首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文对非线性科学的两个重要分支-分形和混沌-在太阳物理学中的应用情况作了综述,主要内容包括:太阳活动混沌性的揭示;对太阳活动混沌性的可能解释-太阳非线性发电机理论;一些太阳现象的分形描述;耀斑的自组织临界行为研究。最后给出了作者对这一领域工作前景的展望。  相似文献   

2.
太阳物理学中的分形和混沌   总被引:1,自引:0,他引:1  
对非线性科学的两个重要分支;分形和混沌在太阳物理学中的应用情况作了综述信要内容包括;太阳活动混沌性的揭示;对太阳活动混沌性的可能解释-太阳非线性发电机理论;一些太阳现象的分形描述;耀斑的自组织临界行为研究,最后给出了作者对这一领域工作前景的展望。  相似文献   

3.
We consider the conditions in the transition from the tachocline to the solar convective zone with changing diffusion coefficient. The topology of the magnetic fields involved in the solar dynamo is revised under the assumption that intermediate fields (of the order of 10 mT) have a dominant role in generating the fields in new cycle. The inclusion of meridional circulation is found to increase the dynamo wave period in comparison to the observed period. This suggests that the αΩ-effects are unimportant in calculating the solar cycle period but hold significance in determining the cycle amplitude.  相似文献   

4.
Flux-transport type solar dynamos have achieved considerable success in correctly simulating many solar cycle features, and are now being used for prediction of solar cycle timing and amplitude. We first define flux-transport dynamos and demonstrate how they work. The essential added ingredient in this class of models is meridional circulation, which governs the dynamo period and also plays a crucial role in determining the Sun’s memory about its past magnetic fields. We show that flux-transport dynamo models can explain many key features of solar cycles. Then we show that a predictive tool can be built from this class of dynamo that can be used to predict mean solar cycle features by assimilating magnetic field data from previous cycles.  相似文献   

5.
We discuss the issue of ordered and chaotic trajectories in the Bohmian approach of Quantum Mechanics from points of view relevant to the methods of Celestial Mechanics. The Bohmian approach gives the same results as the orthodox (Copenhagen) approach, but it considers also underlying trajectories guided by the wave. The Bohmian trajectories are rather different from the corresponding classical trajectories. We give examples of a classical chaotic system that is ordered quantum-mechanically and of a classically ordered system that is mostly chaotic quantum mechanically. Then we consider quantum periodic orbits and ordered orbits, that can be represented by formal series of the “third integral” type, and we study their asymptotic properties leading to estimates of exponential stability. Such orbits do not approach the “nodal points” where the wavefunction ψ vanishes. On the other hand, when an orbit comes close to a nodal point, chaos is generated in the neighborhood of a hyperbolic point (called X-point). The generation of chaos is maximum when the X-point is close to the nodal point. Finally we remark that high order periodic orbits may behave as “effectively ordered” or “effectively chaotic” for long times before reaching the period.  相似文献   

6.
Grassmugg  Maria  Hanslmeier  Arnold  Laback  Otto 《Solar physics》1997,174(1-2):437-441
In this contribution we present a nonlinear dynamo model, described by an infinite dimensional system of differential equations, whose solutions depend on the essential parameter D, the dynamo number. The solutions and the bifurcation points of the system are determined with the help of a new developed computer code. We show that, depending on D, stationary, oscillatory and chaotic solutions, which are characterized by Lyapunov exponents, result. We find that the solar dynamo may operate either in the chaotic or in the stable limit cycle domain, depending on the characteristic value of the dynamo number or the motion of the convection zone.  相似文献   

7.
An Exploration of Non-kinematic Effects in Flux Transport Dynamos   总被引:1,自引:0,他引:1  
Recent global magnetohydrodynamical simulations of solar convection producing a large-scale magnetic field undergoing regular, solar-like polarity reversals also present related cyclic modulations of large-scale flows developing in the convecting layers. Examination of these simulations reveal that the meridional flow, a crucial element in flux transport dynamos, is driven at least in part by the Lorentz force associated with the cycling large-scale magnetic field. This suggests that the backreaction of the field onto the flow may have a pronounced influence on the long-term evolution of the dynamo. We explore some of the associated dynamics using a low-order dynamo model that includes this Lorentz force feedback. We identify several characteristic solutions which include single period cycles, period doubling and chaos. To emulate the role of turbulence in the backreaction process we subject the model to stochastic fluctuations in the parameter that controls the Lorentz force amplitude. We find that short term fluctuations produce long-term modulations of the solar cycle and, in some cases, grand minima episodes where the amplitude of the magnetic field decays to near zero. The chain of events that triggers these quiescent phases is identified. A subsequent analysis of the energy transfer between large-scale fields and flows in the global magnetohydrodynamical simulation of solar convection shows that the magnetic field extracts energy from the solar differential rotation and deposits part of that energy into the meridional flow. The potential consequences of this marked departure from the kinematic regime are discussed in the context of current solar cycle modeling efforts based on flux transport dynamos.  相似文献   

8.
Mursula  K.  Zieger  B.  Vilppola  J.H. 《Solar physics》2003,212(1):201-207
Several recent studies have reported quasi-periodicities with a period between 1 and 2 years (to be called here `mid-term quasi-periodicities') in various heliospheric parameters, like solar wind speed, interplanetary magnetic field, cosmic rays, and geomagnetic activity. Here we study their long-term occurrence in geomagnetic activity using an extended aa index which covers the last 15 solar cycles. We confirm their intermittent occurrence and the alternation of their dominant period between a slightly shorter period of about 1.2–1.4 years and a slightly longer period of about 1.5–1.7 years. We find that the mid-term quasi-periodicities were strong during two intervals of high solar activity: in the mid-19th century and since 1930. Instead, contrary to earlier studies, we find that they were consistently weak during low solar activity from 1860s to 1920s. This implies a long-term connection between the amplitude of mid-term quasi-periodicities and the solar dynamo strength. Since the rotation speed at the bottom of the solar convection layer (tachocline) has recently been found to vary at a mid-term periodicity, this suggests that the stronger the solar dynamo is, the more variable the rotation rate of the tachocline is. We also note that the disappearance of mid-term periodicities may be used as a precursor for long intervals of very weak solar activity, like great minima.  相似文献   

9.
We study a mean field model of the solar dynamo, in which the non-linearity is the action of the azimuthal component of the Lorentz force of the dynamo-generated magnetic field on the angular velocity. The underlying zero-order angular velocity is consistent with recent determinations of the solar rotation law, and the form of the alpha effect is chosen so as to give a plausible butterfly diagram. For small Prandtl numbers we find regular, intermittent and apparently chaotic behaviour, depending on the size of the alpha coefficient. For certain parameters, the intermittency displays some of the characteristics believed to be associated with the Maunder minimum. We thus believe that we are capturing some features of the solar dynamo.  相似文献   

10.
Recent helioseismic observations have found strong fluctuations at a period of about 1.3 years in the rotation speed around the tachocline in the deep solar convection layer. Similar mid-term quasi-periodicities (MTQP; periods between 1–2 years) are known to occur in various solar atmospheric and heliospheric parameters for centuries. Since the deep convection layer is the expected location of the solar magnetic dynamo, its fluctuations could modulate magnetic flux generation and cause related MTQP fluctuations at the solar surface and beyond. Accordingly, it is likely that the heliospheric MTQP periodicities reflect similar changes in solar dynamo activity. Here we study the occurrence of the MTQP periodicities in the near and distant heliosphere in the solar wind speed and interplanetary magnetic field observed by several satellites at 1 AU and by four interplanetary probes (Pioneer 10 and 11 and Voyager 1 and 2) in the outer heliosphere. The overall structure of MTQP fluctuations in the different locations of the heliosphere is very consistent, verifying the solar (not heliospheric) origin of these periodicities. We find that the mid-term periodicities were particularly strong during solar cycle 22 and were observed at two different periods of 1.3 and 1.7 years simultaneously. These periodicities were latitudinally organized so that the 1.3-year periodicity was found in solar wind speed at low latitudes and the 1.7-year periodicity in IMF intensity at mid-latitudes. While all heliospheric results on the 1.3-year periodicity are in a good agreement with helioseismic observations, the 1.7-year periodicity has so far not been detected in helioseismic observations. This may be due to temporal changes or due to the helioseismic method where hemispherically antisymmetric fluctuations would so far have remained hidden. In fact, there is evidence that MTQP fluctuations may occur antisymmetrically in the northern and southern solar hemisphere. Moreover, we note that the MTQP pattern was quite different during solar cycles 21 and 22, implying fundamental differences in solar dynamo action between the two halves of the magnetic cycle.  相似文献   

11.
Observational and theoretical knowledge about global-scale solar dynamo ingredients have reached the stage that it is possible to calibrate a flux-transport dynamo for the Sun by adjusting only a few tunable parameters. The important ingredients in this class of model are differential rotation (Omega-effect), helical turbulence (alpha-effect), meridional circulation and turbulent diffusion. The meridional circulation works as a conveyor belt and governs the dynamo cycle period. Meridional circulation and magnetic diffusivity together govern the memory of the Sun's past magnetic fields. After describing the physical processes involved in a flux-transport dynamo, we will show that a predictive tool can be built from it to predict mean solar cycle features by assimilating magnetic field data from previous cycles. We will discuss the theoretical and observational connections among various predictors, such as dynamo-generated toroidal flux integral, cross-equatorial flux, polar fields and geomagnetic indices. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
We consider to what extent the long-term dynamics of cyclic solar activity in the form of Grand Minima can be associated with random fluctuations of the parameters governing the solar dynamo. We consider fluctuations of the alpha coefficient in the conventional Parker migratory dynamo, and also in slightly more sophisticated dynamo models, and demonstrate that they can mimic the gross features of the phenomenon of the occurrence of Grand Minima over suitable parameter ranges. The temporal distribution of these Grand Minima appears chaotic, with a more or less exponential waiting time distribution, typical of Poisson processes. In contrast, however, the available reconstruction of Grand Minima statistics based on cosmogenic isotope data demonstrates substantial deviations from this exponential law. We were unable to reproduce the non-Poissonic tail of the waiting time distribution either in the framework of a simple alpha-quenched Parker model or in its straightforward generalization, nor in simple models with feedback on the differential rotation. We suggest that the disagreement may only be apparent and is plausibly related to the limited observational data, and that the observations and results of numerical modeling can be consistent and represent physically similar dynamo regimes.  相似文献   

13.
The change of sound speed has been found at the base of the convection during the solar cycles,which can be used to constrain the solar internal magnetic field.We aim to check whether the magnetic field generated by the solar dynamo can lead to the cyclic variation of the sound speed detected through helioseismology.The basic configuration of magnetic field in the solar interior was obtained by using a Babcock-Leighton(BL) type flux transport dynamo.We reconstructed one-dimensional solar models by assimilating magnetic field generated by an established dynamo and examined their influences on the structural variables.The results show that magnetic field generated by the dynamo is able to cause noticeable change of the sound speed profile at the base of the convective zone during a solar cycle.Detailed features of this theoretical prediction are also similar to those of the helioseismic results in solar cycle 23 by adjusting the free parameters of the dynamo model.  相似文献   

14.
The latitudinal migration of sunspots toward the equator,which implies there is propagation of the toroidal magnetic flux wave at the base of the solar convection zone,is one of the crucial observational bases for the solar dynamo to generate a magnetic field by shearing of the pre-existing poloidal magnetic field through differential rotation.The Extended time series of Solar Activity Indices(ESAI)elongated the Greenwich observation record of sunspots by several decades in the past.In this study,ESAI's yearly mean latitude of sunspots in the northern and southern hemispheres during the years 1854 to 1985 is utilized to statistically test whether hemispherical latitudinal migration of sunspots in a solar cycle is linear or nonlinear.It is found that a quadratic function is statistically significantly better at describing hemispherical latitudinal migration of sunspots in a solar cycle than a linear function.In addition,the latitude migration velocity of sunspots in a solar cycle decreases as the cycle progresses,providing a particular constraint for solar dynamo models.Indeed,the butterfly wing pattern with a faster latitudinal migration rate should present stronger solar activity with a shorter cycle period,and it is located at higher latitudinal position,giving evidence to support the Babcock-Leighton dynamo mechanism.  相似文献   

15.
Large scale chaos is present everywhere in the solar system. It plays a major role in the sculpting of the asteroid belt and in the diffusion of comets from the outer region of the solar system. All the inner planets probably experienced large scale chaotic behavior for their obliquities during their history. The Earth obliquity is presently stable only because of the presence of the Moon, and the tilt of Mars undergoes large chaotic variations from 0° to about 60°. On billion years time scale, the orbits of the planets themselves present strong chaotic variations which can lead to the escape of Mercury or collision with Venus in less than 3.5 Gyr. The organization of the planets in the solar system thus seems to be strongly related to this chaotic evolution, reaching at all time a state of marginal stability, that is practical stability on a time-scale comparable to its age.This lecture was given at the XIth International Congress of Mathematical Physics, Paris, july 1994  相似文献   

16.
The relation of the solar cycle period and its amplitude is a complex problem as there is no direct correlation between these two quantities. Nevertheless, the period of the cycle is of important influence to the Earth's climate, which has been noted by many authors. The present authors make an attempt to analyse the solar indices data taking into account recent developments of the asymptotic theory of the solar dynamo. The use of the WKB method enables us to estimate the amplitude and the period of the cycle versus dynamo wave parameters in the framework of the nonlinear development of the one-dimensional Parker migratory dynamo. These estimates link the period T and the amplitude a with dynamo number D and thickness of the generation layer of the solar convective zone h. As previous authors, we have not revealed any considerable correlation between the above quantities calculated in the usual way. However, we have found some similar dependences with good confidence using running cycle periods. We have noticed statistically significant dependences between the Wolf numbers and the running period of the magnetic cycle, as well as between maximum sunspot number and duration of the phase of growth of each sunspot cycle. The latter one supports asymptotic estimates of the nonlinear dynamo wave suggested earlier. These dependences may be useful for understanding the mechanism of the solar dynamo wave and prediction of the average maximum amplitude of solar cycles. Besides that, we have noted that the maximum amplitude of the cycle and the temporal derivative of the monthly Wolf numbers at the very beginning of the phase of growth of the cycle have high correlation coefficient of order 0.95. The link between Wolf number data and their derivative taken with a time shift enabled us to predict the dynamics of the sunspot activity. For the current cycle 23 this yields Wolf numbers of order 107±7.  相似文献   

17.
A time series analysis of a pulsation event in solar radio emission provides an evolution from a regular doubly periodic phase to an irregular behaviour. Applying some techniques developed in the theory of nonlinear dynamic systems to this irregular stage suggests that there exists a low-dimensional attractor. Estimates of the maximum Lyapunov exponent give some evidence to deterministic chaos. The sudden transition from a regular to a chaotic structure is identified as a part of the Ruelle-Takens-Newhouse route to chaos which is typical in nonlinear systems. It is checked whether this pulsation event may be interpreted in terms of known pulsation models. Consequences for models, which are suitable to describe such an evolution, are discussed.  相似文献   

18.
The presence of a chaotic attractor is investigated in time series of 10.7 cm solar flux. The correlation dimension and the Kolomogorov entropy have been calculated for the time period 1964–1984. The values found for the Kolmogorov entropy show that chaos is indeed present. The correlation dimension found for high solar activity is 3.3 and for low solar activity is 4.5, indicating that a low-dimensionsion chaotic attractor is present in the time series analysed.  相似文献   

19.
We demonstrate that a simple solar dynamo model, in the form of a Parker migratory dynamo with random fluctuations of the dynamo governing parameters and algebraic saturation of dynamo action, can at least qualitatively reproduce all the basic features of solar Grand Minima as they are known from direct and indirect data. In particular, the model successfully reproduces such features as an abrupt transition into a Grand Minimum and the subsequent gradual recovery of solar activity, as well as mixed-parity butterfly diagrams during the epoch of the Grand Minimum. The model predicts that the cycle survives in some form during a Grand Minimum, as well as the relative stability of the cycle inside and outside of a Grand Minimum. The long-term statistics of simulated Grand Minima appears compatible with the phenomenology of the Grand Minima inferred from the cosmogenic isotope data. We demonstrate that such ability to reproduce the Grand Minima phenomenology is not a general feature of the dynamo models but requires some specific assumption, such as random fluctuations in dynamo governing parameters. In general, we conclude that a relatively simple and straightforward model is able to reproduce the Grand Minima phenomenology remarkably well, in principle providing us with a possibility of studying the physical nature of Grand Minima.  相似文献   

20.
We present a bi-orthogonal decomposition of the temporal and latitudinal distribution of solar magnetic fields from synoptic magnetograms. Results are compared with a similar decomposition of the distribution of sunspots since 1874. We show that the butterfly diagrams can be interpreted as the result of approximately constant amplitudes and phases of two oscillations with periods close to 22 years. A clear periodicity of 7 years can also be identified in the most energetic modes of both spatio-temporal series. These results can be used to obtain relevant information concerning the physics of the solar dynamo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号