首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 134 毫秒
1.
1982-1999年我国陆地植被活动对气候变化响应的季节差异   总被引:95,自引:6,他引:89  
朴世龙  方精云 《地理学报》2003,58(1):119-125
利用NOAA-AVHRR数据,以归一化植被指数 (NDVI) 作为植被活动的指标,研究中国1982~1999 年四季植被活动的变化,探讨植被活动对全球变化的主要响应方式。结果表明,18年来,中国植被四季平均NDVI均呈上升趋势。春季是中国植被平均NDVI上升趋势最为显著 (P<0.001)、增加速率最快的季节,每年平均增加1.3%;而秋季是NDVI上升趋势最不显著的季节 (P=0.075)。不同植被类型的季节平均NDVI的年变化分析表明,生长季的提前是中国植被对全球变化响应的最主要方式,但这种季节响应方式存在明显的区域性差异。夏季平均NDVI增加速率达到最大的地区主要分布在西北干旱区域和青藏高寒区域,而东部季风区域的植被主要表现为春季NDVI增加速率最大。  相似文献   

2.
中国草原区植被变化及其对气候变化的响应   总被引:4,自引:4,他引:0  
利用1982~2006年GIMMS NDVI和气象数据,探究中国草原区植被变化及对气候的响应。结果表明,近25 a中国草原区植被覆盖总体呈上升趋势,但季节变化空间差异明显。春季温度对温带典型草原、高寒草甸草原和高寒典型草原植被生长有重要影响,而夏季和秋季温度同样对高寒草甸草原影响显著;夏季降水增多能明显促进夏季温带荒漠草原植被生长。除8月份以外,温带草原5~9月NDVI均与前一个月降水显著正相关;在生长季内,高寒草原NDVI与同期温度显著正相关,但8月份除外。此外高寒草原植被在生长最旺盛时期对降水变化存在1~3个月滞后期。  相似文献   

3.
中国东部植被NDVI对气温和降水的旬响应特征   总被引:31,自引:2,他引:29  
利用中国东部SPOT VGT-NDVI数据和气象站点的日平均气温和降水资料,分析了1998-2007年中国东部植被NDVI在全年、春季、夏季和秋季对气温和降水变化的旬时空响应特征.结果表明,中国东部植被总体上对气温变化的响应大于降水,植被对气温变化的最大响应滞后1旬左右,对降水变化的最大响应滞后3旬左右.秋季植被NDVI对气温和降水变化响应最大,夏季NDVI对气温和降水响应的滞后期较长.在空间上,植被对气温变化的最大响应总体表现为北部和中部大于南部,对降水变化的最大响应表现为北部大于中部和南部.植被对气温变化最大响应的滞后期呈现出北部较长-中部短-南部最长的空间分布,对降水变化最大响应的滞后期则随着纬度降低由北到南逐渐延长.  相似文献   

4.
1982—2015年中国气候变化和人类活动对植被NDVI变化的影响   总被引:13,自引:1,他引:13  
基于中国603个气象站的地表气温和降水观测资料以及GIMMS NDVI3g数据,采用变化趋势分析和多元回归残差分析等方法研究了1982—2015年中国植被NDVI变化特征及其主要驱动因素(即气候变化和人类活动)的相应贡献。结果表明:① 1982—2015年中国植被恢复明显,在选择的32个省级行政区中,山西、陕西和重庆的生长季NDVI增加最快,仅上海生长季NDVI呈减小趋势。② 气候变化和人类活动的共同作用是中国植被NDVI呈现整体快速增加和巨大空间差异的主要原因,其中气候变化对各省生长季NDVI变化的影响在-0.01×10 -3~1.05×10 -3 a -1之间,而人类活动的影响在-0.32×10 -3~1.77×10 -3 a -1之间。③ 气候变化和人类活动分别对中国近34年来植被NDVI的增加贡献了40%和60%;人类活动贡献率超过80%的区域主要集中在黄土高原中部、华北平原以及中国东北和西南等地;人类活动贡献率大于50%的省份有22个,其中贡献率最大的3个地区为上海、黑龙江和云南。研究结果建议应更加重视人类活动在植被恢复中的作用。  相似文献   

5.
方利  王文杰  蒋卫国  陈民  王永  贾凯  李延森 《地理科学》2017,37(11):1745-1754
采用MODIS/NDVI数据,利用Theil-Sen Median 趋势分析、Mann-Kendall 以及Hurst指数方法分析2000~2014年黑龙江流域(中国)植被的时空变化特征、植被变化发展趋势及可持续性特征;应用相关分析法研究了气候变化对植被生长的影响。结果表明,2000~2014年黑龙江流域(中国)植被NDVI指数呈缓慢增加趋势,山区植被覆盖增加显著,东北部平原区植被覆盖持续退化,总体上植被覆盖持续改善能力较弱。植被NDVI对气候响应的季节差异显著,且不同类型植被对气候因子的响应不一致:春季植被NDVI主要受温度影响,夏季植被NDVI主要受降水量影响,秋季林地NDVI与温度正相关、草地NDVI与降雨量正相关。  相似文献   

6.
青藏高原春季植被变化特征及其对夏季气温的影响   总被引:9,自引:6,他引:3  
分析1982~2001年NDVI和青藏高原地区台站气温资料,得到结论:近20年来春季高原植被总体呈明显的增加趋势,其中以高原北部、西北部和南部日喀则附近地区的植被增加最明显。高原NDVI与季节同期和滞后的气温以正相关为主。春季NDVI与滞后0~3季气温都表现为正相关,尤以高原春季NDVI与夏季气温的相关更为显著。高原春季NDVI如果处于异常偏小(或偏大) 状态,同时高原的北部和中西部是较明显的NDVI负距平(或正距平)分布时,则高原地区夏季气温具有整体上(或大部分地区)偏低(或偏高)的倾向,平均气温和最高气温在高原西部和北部表现明显,对最低气温的影响的关键区位于高原的中南部和东南部。  相似文献   

7.
西藏自治区植被与气候变化的关系   总被引:2,自引:0,他引:2  
气候变化下植被的时空响应是近年来的研究热点。高海拔西藏地区气候独特多变,研究该区域植被与气候变化的关系具有重要意义。西藏地区的气象站少,利用站点观测资料插值分析误差相对较大,难以准确获得空间连续的数据。本文采用2001~2013年MODIS卫星16天时间序列数据和同期的降雨卫星TRMM数据,利用线性回归和相关性分析法研究西藏地区植被、地表温度和降雨量的时空特征及相关性。研究表明:在2001~2013年间,西藏地区植被与地表温度、降雨量在时间波动和空间分布上具有一致性。植被NDVI逐年增大,植被状况逐渐改善,地表温度总体呈上升趋势,降雨量整体无明显变化,三者年际变化率主要集中在-0.005~0.005/a,-0.05℃~0.15℃/a,-30~40 mm/a。近13年来植被NDVI、地表温度和降雨量的变化区域差异性较大,在西藏中部和东部变化明显。植被NDVI的变化与气候变化(尤其是地表温度上升)密切相关,受降雨明显影响的区域分布在西藏中部,受地表温度明显影响的区域分布在西藏东部和西部。  相似文献   

8.
1982~2010年中国东北地区植被NPP时空格局及驱动因子分析   总被引:11,自引:1,他引:10  
应用逐像元线性回归模型方法,整合应用MODIS和AVHRR NDVI数据集,构建1982~2010年覆盖东北地区的8 km空间分辨率的NDVI数据集,进而应用CASA模型估算得到东北地区29 a NPP数据集,模拟精度在75%以上。29 a平均的东北地区植被NPP总量为6.5×108tC/a。植被NPP的分布受植被类型、气候、地形因素的综合影响。NPP地域差异明显,山地区植被>平原区植被>高原区植被,变化最大的植被类型为草地植被。过去29 a间,植被NPP呈显著上升趋势(P<0.01)。气候变化和土地利用变化均是影响植被时空格局的重要因素。  相似文献   

9.
1982-2006 年中国东部春季植被变化的区域差异   总被引:10,自引:1,他引:9  
分析了中国东部1982-2006 年4-5 月归一化差值植被指数(NDVI) 的空间格局和变化趋势空间分布,通过聚类分析辨识了植被活动变化过程的主要模态,并探讨了他们与温度和降水变化的相关关系。结果表明:(1) 多年平均的春季植被活动呈现南强北弱的分布特征,由强到弱的过渡带大约位于34°~39°N;(2) 1982-2006 年,华北平原、呼伦贝尔草原和洞庭湖平原的春季植被活动呈显著增强的趋势,其中华北平原NDVI 增速高达0.03/10 年(r2 = 0.52;p <0.001),长三角和珠三角地区则呈显著减弱的趋势,其中长三角地区NDVI减速达-0.016/10 年(r2 = 0.24;p = 0.014);(3) 1982-2006 年春季植被活动变化过程的区域差异鲜明,并呈现层次性特征,首先是长三角和珠三角与其他地区的差异,前者呈减弱趋势,后者呈增强趋势,其次是呼伦贝尔草地、华北以及江南—华南地区与东北地区、内蒙古东部和东南部及长江下游地区的差异,前者持续增强,后者以1998 年为分界点先增强后减弱,再次是各个模态年际变率的差异;(4) 半湿润—半干旱的草地和农田区植被活动与降水量变化显著正相关,半湿润—湿润的森林区植被活动与温度变化显著正相关,温度或者降水最高能解释NDVI 60%的方差。  相似文献   

10.
中国西北地区植被覆盖变化驱动因子分析   总被引:9,自引:5,他引:9  
利用GIMMS/NDVI数据分析了中国西北地区1982-2006年植被覆盖时空变化特征及其驱动因子。近25 a来,中国西北地区年均植被NDVI增速为0.5%/10 a,并存在明显的空间差异。天山、阿尔泰山、祁连山、青海的中东部等地区植被NDVI显著增加;青海南部地区、陕西和宁夏交界地区、甘肃的部分地区以及新疆的塔里木盆地、吐鲁番、塔里木河、托里等地区植被NDVI下降。从不同植被类型来看:林地、草地和耕地的年均NDVI都在提高。研究表明:中国西北地区植被NDVI变化是各种自然和人为影响因素综合作用的结果。自然植被(林地等)变化更大程度上反映了气候变化对植被的影响,而人工植被(耕地等)变化更多体现的是人类活动的作用。不同高程、坡度、坡向上的植被NDVI变化存在较大差异,当海拔超过4 000 m时,植被NDVI增加趋势很小;坡度低于25°的坡地植被NDVI增加主要是由于近年来的植被建设;阳坡植被变化比阴坡活跃,植被改善趋势较强。植被NDVI与气温、降水的年际变化整体上都呈弱的正相关,温度上升使蒸发量增大,促进了土壤的干化,不利于植被生长,并且灌溉农业区的河水灌溉会降低农业植被NDVI和降水的相关程度。农业生产水平和植被生态建设等人类活动对西北地区植被NDVI增加起重要作用。  相似文献   

11.
基于日SPEI的近55 a西南地区极端干旱事件时空演变特征   总被引:4,自引:0,他引:4  
贾艳青  张勃 《地理科学》2018,38(3):474-483
利用1960~2014年中国西南地区141个气象台站的逐日气象资料,引入一个新的干旱指数——逐日标准化降水蒸散指数(日SPEI),对极端干旱事件的年代际、年际、季节内变化及持续性特征进行了分析,结果表明:空间上,近55 a西南春季和年极端干旱程度呈一致的减弱趋势,重庆、四川与贵州的交界处及四川西北部极端干旱程度明显缓解,而夏、秋两季极端干旱表现出增强的趋势并有一定的区域性特征。时间上,春季和全年极端干旱频率、强度和持续天数逐渐减少,春季极端干旱的减弱程度较全年明显;夏、秋两季极端干旱频率、强度和持续天数呈增加趋势,夏季极端干旱的加重趋势比秋季明显。从极端干旱事件的持续性来看,20世纪60年代和21世纪初(2000~2014年)西南遭受的极端干旱最严重,持续期达60 d以上的站点分别占到站点总数的60%和73%。  相似文献   

12.
湖南近50年极端连续降水的气候变化趋势   总被引:4,自引:2,他引:2  
采用湖南88个地面气象站点1960~2009年的逐日降水资料运用一元线性回归、小波分析及M-K突变分析等方法分析了湖南极端连续降水的时空分布特征及变化趋势。此外,也运用NCEP再分析资料简要分析了影响湖南极端连续降水的因素。研究表明:湖南极端连续降水的高值区位于湘西北、湘东南和湘东北,其余地区为低值区。且湘北和湘西北部分站点极端连续降水的强度可能减弱,湘中和湘西南部分站点极端连续降水可能比原来更少,而其余地区极端连续降水均可能增多。在过去50年湖南极端连续降水事件增多、强度增大,尤其是进入1990年代以后。在1990年代到2000年代初极端连续降水增多是突变现象,且存在2~3年、4~7年和12~16年左右的周期振荡。地形和气流相互作用、是导致湖南极端降水空间分布差异的主要原因之一,湖南西部和南部山区的净获得水汽较北部和中部平原净获得的水汽多,这与湖南极端降水空间分布基本趋势比较吻合。  相似文献   

13.
Rainstorms are one of the extreme rainfall events that cause serious disasters, such as urban flooding and mountain torrents. Traditional studies have used rain gauge observations to analyze rainstorm events, but relevant information is usually missing in gauge-sparse areas. Satellite-derived precipitation datasets serve as excellent supplements or substitutes for the gauge observations. By developing a grid-based rainstorm-identification tool, we used the Tropical Rainfall Measurement Mission(TRMM) Multi-satellite Precipitation Analysis(TMPA) time series product to reveal the spatial and temporal variabilities of rainstorms over China during 1998–2017. Significant patterns of both increasing and decreasing rainstorm occurrences were detected, with no spatially uniform trend being observed across the whole country. There was an increase in the area being affected by rainstorms during the 20-year period, with rainstorm centers shifting along the southwest–northeast direction. Rainstorm occurrence was found to be correlated with local total precipitation. By comparing rainstorm occurrence with climate variables such as the El Ni?o-Southern Oscillation and Pacific Decadal Oscillation, we also found that climate change was likely to be the primary reason for rainstorm occurrence in China. This study complements previous studies that used gauge observations by providing a better understanding of the spatiotemporal dynamics of China's rainstorms.  相似文献   

14.
黄河源区冻土分布制图及其热稳定性特征模拟   总被引:5,自引:0,他引:5  
以黄河源区多年冻土分布现状和热力特征为研究目标,通过野外调查及实测数据,分析了黄河源区不同地形地貌、不同地表覆盖条件下的冻土形成、分布特征和以地温为基础的热学特征,探讨了不同尺度因素对多年冻土分布的影响。结果表明,在高程低于4 300 m的平原区,多年冻土多不发育;在高于4 350 m的山区,局地地形对多年冻土的形成与分布作用显著。除阳坡地形外,多年冻土均比较发育;介于4 300~4 350 m的低山丘陵和平原区,局地地形、地表植被、土壤湿度等因素共同决定着多年冻土的形成和分布格局。以年均地温指标为基础,构建了以纬度、经度和高程为自变量的回归模型,并对阳坡地形进行微调和校正。结果表明,以0oC作为划分季节冻土和多年冻土的标准和界限,多年冻土面积2.5×104km2,约占整个源区面积的85.1%;季节冻土面积0.3×104km2,约占整个源区面积的9.7%。进一步以0.5oC或1.0oC为分类间隔绘制了黄河源区多年冻土热稳定性空间分布图。  相似文献   

15.
With global warming, rainstorms and other extreme weather events are occurring frequently, leading to urban waterlogging disasters. A study on spatiotemporal variation characteristics of rainstorms in urban areas can provide scientific support for the design of urban drainage facilities to mitigate the damage of urban flooding disasters. Drawing on daily rainfall data from 20 meteorological stations during 1960-2010, this study analyzed change trends for annual rainstorms in Beijing, using the Mann-Kendall approach and cumulative departure curve as methodology. The results show that annual days of rainstorms in Beijing decreased non-significantly, but the precipitation of rainstorms and annual maximum daily precipitation declined significantly. The frequency of rainstorms generally decreased from southeast to northwest, with the greatest decrease occurring in the southeast plain areas. The results of this study contribute to the understanding of rainstorm risk in Beijing.  相似文献   

16.
新亚欧大陆桥新疆段暴雨灾变事件的灰色预测   总被引:1,自引:1,他引:0  
通过对新亚欧大陆桥新疆段水害严重区段暴雨灾变事件的分析,确定暴雨灾变事件的临界雨强,并运用灰色灾变预测方法,根据暴雨灾变序列确立相应的灾变年份序列,运用GM(1,1)模型,分别求出灾变年份序列的GM(1,1)序号响应式和灾变年份预测式。  相似文献   

17.
应用数量分类(TWINSPAN)和排序(DCCA)方法对陕北吴起县典型坡面侵蚀产沙过程进行了环境解释。结果表明:环境因子对土样侵蚀产沙量的解释量达83%,其中DCCA排序轴前4轴的解释量占总排序轴解释量的69%,且分别与坡位、土壤质量、海拔、干根重显著相关。坡面径流侵蚀产沙量随冲刷时间呈波浪式变化,环境因子对侵蚀产沙过程影响甚微。坡面径流侵蚀产沙量按地形部位表现为梁峁顶<梁峁坡<沟坡<沟底,按地类则表现为灌木林<针阔混交林<针叶纯林<阔叶纯林。  相似文献   

18.
1982~1999 年我国东部暖温带植被 生长季节的时空变化   总被引:23,自引:1,他引:22  
陈效逑  喻蓉 《地理学报》2007,62(1):41-51
利用1982~1996 年5 个站点的植物群落物候观测数据和物候累积频率拟合法, 划分各站逐年的植被物候季节, 并确定各季节初日对应的当地归一化差值植被指数(NDVI) 阈值。 在此基础上, 通过对物候站各年NDVI 曲线的年型聚类分析和区内所有像元逐年NDVI 曲线的空间聚类分析, 实现植被物候季节的时空外推估计, 从而得到我国暖温带落叶阔叶林地区1982~1999 年植被物候季节初日和生长季节长度的时空格局。结果表明, 多年平均的植被物 候季节初日和生长季节长度呈现出主要随纬度和海拔高度变化的空间格局。在这18 年中, 整 个区域的物候春季初日以提前为主, 且以华北平原提前的趋势最为显著;夏季、秋季和冬季 初日以推迟为主, 也以华北平原推迟的趋势比较显著;因此, 华北平原植被生长季节呈显著 延长的趋势。本文揭示的植被物候季节初日的趋势变化与华北地区各季节气温的趋势变化基本吻合;植被生长季节的趋势变化特征与欧洲单种植物物候生长季节, 以及欧亚大陆和我国温带遥感植被生长季节的趋势变化基本一致, 但植被生长季节初、终日期和长度的趋势值明显大于后者, 表明该地区植物物候对于气候变暖的响应更加敏感。  相似文献   

19.
The temporal and spatial changes of NDVI on the Tibetan Plateau, as well as the relationship between NDVI and precipitation, were discussed in this paper, by using 8-km resolution multi-temporal NOAA AVHRR-NDVI data from 1982 to 1999. Monthly maximum NDVI and monthly rainfall were used to analyze the seasonal changes, and annual maximum NDVI, annual effective precipitation and growing season precipitation (from April to August) were used to discuss the interannual changes. The dynamic change of NDVI and the corre-lation coefficients between NDVI and rainfall were computed for each pixel. The results are as follows: (1) The NDVI reached the peak in growing season (from July to September) on the Tibetan Plateau. In the northern and western parts of the plateau, the growing season was very short (about two or three months); but in the southern, vegetation grew almost all the year round. The correlation of monthly maximum NDVI and monthly rainfall varied in different areas. It was weak in the western, northern and southern parts, but strong in the central and eastern parts. (2) The spatial distribution of NDVI interannual dynamic change was different too. The increase areas were mainly distributed in southern Tibet montane shrub-steppe zone, western part of western Sichuan-eastern Tibet montane coniferous forest zone, western part of northern slopes of Kunlun montane desert zone and southeastern part of southern slopes of Himalaya montane evergreen broad-leaved forest zone; the decrease areas were mainly distributed in the Qaidam montane desert zone, the western and northern parts of eastern Qinghai-Qilian montane steppe zone, southern Qinghai high cold meadow steppe zone and Ngari montane desert-steppe and desert zone. The spatial distribution of correlation coeffi-cient between annual effective rainfall and annual maximum NDVI was similar to the growing season rainfall and annual maximum NDVI, and there was good relationship between NDVI and rainfall in the meadow and grassland with medium vegetation cover, and the effect of rainfall on vegetation was small in the forest and desert area.  相似文献   

20.
青藏高原植被覆盖变化与降水关系   总被引:15,自引:6,他引:9  
The temporal and spatial changes of NDVI on the Tibetan Plateau, as well as the relationship between NDVI and precipitation, were discussed in this paper, by using 8-km resolution multi-temporal NOAA AVHRR-NDVI data from 1982 to 1999. Monthly maximum NDVI and monthly rainfall were used to analyze the seasonal changes, and annual maximum NDVI, annual effective precipitation and growing season precipitation (from April to August) were used to discuss the interannual changes. The dynamic change of NDVI and the corre- lation coefficients between NDVI and rainfall were computed for each pixel. The results are as follows: (1) The NDVI reached the peak in growing season (from July to September) on the Tibetan Plateau. In the northern and western parts of the plateau, the growing season was very short (about two or three months); but in the southern, vegetation grew almost all the year round. The correlation of monthly maximum NDVI and monthly rainfall varied in different areas. It was weak in the western, northern and southern parts, but strong in the central and eastern parts. (2) The spatial distribution of NDVI interannual dynamic change was different too. The increase areas were mainly distributed in southern Tibet montane shrub-steppe zone, western part of western Sichuan-eastern Tibet montane coniferous forest zone, western part of northern slopes of Kunlun montane desert zone and southeastern part of southern slopes of Himalaya montane evergreen broad-leaved forest zone; the decrease areas were mainly distributed in the Qaidam montane desert zone, the western and northern parts of eastern Qinghai-Qilian montane steppe zone, southern Qinghai high cold meadow steppe zone and Ngari montane desert-steppe and desert zone. The spatial distribution of correlation coeffi- cient between annual effective rainfall and annual maximum NDVI was similar to the growing season rainfall and annual maximum NDVI, and there was good relationship between NDVI and rainfall in the meadow and grassland with medium vegetation cover, and the effect of rainfall on vegetation was small in the forest and desert area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号