首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
We report on the thermal and nonthermal radio emissions from a coronal mass ejection (CME) observed at meter-decameter wavelengths using the Clark Lake multifrequency radioheliograph. From white-light observations of the Solar Maximum Mission Coronagraph/Polarimeter instrument the CME was found to have a speed of 450 km s–1. Since there was no nonthermal radio emission in the beginning of the event and the one which occurred later was quite weak, we were able to observe the thermal structure of the CME in radio. Type III bursts and a nonthermal continuum started several minutes after the CME onset. We use the radio and optical observations to show that the CME was not driven by the flare. We investigate the thermal structure and geometry of the mass ejection in radio and compare it with the optical evidence. Finally we develop a schematic model of the event and point out that particle acceleration high in the corona is possible.  相似文献   

2.
Based on the observations of the Sun and the interplanetary medium, a series of solar activities in late October 2003 and their consequences are studied comprehensively. Thirteen X-ray flares with importance greater than M-class, six frontside halo coronal mass ejections (CMEs) with span angle larger than 100 and three associated eruptions of filament materials are identified by examining lots of solar observations from October 26 to 29. All these flares were associated with type III radio bursts, all the frontside halo CMEs were accompanied by type II or type II-like radio bursts. Particularly, among these activities, two major solar events caused two extraordinary enhancements (exceeding 1000 particles/(cm2s–1sterMev–1) of solar energetic particle (SEP) flux intensity near the Earth, two large ejecta with fast shocks preceding, and two great geomagnetic storms with Dst peak value of –363 and –401 nT, respectively. By using a cross correlation technique and a force-free cylindrical flux rope model, the October 29 magnetic cloud associated with the largest CME are analyzed, including its orientation and the sign of its helicity. It is found that the helicity of the cloud is negative, contrary to the regular statistical pattern that negative- and positive-helical interplanetary magnetic clouds would be expected to come from northern and southern solar hemisphere. Moreover, the relationship between the orientation of magnetic cloud and associated filament is discussed. In addition, some discussion concerning multiple-magnetic-cloud structures and SEP events is also given.  相似文献   

3.
Detailed comparisons of Culgoora 160 MHz radioheliograms of solar noise storms and Skylab EUV spectroheliograms of coronal loop structures are presented. It is concluded that: (1) there is a close association between changes in large-scale magnetic fields in the corona and the onset or cessation of noise storms; (2) these coronal changes result from the emergence of new magnetic flux at the photospheric level; (3) although new magnetic flux at the photospheric level is often accompanied by an increase in flare activity the latter is not directly responsible for noise storm activity; rather the new magnetic flux diffuses slowly outwards through the corona at rates 1–2 km s–1 and produces noise storms at 160 MHz 1–2 days later; (4) the coronal density above or in large-scale EUV loop systems is sufficiently dense to account for noise storm emission at the fundamental plasma frequency; (5) the scatter in noise storm positions can be accounted for by the appearance and disappearance of individual loops in a system.  相似文献   

4.
It has been commonly accepted that coronal mass ejections (CMEs) result from the restructuring or reconfiguring of large-scale coronal magnetic fields. In this paper, we analyzed four CME events using Nançay Radioheliograph (NRH) images and the experiments onboard the Solar and Heliospheric Observatory (SOHO) spacecraft to understand the coronal restructuring leading to CME initiation. We investigated the onset, duration, and position of the radio emissions in relation to EUV dimming and the inferred CME onset. It has been identified that the early CME development on the solar disk is characterized by a series of distinct radio bursts. These nonthermal radio sources appeared in phase with coronal dimming shown by SOHO-EIT images and are located within the EUV dimming or ongoing dimming regions. Three time scales are identified: the duration, the separation of individual radio bursts, and the overall time scale of all of the nonthermal sources. They fall in the ranges of approximately tens of seconds to three minutes, one to three minutes, and 15 – 20 minutes, respectively. The individual radio emission seems to shift and expand at the speed of the fast magnetoacoustic waves in the corona; while the nonthermal radio emissions as a whole appear episodically to correspond to the successive coronal restructuring. If we define the triggering speed by dividing the overall spatial scale by the temporal scale of all the radio bursts, then the triggering speed falls in the range of 300 – 400 km s?1. This implies that the general process of coronal restructuring and reconfiguring takes place at a speed slower than either the Alvfenic or acoustic speed in the corona. This is a type of speed of “topology waves,” i.e., the speed of successive topology changes from closed to open field configuration.  相似文献   

5.
Willson  Robert F. 《Solar physics》2002,211(1-2):289-313
Very-Large-Array (VLA) observations of the Sun at 20, 91 and 400 cm have been combined with data from the SOHO, TRACE and Wind solar missions to study the properties of long-lasting Type I noise storms and impulsive metric and decimetric bursts during solar flares and associated coronal mass ejections. These radio observations provide information about the acceleration and propagation of energetic electrons in the low and middle corona as well as their interactions with large-scale magnetic structures where energy release and transport takes place. For one flare and its associated CME, the VLA detected impulsive 20 and 91 cm bursts that were followed about ten minutes later by 400 cm burst emission that appeared to move outward into the corona. This event was also detected by the Waves experiment on Wind which showed intense, fast-drifting interplanetary Type III bursts following the metric and decimetric bursts detected by the VLA. For another event, impulsive 91 cm emission was detected about a few minutes prior to impulsive bursts at 20.7 cm, suggesting an inwardly propagating beam of electrons that excited burst emission at lower levels and shorter wavelengths. We also find evidence for significant changes in the intensity of Type I noise storms in the same or nearby active region during impulsive decimetric bursts and CMEs. These changes might be attributed to flare-initiated heating of the Type I radio source plasma by outwardly-propagating flare ejecta or to the disruption of ambient magnetic fields by the passage of a CME.  相似文献   

6.
Thompson  B.J.  Reynolds  B.  Aurass  H.  Gopalswamy  N.  Gurman  J.B.  Hudson  H.S.  Martin  S.F.  St. Cyr  O.C. 《Solar physics》2000,193(1-2):161-180
We report coincident observations of coronal and chromospheric flare wave transients in association with a flare, large-scale coronal dimming, metric radio activity and a coronal mass ejection. The two separate eruptions occurring on 24 September 1997 originate in the same active region and display similar morphological features. The first wave transient was observed in EUV and H data, corresponding to a wave disturbance in both the chromosphere and the solar corona, ranging from 250 to approaching 1000 km s–1 at different times and locations along the wavefront. The sharp wavefront had a similar extent and location in both the EUV and H data. The data did not show clear evidence of a driver, however. Both events display a coronal EUV dimming which is typically used as an indicator of a coronal mass ejection in the inner corona. White-light coronagraph observations indicate that the first event was accompanied by an observable coronal mass ejection while the second event did not have clear evidence of a CME. Both eruptions were accompanied by metric type II radio bursts propagating at speeds in the range of 500–750 km s–1, and neither had accompanying interplanetary type II activity. The timing and location of the flare waves appear to indicate an origin with the flaring region, but several signatures associated with coronal mass ejections indicate that the development of the CME may occur in concert with the development of the flare wave.  相似文献   

7.
Solar radio and microwave sources were observed with the Very Large Array (VLA) and the RATAN-600, providing high spatial resolution at 91 cm (VLA) and detailed spectral and polarization data at microwave wavelengths (1.7 to 20 cm - RATAN). The radio observations have been compared with images from the Soft X-ray Telescope (SXT) aboard theYohkoh satellite and with full-disk phoptospheric magnetic field data from the Kislovodsk Station of the Pulkovo Observatory. The VLA observations at 91 cm show fluctuating nonthermal noise storm sources in the middle corona. The active regions that were responsible for the noise storms generally had weaker microwave emission, fainter thermal soft X-ray emission, as well as less intense coronal magnetic fields than those associated with other active regions on the solar disk. The noise storms did, however, originate in active regions whose magnetic fields and radiation properties were evolving on timescales of days or less. We interpret these noise storms in terms of accelerated particles trapped in radiation belts above or near active regions, forming a decimetric coronal halo. The particles trapped in the radiation belts may be the source of other forms of nonthermal radio emission, while also providing a reservoir from which energetic particles may drain down into lower-lying magnetic structures.Presented at the CESRA-Workshop on Coronal Magnetic Energy Release at Caputh near Potsdam in May 1994.  相似文献   

8.
The results of 21/2 yr (July 1967–December 1969) monitoring of solar radio bursts at 19 GHz ( = 1.58 cm) at the Radio and Space Research Station, Slough, are presented. Observations at this frequency are important in helping to define the form of the microwave spectrum of solar bursts since many of the more intense bursts have their spectral peak in the frequency region above 10 GHz. Fifteen bursts with peak flux increases exceeding 1000 × 10–22 Wm–2 Hz–1 were observed during this period.  相似文献   

9.
A comparison of flux and polarization of solar radio noise storms with photospheric source position and magnetic field configuration for six year observations is reported. Three independent results pointing to a predominance of plus magnetic structures as regards noise-storm generation are outlined. A rather strong proof towards a cause-effect connection of photospheric magnetic structure development and noise-storm evolution is stressed.  相似文献   

10.
Vršnak  B.  Ruždjak  V.  Brajša  R.  Zlobec  P.  Altaş  L.  Özgüç  A.  Aurass  H.  Schroll  A. 《Solar physics》2000,194(2):285-303
A sample of 47 importance 1 flares whose H emission occurred or protruded over umbrae of major sunspots (so called Z-flares) was studied to investigate characteristics of the associated dm–m radio, microwave and soft X-ray emission as the energy release site permeats into regions of strong magnetic fields. A close time association was found between the microwave burst peak and the `contact' of the H emission with the sunspot umbra. The H emission attained maximum close to or a few minutes after the contact. The soft X-ray bursts were delayed more, attaining maximum 0–10 min after the contact. The onset of bursts in the dm–m wavelength range was associated with the period of growth or the peak of the microwave burst. Two categories of type III and IV bursts could be recognized: the ones starting some ten minutes before the microwave peak, and those that begin close to the microwave burst peak. Type III bursts occur preferably when the microwave burst peaks simultaneously with or after the contact. The results are explained presuming that the contact reveals a permeation of the energy release process into a region of strong magnetic fields, where the process intensifies, and where the accelerated particles have access to magnetic field lines extending to large coronal heights. Different manifestations of the energy release process in various magnetic field topologies are considered to account for the various time sequences observed.  相似文献   

11.
In this paper, the observed solar radio pulsations during the bursts at 9.375 GHz are considered to be excited by some plasma instability. Under the condition of the conservation of energy in the wave-particle interaction, the saturation time of plasma instabilities is inversely proportional to the initial radiation intensity, which may explain why the repetition rate of the pulsations is directly proportional to the radio burst flux at 9.375 GHz as well as 15 GHz and 22 GHz. It is also predicted that the energy released in an individual pulse increases with increasing the flux of radio bursts, the modularity of the pulsations decreases with increasing the flux of radio bursts, these predictions are consistent with the statistical results at 9.375 GHz in different events. The energy density of the non-thermal particles in these events is estimated from the properties of pulsation. For the typical values of the ambient plasma density (109 cm–3) and the ratio between the nonthermal and ambient electrons (10–4), the order of magnitude of the energy density and the average energy of the nonthermal electrons is 10–4 erg/cm3 and 10 kev, respectively. It is interesting that there are two branches in a statistical relation between the repetition rate and the radio burst flux in a special event on March 11–17, 1989, which just corresponds to two different orders of magnitude for the quasi-quantized energy released in these five bursts. This result may be explained by the different ratios between the thermal and the nonthermal radiations.  相似文献   

12.
The vast majority of solar flares are not associated with metric Type II radio bursts. For example, for the period February 1980–July 1982, corresponding to the first two and one-half years of the Solar Maximum Mission, 95% of the 2500 flares with peak >25 keV count rates >100 c s–1lacked associated Type II emission. Even the 360 largest flares, i.e., those having >25 keV peak count rates >1000 c s–1, had a Type II association rate of only 24%. The lack of a close correlation between flare size and Type II occurrence implies the need for a 'special condition' that distinguishes flares that are accompanied by metric Type II radio bursts from those of comparable size that are not. The leading candidates for this special condition are: (1) an unusually low Alfvén speed in the flaring region; and (2) fast material motion. We present evidence based on SMM and GOES X-ray data and Solwind coronagraph data that argues against the first of these hypotheses and supports the second. Type II bursts linked to flares within 30° of the solar limb are well associated (64%; 49/76) with fast (>400 km s–1) coronal mass ejections (CMEs); for Type II flares within 15° of the limb, the association rate is 79% (30/38). An examination of the characteristics of 'non-CME' flares associated with Type IIs does not support the flare-initiated blast wave picture that has been proposed for these events and suggests instead that CMEs may have escaped detection. While the degree of Type II–CME association increases with flare size, there are notable cases of small Type II flares whose outstanding attribute is a fast CME. Thus we argue that metric Type II bursts (as well as the Moreton waves and kilometric Type II bursts that may accompany them) have their root cause in fast coronal mass ejections.  相似文献   

13.
Four microwave bursts have been selected from the Nobeyama Radio Polarimeter (NoRP) observations with an extremely flat spectrum in the optically thin part and a very hard spectral index between 0 and ?1 in the maximum phase of all bursts. It is found that the time evolution of the turnover frequency is inversely proportional to the time profiles of the radio flux in all bursts. Based on the nonthermal gyrosynchrotron theory of Ramaty (Astrophys. J. 158, 753, 1969), the local magnetic field strength and the electron spectral index are calculated uniquely from the observed radio spectral index and the turnover frequency. We found that the electron energy spectrum is very hard (spectral index 1?–?2), and the time variation of the magnetic field strength is also inversely proportional to the radio flux as a function of time in all bursts. Hence, the time evolution of the turnover frequency can be explained directly by its dependence on the local magnetic field strength. The high turnover frequency (several tens of GHz) is mainly caused by a strong magnetic field of up to several hundred gauss, and probably by the Razin effect under a high plasma density over \(10^{10}~\mbox{cm}^{-3}\) in the maximum phase of these bursts. Therefore, the extremely flat microwave spectrum can be well understood by the observed high turnover frequency and the calculated hard electron spectral index.  相似文献   

14.
The gyro-synchrotron emission from a model source with a non-uniform magnetic field is computed taking into account the self absorption. This model seems adequate not only to interpret the radio spectrum and its time variation of microwave impulsive bursts but also to solve the discrepancy between the numbers of non-thermal electrons emitting radio burst and those emitting hard X-ray burst.The decrease of flux of radio burst with decreasing frequency at low microwave frequencies is due to the self absorption and/or the thermal gyro-absorption. In this frequency range, the radio source is optically thick even at weak microwave bursts. The weakness of the bursts may be rather due to the small size of the radio source and/or the weakness of the magnetic field than the small number density of the non-thermal electrons.The time variation of the flux of radio burst may be mainly attributed to the variation of source size in a horizontal direction ( direction) instead of the variation of the number density of non-thermal electrons itself, implying that the acceleration region progressively moves in the horizontal direction leaving the non-thermal electrons behind during the increasing phase of the radio burst.  相似文献   

15.
Radio noise storms show that suprathermal electrons (a few tens of keV) are present in the vicinity of active regions during several hours or even a few days. Where and how these electrons are energized is not yet well known. A flare-like sudden energy release in the active region is in general observed at the onset of noise storms, either as a fully developed flare or, more often, as a soft X-ray brightening without conspicuous H signature. In order to investigate to what extent electrons energized in the active region contribute to the noise-storm emission in the overlying coronal structures, we combine radio imaging (Nançay radioheliograph) with X-ray spectral observations at photon energies of a few keV (GOES) and - for the first time - around 10 keV (WATCH/GRANAT). In two of four studied events the WATCH data show a significant excess of the deka-keV count rate above the expectation from an isothermal fit to the GOES fluxes. Although the electron population producing the deka-keV X-ray emission would be energetic enough to power the simultaneous radio noise storm, the much longer duration of the radio emission requires time-extended particle acceleration. The acceleration probably occurs in the corona overlying the X-ray emitting region, triggered by the processes which give rise to the X-ray brightenings.  相似文献   

16.
Evidence for a delayed acceleration process in solar flares is presented in the form of an analysis of simultaneous observations in microwaves, decimetre and metrewaves, and hard X-rays of six delayed gradual bursts which appear 0.5–1 hr after the strong main bursts have faded. The observed characteristics of the delayed bursts are: (a) similarity of flux time profiles at all the wavelengths, (b) low turn-over frequency (4 GHz) of the microwave spectrum, (c) moderately strong circular polarization (30–40%) and low altitude of the microwave source (which is displaced toward the disk centre by a projected distance of 10–20 from that of the preceding main burst), and (d) low spectral index of the energy spectrum of hard X-rays.From these observations it is suggested that (i) electrons are accelerated up to MeV even some tens of minutes after the impulsive phase acceleration has almost ceased, (ii) the delayed acceleration occurs in a large magnetic structure extending to a height of at least 2 × 105 km, and (iii) the radio source has columnar structure with the microwave source predominantly near a leg or legs and the metrewave source near the top of the magnetic structure. The present observations of the delayed bursts do not seem to be consistent with the classical second-phase acceleration mechanism proposed in the past for normal hard X-ray gradual (extended) bursts.Minamimaki-mura, Minamisaku-gun, Nagano-ken 384-13, Japan.Greenbelt, MD 20771, U.S.A., NASA/NRC Research Associate, on leave from Tokyo Astronomical Observatory.P.O. Box 76, Epping, N.S.W. 2121, Australia.Berkeley, CA 94720, U.S.A.  相似文献   

17.
Willson  R. F.  Kile  J. N.  Rothberg  B. 《Solar physics》1997,170(2):299-320
The presence of coronal magnetic fields connecting active regions is inferred from decimetric observations of solar noise storms with the Very Large Array (VLA) and from soft X-ray images taken by Yohkoh. Temporal changes in the noise storms appear to be correlated with some soft X-ray bursts detected by both Yohkoh and the GOES satellite. Combined analysis of the radio and X-ray data suggests a re-arrangement of the coronal magnetic field during the onset of impulsive noise storm burst emission. On one day during the combined VLA–Yohkoh–GOES observations, two widely-separated active regions appear to be connected by a faint trans-equatorial 91 cm source as well as two distinct soft X-ray loops. The two active regions show anti-correlated fluctuations in decimetric radio emission. On another day of combined VLA–Yohkoh observations, a series of 91 cm noise storm bursts are observed along the major axis of the associated noise storm continuum. Time sequences of Yohkoh soft X-ray images show a contraction of coronal loops prior to the onset of this series of bursts and a corresponding increase in the X-ray flux in the apparent footpoint of the overarching loop containing the noise storm. These observations imply that energy from a realignment of the magnetic field is being transferred, possibly by accelerated particles, along loops connecting separated active regions on the Sun.  相似文献   

18.
We present the two-dimensional imaging observations of radio bursts in the frequency range 25–50 MHz made with the Clark Lake multifrequency radioheliograph during a coronal mass ejection event (CME) observed on 1984, June 27 by the SMM Coronagraph/Polarimeter and Mauna Loa K-coronameter. The event was spatially and temporally associated with precursors in the form of meter-decameter type III bursts, soft X-ray emission and a H flare spray. The observed type IV emission in association with the CME (and the H spray) could be interpreted as gyrosynchrotron emission from a plasmoid containing a magnetic field of 2.5 G and nonthermal electrons with a number density of 105 cm–3 and energy 350 keV.On leave from Indian Institute of Astrophysics, Kodaikanal, India.  相似文献   

19.
We have re-evaluated the association of type II solar radio bursts with flares and/or coronal mass ejections (CMEs) using the year 2000 solar maximum data. For this, we consider 52 type II events whose associations with flares or CMEs were absent or not clearly identified and reported. These events are classified as follows; group I: 11 type IIs for which there are no reports of GOES X-ray flares and CMEs; group II: 12 type IIs for which there are no reports of GOES X-ray flares; and group III: 29 type IIs for which the flare locations are not reported. By carefully re-examining their association from GOES X-ray and H, Yohkoh SXT and EIT-EUV data, we attempt to answer the following questions: (i) if there really were no X-ray flares associated with the above 23 type IIs of groups I and II; (ii) whether they can be regarded as backside events whose X-ray emission might have been occulted. From this analysis, we have found that two factors, flare background intensity and flare location, play important roles in the complete reports about flare–type II–CME associations. In the above 23 cases, for more than 50% of the cases in total, the X-ray flares were not noticed and reported, because the background intensity of X-ray flux was high. In the remaining cases, the X-ray intensity might be greatly reduced due to occultation. From the H flare data, Yohkoh SXT data and EIT-EUV data, we found that ten cases out of 23 might be frontside events, and the remaining are backside events. While the flare–type II association is found to be nearly 90%, the type II–CME association is roughly around 75%. This analysis might be useful to reduce some ambiguities regarding the association among type IIs, flares and CMEs.  相似文献   

20.
Properties of solar-flare EUV flashes measured via a type of ionospheric event, called a sudden frequency deviation (SFD), are presented. SFD's are sensitive to bursts of radiation in the 1–1030 Å wavelength range. He ii 303.8 Å, O v 629.7 Å, HL 972.5 Å and C iii 977.0 Å have essentially the same impulsive time dependence as the 1–1030 Å flash responsible for SFD's. Soft X-rays (2–20 Å) and certain EUV lines have a much slower time dependence than the 1–1030 Å flash. Most SFD's have some fine structure, but marked quasi-periodicity in EUV flashes is quite rare. EUV flashes are closely associated with hard X-ray bursts, white-light emission, microwave radio bursts and small bright impulsive kernels in the H flare. The intensity of EUV flashes depends on the central meridian distance of the H flare location; the intensity decreases at the limb. The total energy radiated in the 10–1030 Å flash for the largest events observed is about 1031 ergs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号