首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The land surface temperature (LST) is an important parameter when studying the interface between the atmosphere and the Earth's surface. Compared to satellite thermal infrared (TIR) remote sensing, passive microwave (PMW) remote sensing is better able to overcome atmospheric influences and to estimate the LST, especially in cloudy regions. However, methods for estimating PMW LSTs at the country and continental scales are still rare. The necessity of training such methods from a temporally dynamic perspective also needs further investigations. Here, a temporally land cover based look-up table (TL-LUT) method is proposed to estimate the LSTs from AMSR-E data over the Chinese landmass. In this method, the synergies between observations from MODIS (Moderate Resolution Imaging Spectroradiometer) and AMSR-E (Advanced Microwave Scanning Radiometer for EOS), which are onboard the same Aqua satellite, are explored. Validation with the synchronous MODIS LSTs demonstrates that the TL-LUT method has better performances in retrieving LSTs with AMSR-E data than the method that uses a single brightness temperature in 36.5 GHz vertical polarization channel. The accuracy of the TL-LUT method is better than 2.7 K for forest and 3.2 K for cropland. Its accuracy varies according to land cover type, time of day, and season. When compared with the in-situ measured LSTs at four sites without urban warming in the Tibet Plateau, the standard errors of estimation between the estimated AMSR-E LST and in-situ measured LST are from 5.1 K to 6.0 K in the daytime and 3.1 K to 4.5 K in the nighttime. Further comparison with the in-situ measured air temperatures at 24 meteorological stations confirms the good performance of the TL-LUT method. The feasibility of PMW remote sensing in estimating the LST for China can complement the TIR data and can, therefore, aid in the generation of daily LST maps for the entire country. Further study of the penetration of PMW radiation would benefit the LST estimations in barren and other sparsely vegetated environments.  相似文献   

2.
杨虎  杨忠东 《遥感学报》2006,10(4):600-607
地表温度反演的裂窗算法已成功应用于NOAA系列卫星热红外遥感数据。目前,裂窗算法中应用较为广泛的一种是Becker等人于1990年提出的局地裂窗算法,主要是通过辐射传输模型模拟不同地表条件和大气状况下,地表温度和发射率对红外辐射亮温的影响,从而发展出一个利用AVHRR4,5通道亮温数据反演地表温度的线性模型。在晴空无云和地表比辐射率能精确估算的情况下,Becker算法反演地表温度的精度在1K以内。Becker算法用Lowtran程序模拟计算地表辐射量,且模型中参数主要针对NOAA-9传感器特性得到。本文在Becker算法的基础上,针对NOAA-16/17传感器热红外通道光谱响应函数特性,利用最新的、计算光谱分辨率更高的MODTRAN程序模拟不同大气状况下,不同地表温度和发射率对NOAAAVHRR4,5通道辐射亮温响应特性的影响,改进Becker算法中模型参数,使之能适用于NOAA-16/17热红外数据。同时,本文利用植被指数NDVI,在中国陆地区域lkm分辨率最新地表分类数据的基础上,得到模型中需要的地表比辐射率参数,将改进的模型应用于1km分辨率NOAA17数据,得到了旬合成中国陆地区域范围地表温度,通过地面气象台站实测数据对比验证.取得了较好的结果。  相似文献   

3.
MPDI在微波辐射计植被覆盖区土壤水分反演中的应用   总被引:5,自引:0,他引:5  
王磊  李震  陈权 《遥感学报》2006,10(1):34-38
大尺度上的土壤水分变化监测对于建立全球的水循环模型意义重大,是实现气候变化预测和洪涝监测的基础。星载辐射计为实现大尺度上土壤水分的监测提供了监测途径。但是在星载辐射计观测时,地表植被层的吸收和散射作用会对土壤向上的微波辐射产生衰减影响,这种影响在反演土壤水分的过程中必须予以计算和消除。原有的反演算法中,在计算这部分影响的时候,需要大量的关于地表植被状况的辅助数据,而这些即时的辅助数据往往不易获得。以AMSR—E数据为例,研究证明了微波极化差异指数(MPDI)能够反映地表植被覆盖状况。以中国华北、华东地区为实验区,选择2004年4月8日的AMSR—E亮温数据和MODIS数据为样本数据,建立起MPDI与NDVI之间的负指数关系方程。基于对NDVI的认识,得到植被覆盖度高、中、低三种状况所对应的MPDI域值,以此域值为依据对中等植被覆盖度地区作出自动判断,并用MPDI计算植被层不透明度。  相似文献   

4.
孟翔晨  刘昊  程洁 《遥感学报》2019,23(4):570-581
地表温度日变化模型作为非常重要的输入参数在气象、水文、生态等领域研究中具有重要意义。风云二号(FY-2F)静止气象卫星的地表温度产品的时间分辨率为1小时,这为拟合精确的地表温度日变化(DSTC)模型提供了可能。本文首先利用194个气象站点对应的2014年的FY-2F地表温度产品评价了GOT01、VAN06、JNG06、INA08、GOT09和GEM_V这6种地表温度日变化模型在中国区的模拟精度,对不同时间窗口和不同地表覆盖类型拟合精度的差异进行了分析;其次,选用JNG06模型探究了中国区域地表温度随经纬度、季节和地表覆盖类型的日变化规律。研究结果表明:在不同时间窗口内,GOT09模型获得了全局最优的拟合精度,均方根误差为0.89 K;JNG06和GEM_V模型精度次之,均方根误差分别为0.92 K和0.94 K;GOT01、INA08和VAN06模型精度最差;各模型在城市和建筑区、农用地和自然植被以及常绿阔叶林这3类地表覆盖类型的拟合精度最好,其均方根误差在0.89—0.92 K,在其余地表覆盖类型的拟合精度在1.0 K以上。JNG06模型模拟的地表温度在4种典型的地表类型随纬度的变化规律较为明显,地表温度在1月份随纬度变化较为剧烈,在7月份整体波动较为平缓。综上所述,使用FY-2F地表温度产品建立的DSTC模型在中国区域具有较高的精度,模拟的地表温度随着纬度变化的规律较为明显。使用本文模型既可以纠正现有模型又可获取归一化地表温度产品,同时可以检验和标定陆面模式地表温度模拟结果。  相似文献   

5.
为了提高地面气象站稀少地区地表温度遥感反演的精度,本文基于多源遥感数据的优势,首先利用MODIS影像获取研究区像元尺度上平均大气水汽含量;然后利用同时相的HJ-1B影像估算区域地表比辐射率,再采用温度-植被指数法获取近地表大气温度;最后将以上3个参数输入单窗体算法,改进其地表温度反演的精度。研究结果表明,改进单窗体算法反演地表温度与地面实测温度的偏差小于1 K,为地面气象站点稀少的植被覆盖区域提供了一种可行的精确遥感反演地表温度方法。  相似文献   

6.
The retrieval of land (soil-vegetation complex) surface temperature (LST) was carried out over semi-arid mixed agriculture landscape of Gujarat using thermal bands (channel 4 and 5) and ground emissivity from atmospherically corrected NDVI of NOAA AVHRR LAC images. The atmospheric correction of Visible and NIR band reflectance was done using SMAC model. The LST computed from split-window method and subsequently corrected with fractional vegetation cover were then compared with near synchronous ground observations of soil and air temperatures made during 13–17 January and April, 1997 at five Land Surface Processes Experiment (LASPEX) sites of Anand, Sanand, Derol, Arnej and Khandha covering 100 km x 100 km. The fractional vegetation cover corrected LST at noon hrs. varied from 301.6 – 311.9K in January and from 315.8 – 325.6K in April. The LSTcorr were found to lie in the mid way between AT and ST during January. But in April, LST were found to be more close to ST which may be due to relatively poor vegetation growth as indicated by lower NDVI values in April indicating more contribution to LST from exposed soil surface.  相似文献   

7.
The retrieval of land-surface temperature (LST) from thermal infrared satellite sensor observations is known to suffer from cloud contamination. Hence few studies focus on LST retrieval under cloudy conditions. In this paper a temporal neighboring-pixel approach is presented that reconstructs the diurnal cycle of LST by exploiting the temporal domain offered by geo-stationary satellite observations (i.e. MSG/SEVIRI), and yields LST estimates even for overcast moments when satellite sensor can only record cloud-top temperatures. Contrasting to the neighboring pixel approach as presented by Jin and Dickinson (2002), our approach naturally satisfies all sorts of spatial homogeneity assumptions and is hence more suited for earth surfaces characterized by scattered land-use practices. Validation is performed against in situ measurements of infrared land-surface temperature obtained at two validation sites in Africa. Results vary and show a bias of −3.68 K and a RMSE of 5.55 K for the validation site in Kenya, while results obtained over the site in Burkina Faso are more encouraging with a bias of 0.37 K and RMSE of 5.11 K. Error analysis reveals that uncertainty of the estimation of cloudy sky LST is attributed to errors in estimation of the underlying clear sky LST, all-sky global radiation, and inaccuracies inherent to the ‘neighboring pixel’ scheme itself. An error propagation model applied for the proposed temporal neighboring-pixel approach reveals that the absolute error of the obtained cloudy sky LST is less than 1.5 K in the best case scenario, and the uncertainty increases linearly with the absolute error of clear sky LST. Despite this uncertainty, the proposed method is practical for retrieving the LST under a cloudy sky condition, and it is promising to reconstruct diurnal LST cycles from geo-stationary satellite observations.  相似文献   

8.
The split-window algorithm is the most commonly used method for land surface temperature (LST) retrieval from satellite data. Simplification of the Planck’s function, as an important step in developing the SWA, allows us to directly relate the radiance to the temperature toward solving the radiative transfer equation (RTE) set. In this study, Planck’s radiance relationship between two adjacent thermal infrared channels was modeled to solve the RTE set instead of simplification of the Planck’s function. A radiance-based split-window algorithm (RBSWA) was developed and applied to Moderate Resolution Imaging Spectroradiometer (MODIS) data. The performance of the RBSWA was assessed and compared with three most common brightness temperature-based split-window algorithms (BTBSWAs) by using the simulated data and satellite measurements. Simulation analysis showed that the LST retrieval using RBSWA had a Root Mean Square Error (RMSE) of 0.5 K and achieved an improvement of 0.3 K compared with three BTBSWAs, and the LST retrieval accuracy using RBSWA was better than 1.5 K considering uncertainties in input parameters based on the sensitivity analysis. For application of RBSWA to MODIS data, the results showed that: 1) comparison between LST from MODIS LST product and LST retrieved using RBSWA showed a mean RMSE of 1.33 K for 108 groups of MODIS image covering continental US, which indicates RBSWA is reliable and robust; 2) when using the measurements from US surface radiation budget network as real values the RMSE of the RBSWA algorithm was 2.55 K and was slightly better than MODIS LST product; and 3) through the cross validation using Advanced Spaceborne Thermal Emission and Reflection Radiometer LST product, the RMSE of the RBSWA algorithm was 2.23 K and was 0.28 K less than that of MODIS LST product. We conclude that the RBSWA for LST retrieval from MODIS data can attain a better accuracy than the BTBSWA.  相似文献   

9.
Main objective of this study was to establish a relationship between land cover and land surface temperature (LST) in urban and rural areas. The research was conducted using Landsat, WorldView-2 (WV-2) and Digital Mapping Camera. Normalised difference vegetation index and normalised difference built-up index were used for establishing the relation between built-up area, vegetation cover and LST for spatial resolution of 30 m. Impervious surface and vegetation area generated from Digital Mapping Camera from Intergraph and WV-2 were used to establish the relation between built-up area, vegetation cover and LST for spatial resolutions of 0.1, 0.5 and 30 m. Linear regression models were used to determine the relationship between LST and indicators. Main contribution of this research is to establish the use of combining remote sensing sensors with different spectral and spatial resolution for two typical settlements in Vojvodina. Correlation coefficients between LST and LST indicators ranged from 0.602 to 0.768.  相似文献   

10.
The present study proposes land surface temperature (LST) retrieval from satellite-based thermal IR data by single channel radiative transfer algorithm using atmospheric correction parameters derived from satellite-based and in-situ data and land surface emissivity (LSE) derived by a hybrid LSE model. For example, atmospheric transmittance (τ) was derived from Terra MODIS spectral radiance in atmospheric window and absorption bands, whereas the atmospheric path radiance and sky radiance were estimated using satellite- and ground-based in-situ solar radiation, geographic location and observation conditions. The hybrid LSE model which is coupled with ground-based emissivity measurements is more versatile than the previous LSE models and yields improved emissivity values by knowledge-based approach. It uses NDVI-based and NDVI Threshold method (NDVITHM) based algorithms and field-measured emissivity values. The model is applicable for dense vegetation cover, mixed vegetation cover, bare earth including coal mining related land surface classes. The study was conducted in a coalfield of India badly affected by coal fire for decades. In a coal fire affected coalfield, LST would provide precise temperature difference between thermally anomalous coal fire pixels and background pixels to facilitate coal fire detection and monitoring. The derived LST products of the present study were compared with radiant temperature images across some of the prominent coal fire locations in the study area by graphical means and by some standard mathematical dispersion coefficients such as coefficient of variation, coefficient of quartile deviation, coefficient of quartile deviation for 3rd quartile vs. maximum temperature, coefficient of mean deviation (about median) indicating significant increase in the temperature difference among the pixels. The average temperature slope between adjacent pixels, which increases the potential of coal fire pixel detection from background pixels, is significantly larger in the derived LST products than the corresponding radiant temperature images.  相似文献   

11.
方红亮 《遥感学报》2021,25(1):109-125
地表参数定量遥感反演是遥感科学研究的重要环节.21世纪以来,地球静止气象卫星数据在地表参数遥感反演中受到越来越多的重视.本文对利用地球静止气象卫星进行地表参数遥感反演研究的进展进行了综述.文章首先简单介绍了当前正在运行的欧盟Meteosat、美国GOES-R、日本葵花和中国风云静止卫星系统,随后详细总结了不同卫星系统估...  相似文献   

12.
GIDS空间插值法估算云下地表温度   总被引:1,自引:2,他引:1  
周义  覃志豪  包刚 《遥感学报》2012,16(3):492-504
选用陆面区域温度最佳空间插值法—梯度距离平方反比法(GIDS),为近似估算云下地表温度提供了可能。实验选取暖季南京江宁地区ETM+影像和ASTERGDEMV1高程数据,探索分析GIDS估算云下地表温度的可行性和可信性。对14种空间大小云覆盖区实验研究表明:利用GIDS插值估算云下地表温度具有可行性,且估算误差随着云覆盖区范围增大而增加,其最大MAE<0.9℃,最大RMSE<1.2℃,并在云覆盖区小于100×100像元时,最大MAE<0.8℃、RMSE<1℃;插值精度与最近邻无云像元典型代表性、区域内空间复杂度和地表覆盖类型均有关,存在不稳定性和动态性;云下NDVI均方差与MAE、RMSE有着一致变化趋势,借助NDVI均方差指示云下地表空间异质性及NDVI–LST负相关性,可对插值结果进行可信性评判,以避免插值结果盲目应用,推进和提升地表温度产品应用价值。  相似文献   

13.
针对Terra/MODIS数据的改进分裂窗地表温度反演算法   总被引:1,自引:0,他引:1  
针对Terra/MODIS数据提出改进的分裂窗地表温度反演算法。充分考虑了传感器观测角度(VZA)的影响,并对地表和有效大气辐射按照不同的亮度温度区间分别进行Planck函数简化。利用TIGR3大气廓线库中的875条晴空大气廓线,ASTER波谱库中的106条地物发射率波谱,结合MODTRAN4大气辐射传输模型模拟得到分裂窗算法系数。利用MODTRAN4模拟数据对算法精度进行验证,结果表明本文的改进算法和原算法的均方根误差RMSE分别为0.34K和0.65K。敏感性分析表明,在中等湿润的大气条件下,算法对大气水汽含量并不敏感。该算法降低了传感器观测角度带来的地表温度反演误差。利用2009年6月美国SURFRAD辐射观测网6个站点的实测数据对改进算法、原算法以及MOD11_L2地表温度产品进行了对比验证,RMSE分别是0.93K、1.49K和1.0K,表明本文算法可以提高反演精度。  相似文献   

14.
同化MODIS温度产品估算地表水热通量   总被引:4,自引:0,他引:4       下载免费PDF全文
徐同仁  刘绍民  秦军  梁顺林 《遥感学报》2009,13(6):999-1019
基于集合卡尔曼滤波和通用陆面模型(CLM 1.0)发展了一个地表温度的同化系统。这个系统同化了MODIS温度产品, 并将MODIS的叶面积指数引入CLM模型中, 主要用于改进地表水热通量的估算精度。将CLM输出的地表温度与MODIS地表温度建立关系, 并作为同化系统的观测算子。将MODIS地表温度与实测地表温度进行了比较, 将其均方差(Root Mean Square Error, RMSE)作为观测误差。选取3个美国通量网站点(Blackhill、Bondville、Brookings)作为实验数据, 结果表明: 同化结果中地表温度、显热通量的估算精度均有提高。其中Blackhill站的估算精度改进最大, 均方差由81.5W·m-2减小到58.4W·m-2, Bondville站均方差由47.0W·m-2减小到31.8W·m-2, Brookings站均方差由46.5W·m-2减小到45.1W·m-2。潜热通量估算精度在Bondville站均方差由88.6W·m-2减小到57.7W·m-2, Blackhill站均方差由53.4W·m-2减小到47.2W·m-2。总之, 结合陆面过程模型同化MODIS温度产品估算地表水热通量是可行的。  相似文献   

15.
Landsat ETM+数据的武汉市地表温度反演研究   总被引:1,自引:0,他引:1  
以Landsat ETM+为主要遥感数据源,辅助以气象数据资料,利用NDVI计算出植被覆盖率,继而计算出地表比辐射率,并利用单窗算法精确反演得到了武汉市2002年夏季地表温度。研究表明,武汉城市热岛由武昌、汉口、汉阳三大城区热岛构成,且几乎集中在城区;城区大热岛区中还存在多数热岛效应更为严重的"岛中岛";武汉热岛分布与...  相似文献   

16.
Since soil moisture and vegetation index are direct and important indicators for surface drought status, a new drought monitoring method (MPDI1) is developed in NIR-Red reflectance space. It is a combination of two satellite-derived variables—a soil moisture component using the Perpendicular Drought Index (PDI), and a vegetation component using the Perpendicular Vegetation Index (PVI). Enhanced Thematic Mapper Plus (ETM+) image and in-situ ground observation are introduced to validate the accuracy of the proposed method. Results indicate that MPDI1 is highly consistent to the in-situ ground observation with the coefficient of determination (R2?=?0.49) between MPDI1 and 5–20 cm mean soil moisture, which is slightly higher than the coefficient of determination (R2?=?0.42) between MPDI1 and 10 cm soil moisture. Compared with drought indices such as PDI and the Modified Perpendicular Drought Index (MPDI), MPDI1 provides quite similar trends for bare soil or lower vegetated surface, but it demonstrates a better performance in measuring densely vegetated surface. This paper concludes that MPDI1 provides correct and sufficient information on surface drought status in soil-plant continuum, which appears to have robust available and great potential for surface drought estimation in China and other countries.  相似文献   

17.
Surface soil moisture (SSM) is a critical variable for understanding the energy and water exchange between the land and atmosphere. A multi-linear model was recently developed to determine SSM using ellipse variables, namely, the center horizontal coordinate (x0), center vertical coordinate (y0), semi-major axis (a) and rotation angle (θ), derived from the elliptical relationship between diurnal cycles of land surface temperature (LST) and net surface shortwave radiation (NSSR). However, the multi-linear model has a major disadvantage. The model coefficients are calculated based on simulated data produced by a land surface model simulation that requires sufficient meteorological measurements. This study aims to determine the model coefficients directly using limited meteorological parameters rather than via the complicated simulation process, decreasing the dependence of the model coefficients on meteorological measurements. With the simulated data, a practical algorithm was developed to estimate SSM based on combined optical and thermal infrared data. The results suggest that the proposed approach can be used to determine the coefficients associated with all ellipse variables based on historical meteorological records, whereas the constant term varies daily and can only be determined using the daily maximum solar radiation in a prediction model. Simulated results from three FLUXNET sites over 30 cloud-free days revealed an average root mean square error (RMSE) of 0.042 m3/m3 when historical meteorological records were used to synchronously determine the model coefficients. In addition, estimated SSM values exhibited generally moderate accuracies (coefficient of determination R2 = 0.395, RMSE = 0.061 m3/m3) compared to SSM measurements at the Yucheng Comprehensive Experimental Station.  相似文献   

18.
This study developed an analytical procedure based upon a spectral unmixing model for characterizing and quantifying urban landscape changes in Indianapolis, Indiana, the United States, and for examining the environmental impact of such changes on land surface temperatures (LST). Three dates of Landsat TM/ETM+ images, acquired in 1991, 1995, and 2000, respectively, were utilized to document the historical morphological changes in impervious surface and vegetation coverage and to analyze the relationship between these changes and those occurred in LST. Three fraction endmembers, i.e., impervious surface, green vegetation, and shade, were derived with an unconstrained least-squares solution. A hybrid classification procedure, which combined maximum-likelihood and decision-tree algorithms, was developed to classify the fraction images into land use and land cover classes. Correlation analyses were conducted to investigate the changing relationships of LST with impervious surface and vegetation coverage. Results indicate that multi-temporal fraction images were effective for quantifying the dynamics of urban morphology and for deriving a reliable measurement of environmental variables such as vegetation abundance and impervious surface coverage. Urbanization created an evolved inverse relationship between impervious and vegetation coverage, and brought about new LST patterns because of LST's correlations with both impervious and vegetation coverage. Further researches should be directed to refine spectral mixture modeling by stratification, and by the use of multiple endmembers and hyperspectral imagery.  相似文献   

19.
作为驱动地表与大气之间能量交换的关键物理量,地表温度在众多领域中都发挥着重要作用,包括气候变化、环境监测、蒸散发估算以及地热异常勘探等。Landsat热红外数据因其时间连续性和高空间分辨率等特点被广泛应用于地表温度反演中。本文详细地介绍了Landsat热红外传感器及其可用的数据与产品的现状,梳理了2001年—2020年20年间基于Landsat热红外数据的地表温度遥感反演与应用的相关文献发表及互引情况,系统地综述了基于Landsat热红外数据的地表温度反演算法,包括基于辐射传输方程的算法、单窗算法、普适性单通道算法、实用单通道算法和分裂窗算法等。在此基础上,进一步介绍了每种算法的参数化方案,包括地表比辐射率和大气参数的估算方法。最后针对Landsat热红外数据地表温度遥感反演提出了未来可能的发展趋势与研究方向。  相似文献   

20.
基于ASTER GED产品的地表发射率估算   总被引:1,自引:0,他引:1  
地表发射率是地表温度反演的重要输入参数,为了解决现有地表发射率估算方法在裸露地表精度较差的问题,本文基于最新的ASTER全球地表发射率产品(ASTER GED)和基于植被覆盖度的方法(VCM),提出了一个改进的地表发射率估算方法。首先,利用ASTER GED产品求解裸土发射率,然后,利用ASTER波谱库中的植被发射率和植被覆盖度结合VCM方法计算地表发射率。利用张掖地区2012年11景ASTER TES算法反演的地表发射率产品和实测地表发射率数据进行了验证,同时利用一景Landsat 8 TIRS数据分析了对地表温度反演精度的影响。结果表明该方法估算的地表发射率整体精度较高,可以有效改进裸露地表的发射率估算精度,用于支持利用多种热红外传感器数据生产高精度的地表温度产品。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号