature (298 ± 2) K using a newly constructed laser photolysis-resonance fluorescence (PLP-RF) system. The rate coefficients obtained (in units of cm3 molecule–1 s–1) are: propene (1.40± 0.24) ×10–10, 3-fluoropropene (4.92 ± 0.42) ×10–11, 3-chloropropene (7.47 ± 1.50) × 10–11, 3-bromopropene (1.23± 0.14) ×10–10 and 3-iodopropene (1.29± 0.15) ×10–10. In order to test this new system, the reactions of Cl atoms with acetone and isoprene have also been studied and compared with data previously reported. The rate coefficients determined at room temperature for these last two reactions are (2.93 ± 0.20) ×10–12 cm3 molecule–1 s– 1 and (3.64± 0.20)×10–10 cm3 molecule–1 s–1, respectively. The measured values were independent of pressure over the range 20–200 Torr. The influence of the different halogen atoms substituents on the reactivity of these alkenes with Cl atoms as well as the atmospheric implications of these measurements are studied and discussed for the first time in this work and compared with the reactivity with NO3 and OH radicals.  相似文献   

6.
The oxidation of carbon disulphide has been studied under conditions which are likely to pertain in the atmosphere. The quantum yield for direct photo-oxidation of CS2 in air at 1 atm pressure, using near UV radiation was 0.012, with OCS as a major product. The rate coefficient (k 1) for the reaction of OH with CS2, was determined from measurements of OCS formation in the near UV photolysis of HONO?CS2?O2?N2 mixtures. k 1 was dependent on oxygen concentration rising from ≤4×10-14 cm3 molecule-1 s-1 at O2≤15 Torr to (2.0±1.0)×10-12 cm3 molecule-1 s-1 at 1 atm air and 300 K. Equimolar amounts of carbonyl sulphide and sulphur dioxide were the major reaction products. The concentration of carbon disulphide in the ambient atmosphere was measured and the concentration to be expected in the background atmosphere was estimated. Rate and concentration data were used to show that carbon disulphide oxidation represents a major source for atmospheric carbonyl sulphide. It can also serve as an alternate source for atmospheric sulphur dioxide in addition to that produced from hydrogen sulphide and dimethyl sulphide. A consideration of atmospheric concentrations and rate data for these trace sulphur gases suggests that the natural sulphur budget is much smaller than the yearly amounts of sulphur dioxide emitted from anthropogenic sources.  相似文献   

7.
The Arrhenius expressions and the data plotted in Figure 2 of Rodriguez et al. 2008 give rate coefficients of approximately 2?×?10-8 cm3 molecule-1 s-1 at 255 K. Such values are approximately two orders of magnitude larger than expected from simple collision theory (Finlayson-Pitts and Pitts 1986). The rate coefficients reported at sub-ambient temperatures are substantially greater than the gas kinetic limit and are not physically plausible. The rate coefficients reported by Rodriguez et al. imply a long range attraction between the reactants which is not reasonable for reaction of neutral species such as chlorine atoms and unsaturated alcohols. We also note that the pre-exponential A factors (10-23-10-20) and activation energies (?15 kcal mol-1) are not physically plausible. We conclude that there are large systematic errors in the study by Rodriguez et al. (Atmos Chem 59:187–197, 2008).  相似文献   

8.
In this experimental study, rate constants were measured for the reactions of ozone with 13 polycyclic aromatic hydrocarbons (PAHs) adsorbed on different types of particles. Graphite and silica were chosen to model, respectively, carbonaceous and mineral atmospheric particles. The pseudo-first order rate constants were obtained from the fit of the experimental decay of particulate PAH concentrations versus time. Second order rate constants were calculated considering the ozone gaseous concentration. At room temperature, rate constants varied, in the case of graphite particles, between (1.5 ± 0.5) × 10−17 and (1.3 ± 0.7) × 10−16 cm3 molecule−1 s−1 for chrysene and dibenzo[a,l]pyrene, respectively, and, in the case of silica particles, between (1.5 ± 0.3) × 10−17 and (1.4 ± 0.3) × 10−16 cm3 molecule−1 s−1 for fluoranthene and benzo[a]pyrene, respectively. Different granulometric parameters (particle size, pore size) and different PAH concentrations were tested in the case of silica particles. Heterogeneous reactions of ozone with particulate PAHs are shown to be more rapid than those occurring in the gas-phase, and may be competitive with atmospheric photodegradation.  相似文献   

9.
The chemistry of glycolaldehyde (hydroxyacetaldehyde) relevant to the troposphere has been investigated using UV absorption spectrometry and FTIR absorption spectrometry in an environmental chamber. Quantitative UV absorption spectra have been obtained for the first time. The UV spectrum peaks at 277 nm with a maximum cross section of (5.5± 0.7)×10–20 cm2 molecule–1. Studies of the ultraviolet photolysis of glycolaldehyde ( = 285 ± 25 nm) indicated that the overall quantum yield is > 0.5 in one bar of air, with the major products being CH2OH and HCO radicals. Rate coefficients for the reactions of Cl atoms and OH radicals with glycolaldehyde have been determined to be (7.6± 1.5)×10–11 and (1.1± 0.3)×10–11 cm3 molecule–1 s–1, respectively, in good agreement with the only previous study. The lifetime of glycolaldehyde in the atmosphere is about 1.0 day for reaction with OH, and > 2.5 days for photolysis, although both wet and dry deposition should also be considered in future modeling studies.  相似文献   

10.
A detailed climatology of the cyclogenesis over the Southern Atlantic Ocean (SAO) from 1990 to 1999 and how it is simulated by the RegCM3 (Regional Climate Model) is presented here. The simulation used as initial and boundary conditions the National Centers for Environmental Prediction—Department of Energy (NCEP/DOE) reanalysis. The cyclones were identified with an automatic scheme that searches for cyclonic relative vorticity (ζ10) obtained from a 10-m height wind field. All the systems with ζ10 ≤ ?1.5 × 10?5 s?1 and lifetime equal or larger than 24 h were considered in the climatology. Over SAO, in 10 years were detected 2,760 and 2,787 cyclogeneses in the simulation and NCEP, respectively, with an annual mean of 276.0 ± 11.2 and 278.7 ± 11.1. This result suggests that the RegCM3 has a good skill to simulate the cyclogenesis climatology. However, the larger model underestimations (?9.8%) are found for the initially stronger systems (ζ10 ≤ ?2.5 × 10?5 s?1). It was noted that over the SAO the annual cycle of the cyclogenesis depends of its initial intensity. Considering the systems initiate with ζ10 ≤ ?1.5 × 10?5 s?1, the annual cycle is not well defined and the higher frequency occurs in the autumn (summer) in the NCEP (RegCM3). The stronger systems (ζ10 ≤ ?2.5 × 10?5 s?1) have a well-characterized high frequency of cyclogenesis during the winter in both NCEP and RegCM3. This work confirms the existence of three cyclogenetic regions in the west sector of the SAO, near the South America east coast and shows that RegCM3 is able to reproduce the main features of these cyclogenetic areas.  相似文献   

11.
Rate coefficients have been measured for the reactions of hydroxyl radicals with a range of aliphatic ethers by a competitive technique. Mixtures of synthetic air containing a few ppm of nitrous acid, isobutene and an ether were photolyzed in a Teflon-bag smog chamber. From the rates of depletion of the ether and of the isobutene, and based on the value of the rate coefficient k(OH+i-C4H8)=5.26×10-11 cm3 molecule-1 s-1, the following rate coefficients were obtained for the hydroxyl radical reactions at 750 Torr and at 294±2K in units of 10-12 cm3 molecule-1 s-1: diethylether = 12.0±1.1, di-n-propylether = 15.3±1.6, di-n-butylether=17.1±0.9, ethyl n-butylether = 13.5±0.4, ethyl t-butyl-ether = 5.6±0.5, and di-isobutylether = 26.1±1.6. The quoted error limits correspond to 2 standard deviations but do not include any contribution from k(OH+i-C4H8) for which the error limits are estimated to be about ±10%. The results are discussed in relation to the available literature data and considered in terms of the structure-activity relation for hydroxyl radical reactions with organic molecules.  相似文献   

12.
The reaction of Cl with cyclohexanone (1) was investigated, for the first time, as a function of temperature (273–333 K) and at a low total pressure (1 Torr) with helium as a carrier gas using a discharge flow-mass spectrometry technique (DF-MS). The resulting Arrhenius expression is proposed, k 1= (7.7 ± 4.1) × 10–10 exp[–(540 ± 169)/T]. We also report a mechanistic study with the quantitative determination of the products of the reaction of Cl with cyclohexanone. The absolute rate constant derived from this study at 1 Torr of total pressure and room temperature is (1.3 ± 0.2) × 10–10 cm3 molecule–1 s–1. A yield of 0.94 ± 0.10 was found for the H-abstraction channel giving HCl. In relative studies, using a newly constructed relative rate system, the decay of cyclohexanone was followed by gas chromatography coupled with flame-ionisation detection. These relative measurements were performed at atmospheric pressure with synthetic air and room temperature. Rate constant measured using the relative method for reaction (1) is: (1.7 ± 0.3) × 10–10 cm3 molecule–1 s–1. Finally, results and atmospheric implications are discussed and compared with the reactivity with OH radicals.  相似文献   

13.
A discharge-flow tube coupled with resonance fluorescence and chemiluminescence detection has been used to investigate the reactions IO + HO2 products (1) and IO + O(3P) I + O2(2), at T = 296 ± 1 K and P = 1.7 - 2 Torr. The rate constants k-1 and k2 have been found to be (7.1 ± 1.6) × 10-11 cm3 molecule-1 s-1 and (1.35 ± 0.15) × 10-10 cm3 molecule-1 s-1, respectively.  相似文献   

14.
The absolute rate constants for the gas-phasereactions of the NO3 radical with a series ofaldehydes such as acetaldehyde, propanal, butanal,pentanal, hexanal and, heptanal were measured overthe temperature range 298–433 K, using a dischargeflow system and monitoring the NO3 radical byLaser Induced Fluorescence (LIF).The measured rate constants at 298 K for thereaction of NO3, in units of 10–14 cm3molecule–1 s–1, were as follows:acetaldehyde 0.32 ± 0.04, propanal 0.60 ± 0.06, butanal 1.46± 0.16, pentanal 1.75 ±0.06, hexanal 1.83 ± 0.36, and heptanal 2.37 ±0.42. The proposed Arrhenius expressions arek1 = (6.2 ± 7.5) × 10–11 exp[–(2826 ± 866)/T] (cm3 molecule–1s–1),k2 = (1.7 ± 1.0) × 10–11 exp[–(2250 ± 192)/T] (cm3 molecule–1s1), k3 =(7.6 ± 9.8) × 1011 exp[–(2466 ± 505)/T] (cm3 molecule–1s–1),k4 = (2.8 ± 1.4) × 10–11 exp[–(2189 ± 156)/T] (cm3 molecule–1s–1), k5 = (7.0 ± 1.8) ×10–11 exp [–(2382 ± 998)/T](cm3 molecule–1 s–1), andk6 = (7.8 ± 1.0) × 10–11 exp[–(2406 ± 481)/T](cm3 molecule–1 s–1).Tropospheric lifetimes for these aldehydes werecalculated at night and during the day for typicalNO3 and OH average concentrations and showed thatboth radicals provide an effective tropospheric sinkfor these compounds and that the night-time reactionwith the NO3 radical can be an important, if notdominant, loss process for these emitted organics andfor NO3 radicals.  相似文献   

15.
A study of the oxidation mechanism of N-methyl pyrrolidinone (C5H9NO, NMP) initiated by hydroxyl radicals was made at EUPHORE at atmospheric pressure (1000 ± 10) mbar of air and ambient temperature (T = 300 ± 5 K). The main products were N-methyl succinimide (NMS) (52 ± 4)% and N-formyl pyrrolidinone (FP) (23 ± 9)%. The relative rate technique was used to determine the rate constants of OH with NMP, NMS and FP, the measured values were (in units of cm3 molecule − 1 s− 1): kNMP = (2.2 ± 0.4) × 10− 11, kNMS = (1.4 ± 0.3) × 10− 12 and kFP = (6 ± 1) × 10− 12. The results are presented and discussed in terms of the atmospheric impact.  相似文献   

16.
During the period from 12 to 15 April, 2009 nearly the entire Iran, apart from the southern border, experienced an advective cooling event. While winter freezing concerns are typical, the nature of this freezing event was unusual with respect to its date of occurrence and accompanying synoptic meteorological situation. To analyze the freezing event, the relevant meteorological data at multiple levels of the atmosphere were examined from the NCEP/NCAR reanalysis dataset. The results showed that a polar vortex was responsible for the freezing event over the country extending southward extraordinarily in such a way that its ridge influenced most parts of Iran. This was recognized as an abnormal extension of a polar vortex in the recent years. The sea-level pressure fields indicated that a ridge of large-scale anticyclone centered over Black Sea extended southward and prevailed over most parts of Iran. This resulted in the formation of a severe cold air advection from high latitudes (Polar region) over Iran. During the study period, moisture pumping was observed from the Arabian Sea and Persian Gulf. The winds at 1000 hPa level blew with a magnitude of 10 m s?1 toward south in the region of convergence (between ?2 × 10?6 s?1 and ?12 × 10?6 s?1). The vertical profiles of temperature and humidity also indicated that the ICE structural icing occurred at multiple levels of the atmosphere, i.e, from 800 hPa through 400 hPa levels. In addition to the carburetor (or induction), icing occurred between 900 and 700 hPa levels in the selected radiosonde stations during the study period. In addition, the HYSPLIT backward trajectory model outputs were in quite good agreement with the observed synoptic features.  相似文献   

17.
Rate coefficients have been measured for the gas phasereactions of hydroxyl (OH) radicals and ozone with twounsaturated esters, allyl acetate(CH3C(O)OCH2CH=CH2) and isopropenylacetate (CH3C(O)OC(CH3)=CH2). The OHexperiments were carried out using the pulsed laserphotolysis – laser induced fluorescence technique overthe temperature range 243–372 K and the kinetic dataused to derive the following Arrhenius expressions (inunits of cm3 molecule-1 s-1): allylacetate, k 1 = (2.33 ± 0.27) ×10-12 exp[(732 ± 34)/T]; and isopropenyl acetate,k 2 = (4.52 ± 0.62) × 10-12exp[(809 ± 39)/T]. At 298 K, the rate coefficients obtained (inunits of 10-12 cm3 molecule-1 s-1)are: k 1 = (27.1 ± 3.0) and k 2= (69.6± 9.4). The relative rate technique has been usedto determine rate coefficients for the reaction ofozone with the acetates. Using methyl vinyl ketone asthe reference compound and a value of4.8 × 10-18 cm3 molecule-1s-1 asthe rate coefficient for its reaction with O3,the following rate coefficients were derived at 298 ± 4 K (in units of10-18 cm3molecule-1 s-1): allyl acetate, (2.4 ± 0.7) andisopropenyl acetate (0.7 ± 0.2). Theresults are discussed in terms of structure-activityrelationships and used to derive atmospheric lifetimesfor the acetates.  相似文献   

18.
Rate constants for the gas-phase reactions of OH radicals with nopinone (6,6-dimethylbicyclo[3.1.1]heptan-2-one) and camphenilone (3,3-dimethylbicyclo[2.2.1]heptan-2-one) and for the reactions of 4-acetyl-1-methylcyclohexene with OH and NO3 radicals and O3 have been measured at 296±2 K. The rate constants (cm3 molecule–1 s–1 units) obtained were, for reaction with the OH radical: nopinone, (1.43±0.37)×10–11; camphenilone, (5.15±1.44)×10–12; and 4-acetyl-1-methylcyclohexene, (1.29±0.33)×10–10; for reaction with the NO3 radical: 4-acetyl-1-methylcyclohexene, (1.05±0.38)×10–11; and for reaction with O3: 4-acetyl-1-methylcyclohexene, (1.50±0.53)×10–16. These data are used to calculate the tropospheric lifetimes of these monoterpene atmospheric reaction products.  相似文献   

19.
The kinetics of the reaction of nitrous acid (HONO) with nitric acid (HNO3), nitrate radicals (NO3) and dinitrogen pentoxide (N2O5) have been studied using Fourier transform infrared spectroscopy. Experiments were performed at 700 torr total pressure using synthetic air or argon as diluents. From the observed decay of HONO in the presence of HNO3 a rate constant of k<7×10-19 cm3 molecule-1 s-1 was derived for the reaction of HONO with HNO3. From the observed decay of HONO in the presence of mixtures of N2O5 and NO2 we have also derived upper limits for the rate constants of the reactions of HONO with NO3 and N2O5 of 2×10-15 and 7×10-19 cm3 molecule-1 s-1, respectively. These results are discussed with respect to previous studies and to the atmospheric chemistry of HONO.  相似文献   

20.
The carbon kinetic isotope effects (KIEs) in the reactions of several unsaturated hydrocarbons with chlorine atoms were measured at room temperature and ambient pressure using gas chromatography combustion isotope ratio mass spectrometry (GCC-IRMS). All measured KIEs, defined as the ratio of the rate constants for the unlabeled and labeled hydrocarbon reaction k 12/k 13, are greater than unity or normal KIEs. The KIEs, reported in per mil according to Cl ɛ = (k 12/k 13−1) × 1000‰ with the number of experimental determinations in parenthesis, are as follows: ethene, 5.65 ± 0.34 (1); propene, 5.56 ± 0.18 (2); 1-butene, 5.93 ± 1.16 (1); 1-pentene, 4.86 ± 0.63 (1); cyclopentene, 3.75 ± 0.14 (1); toluene, 2.89 ± 0.31 (2); ethylbenzene, 2.17 ± 0.17 (2); o-xylene, 1.85 ± 0.54 (2). To our knowledge, these are the first reported KIE measurements for reactions of unsaturated NMHC with Cl atoms. Relative rate constants were determined concurrently to the KIE measurements. For the reactions of cyclopentene and ethylbenzene with Cl atoms, no rate constant has been reported in refereed literature. Our measured rate constants are: cyclopentene (7.32 ± 0.88) relative to propene (2.68 ± 0.32); ethylbenzene (1.15 ± 0.04) relative to o-xylene (1.35 ± 0.21), all × 10−10 cm3 molecule−1 s−1. The KIEs in reactions of aromatic hydrocarbons with Cl atoms are similar to previously reported KIEs in Cl-reactions of alkanes with the same numbers of carbon atoms. Unlike the KIEs for previously studied gas-phase hydrocarbon reactions, the KIEs for alkene–Cl reactions do not exhibit a simple inverse dependence on carbon number. This can be explained by competing contributions of normal and inverse isotope effects of individual steps in the reaction mechanism. Implications for the symmetries of the transition state structures in these reactions and the potential relevance of Cl-atom reactions on stable carbon isotope ratios of atmospheric NMHC are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号