首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Nikolay Bonev  Grard Stampfli 《Lithos》2008,100(1-4):210-233
In the eastern Bulgarian Rhodope, mafic extrusive rocks and underlying greenschists are found in the Mesozoic low-grade unit, which represents the northern extension of similar sequences including the Evros ophiolites in Thrace (Greece). Both rock types define a suite of low-Ti tholeiitic basalts to transitional boninitic basaltic andesites and andesites and associated metapyroclastites (greenschists), intruded at its base by diorite dikes of a boninitic affinity. Mafic lavas and greenschists display large ion lithophile element (LILE) enrichment relative to high-field strength elements (HFSE), flat REE patterns of a slight light REE depletion, a strong island arc tholeiite (IAT) and weak MORB-like signature. All these rocks are characterized by negative Nb anomalies ascribed to arc lavas. They have positive Ndi values in the range of + 4.87 to + 6.09, approaching the lower limit of MORB-like source, and relatively high (207Pb/204Pb)i (15.57–15.663) at low (206Pb/204Pb)i (18.13–18.54) ratios. The Nd isotopic compositions coupled with trace element data imply a dominantly depleted MORB-like mantle source and a contribution of subduction modified LILE-enriched component derived from the mantle wedge. The diorite dike has a low Ndi value of − 2.61 and is slightly more Pb radiogenic (207Pb/204Pb)i (15.64) and (206Pb/204Pb)i (18.56), respectively, reflecting crustal contamination. Petrologic and geochemical data indicate that the greenschists and mafic extrusive rocks represent a magmatic assemblage formed in an island arc setting. The magmatic suite is interpreted as representing an island arc–accretionary complex related to the southward subduction of the Meliata–Maliac ocean under the supra-subduction back-arc Vardar ocean/island arc system. Magmatic activity appears to have initiated in the north during the inception of the island arc system by the Early–Middle Jurassic time in the eastern Rhodope that most likely graded to back-arc spreading southwards as represented by the Late Jurassic MORB-type Samothraki Island ophiolites. This tectonic scenario is further constrained by paleotectonic reconstructions. The arc–trench system collided with the Rhodope in the Late Jurassic times.  相似文献   

2.
Mesozoic alkaline intrusive complexes are widespread in the southern portion of the North China Craton and can provide some important constraints on the evolution of the Mesozoic lithosphere beneath the region. Three selected intrusive complexes (Tongshi, Hongshan, and Longbaoshan) are generally high in alkalis (K2O+Na2O=913 wt.%) and Al2O3 (1421.6 wt.%) and low in CaO and TiO2 (<0.6 wt.%), with high and variable SiO2 contents. Rocks from these complexes are all enriched in LREE and LILE (Cs, Rb, Ba, U, Th), depleted in Nb and Ti, have a highly positive Pb anomaly, and are characterized by lack of a clear Eu anomaly despite trace element abundances and isotopic ratios that vary greatly between complexes. The Tongshi complex has high Cs (2.68.5 ppm) and REE abundances (∑REE=112.6297 ppm, (La/Yb)N=13.130.9) and MORB-like Sr–Nd–Pb isotopic ratios ((87Sr/86Sr)i<0.704; εNd>0; (206Pb/204Pb)i>18). The Hongshan complex has low REE concentrations (∑REE=28.2118.7 ppm, (La/Yb)N=4.614.7) and is moderately enriched as demonstrated by their Sr–Nd isotopic ratios ((87Sr/86Sr)i>0.706; εNd<−7). The Longbaoshan complex is extremely REE enriched (∑REE=211.3392.6 ppm, (La/Yb)N=32.460.9) and has an EM2-like Sr–Nd isotopic character ((87Sr/86Sr)i>0.7078; εNd<−11). We suggest that the Tongshi complex originated from the asthenosphere and the Hongshan complex and the Longbaoshan complex were derived from the partial melting of previously subduction-modified lithospheric mantle, in response to post-collisional lithospheric extension and asthenospheric upwelling. The occurrence of these alkaline intrusive complexes demonstrates that the lithosphere beneath the region must have been considerably thinned at the time of intrusion of these complexes. This study also shed light on the temporal evolution of the Mesozoic lithosphere and the timing of the lithospheric thinning.  相似文献   

3.
S. Jung   《Lithos》2005,84(3-4):168-184
The overwhelming part of the continental crust in the high-grade part of the Damara orogen of Namibia consists of S-type granites, metasedimentary rocks and migmatites. At Oetmoed (central Damara orogen) two different S-type granites occur. Their negative εNd values (− 3.3 to − 5.9), moderately high initial 87Sr/86Sr ratios (0.714–0.731), moderately high 206Pb/204Pb (18.21–18.70) and 208Pb/204Pb (37.74–37.89) isotope ratios suggest that they originated by melting of mainly mid-Proterozoic metasedimentary material. Metasedimentary country rocks have initial εNd of − 4.2 to − 5.6, initial 87Sr/86Sr of 0.718–0.725, 206Pb/204Pb ratios of 18.32–18.69 and 208Pb/204Pb ratios of 37.91–38.45 compatible with their variation in Rb/Sr, U/Pb and Th/Pb ratios. Some migmatites and residual metasedimentary xenoliths tend to have more variable εNd values (initial εNd: − 4.2 to − 7.1), initial Sr isotope ratios (87Sr/86Sr: 0.708–0.735) and less radiogenic 206Pb/204Pb (18.22–18.53) and 208Pb/204Pb (37.78–38.10) isotope compositions than the metasedimentary rocks. On a Rb–Sr isochron plot the metasedimentary rocks and various migmatites plot on a straight line that corresponds to an age of c. 550 Ma which is interpreted to indicate major fractionation of the Rb–Sr system at that time. However, initial 87Sr/86Sr ratios of the melanosomes of the stromatic migmatites (calculated for their U–Pb monazite and Sm–Nd garnet ages of c. 510 Ma) are more radiogenic (87Sr/86Sr: 0.725) than those obtained on their corresponding leucosomes (87Sr/86Sr: 0.718) implying disequilibrium conditions during migmatization that have not lead to complete homogenization of the Rb–Sr system. However, the leucosomes have similar Nd isotope characteristics than the inferred residues (melanosomes) indicating the robustness of the Sm–Nd isotope system during high-grade metamorphism and melting. On a Rb–Sr isochron plot residual metasedimentary xenoliths show residual slopes of c. 66 Ma (calculated for an U–Pb monazite age of 470 Ma) again indicating major fractionation of Rb/Sr at c. 540 Ma. However, at 540 Ma, these xenoliths have unradiogenic Sr isotope compositions of c. 0.7052, indicating depleted metasedimentary sources at depth. Based on the distinct Pb isotope composition of the metasedimentary rocks and S-type granites, metasedimentary rocks similar to the country rocks are unlikely sources for the S-type granites. Moreover, a combination of Sr, Nd, Pb and O isotopes favours a three-component mixing model (metasedimentary rocks, altered volcanogenic material, meta-igneous crust) that may explain the isotopic variabilty of the granites. The mid-crustal origin of the different types of granite emphasises the importance of recycling and reprocessing of pre-existing differentiated material and precludes a direct mantle contribution during the petrogenesis of the orogenic granites in the central Damara orogen of Namibia.  相似文献   

4.
K. J. Fraser  C. J. Hawkesworth   《Lithos》1992,28(3-6):327-345
Major, trace element and radiogenic isotope results are presented for a suite of hypabyssal kimberlites from a single pipe, at the Finsch Mine, South Africa. These are Group 2 kimberlites characterised by abundant phlogopite ± serpentine ± diopside; they are ultrabasic (SiO2 < 42 wt.%%) and ultrapotassic (K2O/Na2O > 6.9) igneous rocks, they exhibit a wide range in major element chemistry with SiO2 = 27.6−41.9 wt. % and MgO = 10.4−33.4 wt. %. (87Sr/86Sr)i=0.7089 to 0.7106, εNd is −6.2 to −9.7 and they have unradiogenic (207Pb/204Pb)i contents which ensure that they plot below the Pb-ore growth curve. They have high incompatible and compatible element contents, a striking positive array between Y and Nb which indicates that garnet was not involved in the within suite differentiation processes, and a negative trend between K/Nb and Nb contents which suggests that phlogopite was involved. In addition, some elements exhibit an unexpected order of relative incompatibility for different trace elements which suggests that the intra-kimberlite variations are not primarily due to variations in the degree of partial melting. The effects of fractional crystallization are difficult to establish because for the most part they have been masked by the entrainment of 50–60% mantle peridotite. Thus, the Finsch kimberlites are interpreted as mixtures of a melt component and entrained garnet peridotite, with no evidence for significant contamination with crustal material. The melt component was characterised by high incompatible element contents, which require both very small degrees of partial melting, and source regions with higher incompatible element contents than depleted or primitive mantle. Since the melt component was the principal source of incompatible elements in the kimberlite magma, the enriched Nd, Sr and Pb isotope ratios of the kimberlite are characteristic of the melt source region. The melt fractions were therefore derived from ancient, trace elements enriched portions of the upper mantle, most probably situated within the sub-continental mantle lithosphere, and different from the low 87Sr/86Sr garnet peridotite xenoliths found at Finsch. Within the sub-continental mantle lithosphere old, incompatible element enriched source regions for the kimberlite melt fraction are inferred to have been overlain by depleted mantle material which became entrained in the kimberlite magma.  相似文献   

5.
The Quaternary Acatlán Volcanic Field (AVF) is located at the western edge of the Trans-Mexican Volcanic Belt (TMVB). This region is related to the subduction of the Pacific Cocos and Rivera plates beneath the North American plate since the late Miocene. AVF rocks are products of Pleistocene volcanic activity and include lava flows, domes, erupted basaltic andesite, trachyandesite, trachydacite, and rhyolite of calc–alkaline affinity. Most rocks show depletion in high field-strength elements and enrichment in large ion lithophile elements and light rare earth elements as is typical for magmas in subduction-related volcanic arcs. 87Sr/86Sr values range from 0.70361 to 0.70412, while Nd values vary from +2.3 to +5.2. Sr–Nd isotopic data plot along the mantle array. On the other hand, lead isotope compositions (206Pb/204Pb=18.62–18.75, 207Pb/204Pb=15.57–15.64, and 208Pb/204Pb=38.37–38.67) give evidence for combined influences of the upper mantle, fluxes derived from subducted sediments, and the upper continental crust involved in magma genesis at AVF. Additionally δ18O whole rock analyses range from +6.35‰ in black pumice to +10.9‰ in white pumice of the Acatlán Ignimbrite. A fairly good correlation is displayed between Sr as well as O isotopes and SiO2 emphasizing the effects of crustal contamination. Compositional and isotopic data suggest that the different AVF series derived from distinct parental magmas, which were generated by partial melting of a heterogeneous mantle source.  相似文献   

6.
Lamprophyres consisting mainly of diopside, phlogopite and K-feldspar formed in the early Tertiary around 60 Ma in the Beiya area and are characterized by low SiO2 ± 46–50 wt.%), Rb (31–45 ppm) and Sr (225–262 ppm), high Al2O3, (11.2–13.1 wt.%), CaO (8.0–8.7 wt.%), MgO (11.5–12.1 wt.%), K2O(4.9–5.5 wt.%), TiO2 (2.9–3.3 wt.%) and REE (174–177 ppm), and compatible elements (e.g. Sc, Cr and Ni) and HSF elements (e.g. Th, U, Zr, Nb, Ta, Ti and Y), and low 143Nd/144Nd 0.512372–0.512536, middle 87Sr/86Sr 0.707322–0.707395, middle 206Pb/204Pb 18.50–18.59, 207Pb/204Pb 15.60–15.65 and 208Pb/204Pb 38.75–38.8. These rocks developed peculiar quartz megacrysts with poly-layer reaction zones, melt inclusions, and partial melted K-feldspar and plagioclase inclusions, and plastic shapes. Important features of these rocks include: (1) hybrid composition of elements, (2) abrupt increase of SiO2 content of the melt, recorded by zoned diopside, (3) development of sanidine and aegirine-augite reaction zones, (4) alkaline melt and partial melted K-feldspar and plagioclase inclusions, (5) deformed quartz inclusions associated with quartz megacrysts, (6) the presence of quartz megacrysts in plastic shape with their parent melts, (7) the occurrence of olivine, high-MgO ilmenite and spinel inclusions within earlier formed diopside, phlogopite and magnetite. Median 87Sr/86Sr values between Tertiary alkaline porphyries in the Beiya area and the western Yunnan and Tertiary basalt in the western Yunnan indicate that the Beiya lamprophyre melts were derivative and resulted from the mixing between basic melts that were related to the partial melting of phenocrysts of spinel iherzolite from a mantle source. The alkaline melts originated from partial melting along the Jinshajiang subduction ductile shear zone at the contact between the buried Palaeo-Tethyan oceanic lithosphere and the upper mantle lithosphere. The alkaline melts are composed of 65% sanidine (Or70Ab28An2) and 35% SiO2. The melt mixing occurred in magma chambers in the middle-shallow crust at 8–10 km before the derivative lamprophyre melts intruded into the shallow cover in Beiya area. This mixing of basic and alkaline melts might represent a general process for the formation of lamprophyre in the western Yunnan.  相似文献   

7.
SHRIMP zircon U–Pb ages and geochemical and Sr–Nd–Pb isotopic data are presented for the gabbroic intrusive from the southern Taihang Mountains to characterize the nature of the Mesozoic lithospheric mantle beneath the central North China Craton (NCC). The gabbroic rocks emplaced at 125 Ma and are composed of plagioclase (40–50%), amphibole (20–30%), clinopyroxene (10–15%), olivine (5–10%) and biotite (5–7%). Olivines have high MgO (Fo = 78–85) and NiO content. Clinopyroxenes are high in MgO and CaO with the dominant ones having the formula of En42–46Wo41–50Fs8–13. Plagioclases are dominantly andesine–labradorite (An = 46–78%) and have normal zonation from bytownite in the core to andesine in the rim. Amphiboles are mainly magnesio and actinolitic hornblende, distinct from those in the Precambrian high-pressure granulites of the NCC. These gabbroic rocks are characterized by high MgO (9.0–11.04%) and SiO2 (52.66–55.52%), and low Al2O3, FeOt and TiO2, and could be classified as high-mg basaltic andesites. They are enriched in LILEs and LREEs, depleted in HFSEs and HREEs, and exhibit (87Sr/86Sr)i = 0.70492–0.70539, εNd(t) = − 12.47–15.07, (206Pb/204Pb)i = 16.63–17.10, Δ8/4 = 70.1–107.2 and Δ7/4 = − 2.1 to − 9.4, i.e., an EMI-like isotopic signatures. Such geochemical features indicate that these early Cretaceous gabbroic rocks were originated from a refractory pyroxenitic veined-plus-peridotite source previously modified by an SiO2-rich melt that may have been derived from Paleoproterozoic subducted crustal materials. Late Mesozoic lithospheric extension might have induced the melting of the metasomatised lithospheric mantle in response to the upwelling of the asthenosphere to generate these gabbroic rocks in the southern Taihang Mountains.  相似文献   

8.
The Sr, Nd and Pb isotopic compositions for the Kovdor phoscorite–carbonatite complex (PCC), Kola Peninsula, NW Russia, have been determined to characterize the mantle sources involved and to evaluate the relative contributions of a plume and subcontinental lithospheric mantle in the formation of the complex. The Kovdor PCC is a part of the Kovdor ultramafic–alkaline–carbonatite massif, and consists of six intrusions. The initial isotopic ratios of the analyzed samples, calculated at 380 Ma, display limited variations: εNd, + 2.0 to + 4.7; 87Sr/86Sr, 0.70319 to 0.70361 (εSr, − 12.2 to − 6.2); 206Pb/204Pb, 18.38 to 18.74; 207Pb/204Pb, 15.45 to 15.50; 208Pb/204Pb, 37.98 to 39.28. The Nd and Sr isotope data of the Kovdor PCC generally fit the patterns of the other phoscorites and carbonatites from the Kola Alkaline Province (KAP), but some data are slightly shifted from the mixing line defined as the Kola Carbonatite Line, having more radiogenic 87Sr/86Sr ratios. However, the less radiogenic Nd isotopic compositions and negative Δ7/4 values of Pb isotopes of the analyzed samples exclude crustal contamination, but imply the involvement of a metasomatized lithospheric mantle source. Isotopic variations indicate mixing of at least three distinct mantle components: FOZO-like primitive plume component, EMI-like enriched component and DMM-like depleted component. The isotopic nature of the EMI- and DMM-like mantle component observed in the Kovdor samples is considered to be inherited from metasomatized subcontinental lithospheric mantle. This supports the previous models invoking plume–lithosphere interaction to explain the origin of the Devonian alkaline carbonatite magmatism in the KAP.  相似文献   

9.
东坑盆地位于南岭构造带东段,其中的流纹岩为该带燕山期最早的“流纹岩—玄武岩”双峰式火山岩组合的酸性端元.主量元素、微量元素、Sr-Nd-Pb-O-Hf同位素研究表明,流纹岩富硅、钾,贫镁、钙、钛,属亚碱性弱过铝质岩石;稀土元素富集,轻重稀土分异和铕负异常明显,表现典型的M型稀土元素4分组效应,富集高场强元素Ta、Hf、Zr、Nb、Ce、Y和大离子亲石元素Rb、Th、U、Ba、Ga,亏损大离子亲石元素Sr,具有A型流纹岩和高Sr-Ba流纹岩的微量元素特征;(87Sr/86Sr)i较高,(206Pb/204Pb)i、(207Pb/204Pb)i和(208Pb/204Pb)i较低,εNd(t)、εHf(t)和δ18OV-SMOW较高,TDM2(Nd)和TDM2(Hf)较小.这些特征表明,东坑盆地流纹岩是拉张构造环境下源于新元古代亏损地幔和少量古老下地壳物质混合而成年轻下地壳部分熔融的产物,为早侏罗世早期南岭构造带东段处于拉张构造环境、地壳属正常厚度提供了岩石学证据.  相似文献   

10.
松辽盆地徐家围子断陷营城组火山岩中含有粗面质岩石,是深层天然气重要储层之一。岩心、钻井及地震资料研究表明,粗面岩具有高位喷发、低位充填的特征,在火山口附近厚度大,远离火山口厚度小。粗面岩主量、微量及同位素地球化学显示其属于钾玄岩系列,富集稀土元素,强不相容元素Rb、Ba、Th、U质量分数较高。粗面岩的(87Sr/86Sr)i=0.704 321~0.705 395,εNd(t)为正值(3.36 ~ 3.83),Pb同位素比值相对集中,(206Pb/204Pb)i、(207Pb/204Pb)i、(208Pb/204Pb)i平均值分别为18.43、15.51和38.23。研究表明,粗面质岩浆由区域年轻地壳组分部分熔融形成,经历了一定程度的分离结晶作用,地壳混染作用不显著。粗面质岩浆多期次喷发后形成粗面岩,热液气体不断聚集发生隐蔽爆破形成角砾,未固结的角砾被岩浆期后热液“胶结”,形成隐爆角砾岩,构成了粗面质岩石重要的储层类型。  相似文献   

11.
西准噶尔地区晚古生代岩浆活动剧烈,地壳的垂向和侧向增生显著,地壳生长和演化存在多阶段性。本文重点通过Sr-Nd-Pb同位素填图研究,发现西准噶尔地区εNd(t)值为2.29~8.75,(87Sr/86Sr)i值为0.697 397~0.708 336,(206Pb/204Pb)i值为17.4975~19.0352,整体表现为高正εNd(t)、低(87Sr/86Sr)i和年轻的地壳模式年龄特征,源区以古生代新生地壳为主,地幔贡献值整体大于50%,深部地壳几乎不存在古老的结晶基底,可以与区域构造地质、地球物理资料作较好匹配。区域晚古生代主要经历3个时期的造山阶段,分别对应造山带演化的第一阶段(中晚石炭世,岛弧为代表的侧向生长为主)、第二阶段早期(晚石炭世—早二叠世,后碰撞阶段的垂向生长为主)和第二阶段晚期(早二叠世—早三叠世,壳幔混源背景下的垂向生长),区域造山作用结束于早三叠世。  相似文献   

12.
R. V. Fodor  B. B. Hanan   《Lithos》2000,51(4):435-304
The Columbia seamount 825 km offshore from Brazil at 20°S lies on the east–west ‘trace’ of the Trindade hotspot. Continental and oceanic magmatism believed to have originated with this hotspot is alkalic and SiO2-undersaturated, and dates from 85 Ma in southern Brazil to <3 Ma on the islands of Trindade and Martin Vaz 1100 km offshore. An ankaramite (clinopyroxene 16 vol%) dredged from Columbia seamount (est. 10 Ma) conforms to this geochemistry with SiO2-undersaturated Al-rich clinopyroxene (8–13 wt.% Al2O3) and rhönite. Clinopyroxene isotopic compositions are 87Sr/86Sr=0.703900, 143Nd/144Nd=0.512786, 206Pb/204Pb=19.190, 207Pb/204Pb=15.045, and 208Pb/204Pb=39.242 — resembling those for Trindade, except for slightly higher 207Pb/204Pb. The isotopic composition and abundance ratios among weathering-resistant Nb, La, and Yb suggest that Columbia seamount magmatism represents the present-day Trindade plume, but 10 million years earlier and perhaps when the plume manifested a signature of ‘contamination’ from subducted sediments. The Columbia seamount analyses provide the first quantitative assessment for the Trindade hotspot trace existing between the Brazil margin and Trindade, strengthening the case for a continuum of magmatism extending from the 85 Ma Brazilian igneous provinces of Poxoréu and Alto Paranaiba.  相似文献   

13.
S. Jung  E. Hoffer  S. Hoernes 《Lithos》2007,96(3-4):415-435
Major element, trace element and Nd–Sr–Pb–O isotope data for a suite of Neo-Proterozic, pre-orogenic, rift-related syenites from the Northern Damara orogen (Namibia) constrain their sources and petrogenesis. New U–Pb ages obtained on euhdreal titanite of inferred magmatic origin constrain the age of intrusion of the Lofdal and Oas syenites to ca. 750 Ma compatible with previous high-precision zircon analyses from the Oas complex. Major rock types from Lofdal and Oas are mildly sodic nepheline-normative and quartz-normative syenites and were primarily generated by fractional crystallization from a mantle-derived alkaline magma. Primitive samples from Lofdal and Oas show depletion of Rb, K and Th relative to Ba and Nb together with variable negative anomalies of P and Ti on a primitive mantle-normalized diagram. Evolved samples from Oas develop significant negative Ba, Sr, P and Ti anomalies and positive U and Th anomalies mainly as a function of crystal fractionation processes. The lack of a pronounced negative Nb anomaly in samples from Lofdal suggests that involvement of a crustal component is negligible. For the nepheline-normative samples from Lofdal, the unradiogenic Sr and radiogenic Nd isotope composition and low δ18O values suggest derivation of these samples from a moderately depleted lithospheric upper mantle with crustal-like U/Pb ratios (87Sr/86Sr: 0.7031–0.7035, ε Nd: ca. + 1, δ18O: 7‰, 206Pb/204Pb: ca.18.00, 207Pb/204Pb: 15.58–15.60). Primitive samples of the Oas quartz-normative syenites have identical isotope characteristics (87Sr/86Sr: 0.7034, ε Nd: ca. + 1, δ18O: 6.5‰, 206Pb/204Pb: ca.18.00, 207Pb/204Pb: 15.59) whereas more differentiated samples have higher 87Sr/86Sr ratios (0.709–0.714), slightly higher δ18O values (7.0–7.1‰), less radiogenic ε Nd values (− 1.1 to − 1.4) and more radiogenic 206Pb/204Pb ratios up to 18.27. These features together with model calculations using Sr–Nd–Pb isotopes suggest modification of a primary syenite magma by combined AFC processes involving ancient continental crust. In this case, high Nb abundances of the parental syenite liquid prevent the development of significant negative Nb anomalies that may be expected due to interaction with continental crust.  相似文献   

14.
Isotope and trace element geochemistry of Colorado Plateau volcanics   总被引:5,自引:0,他引:5  
Basalts from the San Francisco Peaks and North Rim of Grand Canyon, nephelinites from the Hopi Buttes and Navajo minettes (Colorado Plateau) have been analyzed for trace element contents and Sr, Nd, Pb isotope compositions. The ages increase eastward from the Quaternary (basalt) to 5 Ma (nephelinite) and 30 Ma (minette) as does the depth of melt generation inferred from xenolith mineralogy and major element geochemistry.

The three rock types present an enrichment of incompatible elements (although minettes present negative concentration spikes for Nb, Zr, Ti, Ba, Sr) relative to other magma types. The chondrite-normalized Ce/Yb ratio changes from 8–22 (basalt) to 25–30 (nephelinite) and 33–60 (minette) and reflects small degrees of partial melting of a mantle source with a garnet/clinopyroxene ratio increasing with depth. The negative Eu anomaly present in minette, the low Sr/Nd and high Pb/Ce suggest the presence of a recycled continental crust component in their mantle source.

The 87Sr/86Sr ratio varies from 0.7032-0.7045 (basalt and nephelinite) to 0.7052-0.7071 (minette), while εNd is remarkably more constant at +0.8 to +3.7 (nephelinite) and −2.6 to +2.2 (basalt and minette). Good linear correlations are observed in both 207Pb/204Pb and 208Pb/204Pb vs. 206Pb/204Pb diagrams with basalt being the least and nephelinite the most radiogenic and indicate a 2.3 ±0.1 Ga age and a Th/U of 3.4.

Three lithospheric source components are indicated: a) an OIB-type depleted mantle source, b) an end-member with unradiogenic Sr, Nd and Pb for basalt and nephelinite and c) a recycled crustal component for minette.  相似文献   


15.
Leone Melluso  John J. Mahoney  Luigi Dallai   《Lithos》2006,89(3-4):259-274
Near-primitive picritic basalts in the northwestern Deccan Traps have MgO > 10 wt.% and consist of two groups (low-Ti and high-Ti) with markedly different incompatible element and Nd–Sr–Pb isotope characteristics. Many elemental characteristics of the low-Ti picritic basalts are similar to those of transitional or normal ocean ridge basalts. However, values of ratios like Ba/Nb (13–30) and Ce/Pb (4–11), and isotopic ratios (e.g., εNd(t) + 0.3 to − 6.3, (207Pb/204Pb)t 15.63–15.75 at (206Pb/204Pb)t 18.19–18.84, δ18Oolivine as high as + 6.2‰) are far-removed from ocean-ridge-type values, indicating a significant contribution from continental crust. The crustal signature could represent crustal contamination of ascending magmas; alternatively, it could represent a minor component within the Indian lithospheric mantle of anciently subducted sedimentary material or fluids derived from subducted material. In contrast, the high-Ti picritic basalts are chemically and isotopically rather similar to recent shield lavas of the Réunion hotspot (e.g., εNd(t) + 2 to + 4) and to volcanic rocks along the postulated pre-Deccan track of this hotspot in Pakistan. Neither type of picritic basalt is parental to the voluminous flows comprising the bulk of the Deccan Traps. However, many of the Deccan primary magmas could have been derived from mixtures of a high-Ti-type, Réunion-like source component and a component more similar to, or even more incompatible-element-depleted than, average ocean-ridge mantle.  相似文献   

16.
Many continental flood basalts (CFB) have isotope and trace-element signatures that differ from those of oceanic basalts and much interest concerns the extent to which these reflect differences in their upper mantle source regions. A review of selected data sets from the Mesozoic and Tertiary CFB confirms significant differences in their major- and trace-element compositions compared with those of basalts erupted through oceanic lithosphere. In general, those CFB suites characterised by low Nb/La, high (87Sr/86Sr)i and low εNdi tend to exhibit relatively low TiO2, CaO/Al2O3, Na2O and/or Fe2O3, and relatively high SiO2. In contrast, those which have high Nb/La, low (87Sr/86Sr)i and high εNdi ratios, like the upper units in the Deccan Traps, have major- and trace-element compositions similar to oceanic basalts. It would appear that those CFB that have distinctive isotope and trace-element ratios also exhibit distinctive major-element contents, suggesting that major and trace elements have not been decoupled significantly during magma generation and differentiation.

When compared (at 8% MgO) with oceanic basalt trends, the displacement of many CFB to lower Na2O, Fe2O3*, TiO2 and CaO/Al2O3, but higher SiO2, at similar Mg#, is not readily explicable by crustal contamination. Rather, it reflects source composition and/or the effects of the melting processes. The model compositions of melts produced by decompression of mantle plumes beneath continental lithosphere have relatively low SiO2 and high Fe2O3*. In contrast, the available experimental data indicate that partial melts of peridotite have low TiO2, Na2O and Fe2O3*CaO/Al2O3, if the peridotite has been previously depleted by melt extraction. Moreover, melting of hydrated, depleted peridotite yields SiO2-rich, Fe2O3- and CaO-poor melts. Since anhydrous, depleted peridotite has a high-temperature solidus, it is argued that the source of these CFB was variably melt depleted and hydrated mantle, inferred to be within the lithosphere. Isotope data suggest these source regions were often old and relatively enriched in incompatible trace elements, and it is envisaged that H2O±CO2 were added at the same time as the incompatible elements. An implication is that a significant proportion of the new continental crust generated since the Permian reflected multistage processes involving mobilization of continental mantle lithosphere that was enriched in minor and trace elements during the Proterozoic.  相似文献   


17.
Sr–Nd–Pb isotope ratios of alkaline mafic intra-plate magmatism constrain the isotopic compositions of the lithospheric mantle along what is now the eastern foreland or back arc of the Cenozoic Central Andes (17–34°S). Most small-volume basanite volcanic rocks and alkaline intrusive rocks of Cretaceous (and rare Miocene) age were derived from a depleted lithospheric mantle source with rather uniform initial 143Nd/144Nd ( 0.5127–0.5128) and 87Sr/86Sr ( 0.7032–0.7040). The initial 206Pb/204Pb ratios are variable (18.5–19.7) at uniform 207Pb/204Pb ratios (15.60 ± 0.05). A variety of the Cretaceous depleted mantle source of the magmatic rocks shows elevated Sr isotope ratios up to 0.707 at constant high Nd isotope ratios. The variable Sr and Pb isotope ratios are probably due to radiogenic growth in a metasomatized lithospheric mantle, which represents the former sub-arc mantle beneath the early Palaeozoic active continental margin. Sr–Nd–Pb isotope signatures of a second mantle type reflected in the composition of Cretaceous (one late Palaeozoic age) intra-plate magmatic rocks (143Nd/144Nd  0.5123, 87Sr/86Sr  0.704, 206Pb/204Pb  17.5–18.5, and 207Pb/204Pb  15.45–15.50) are similar to the isotopic composition of old sub-continental lithospheric mantle of the Brazilian Shield.

Published Nd and Sr isotopic compositions of Mesozoic to Cenozoic arc-related magmatic rocks (18–40°S) represent the composition of the convective sub-arc mantle in the Central Andes and are similar to those of the Cretaceous (and rare Miocene) intra-plate magmatic rocks. The dominant convective and lithospheric mantle type beneath this old continental margin is depleted mantle, which is compositionally different from average MORB-type depleted mantle. The old sub-continental lithospheric mantle did not contribute to Mesozoic to Cenozoic arc magmatism.  相似文献   


18.
Isotope data and trace elements concentrations are presented for volcanic and plutonic rocks from the Livingston, Greenwich, Robert, King George and Ardley islands (South Shetland arc, Antarctica). These islands were formed during subduction of the Phoenix Plate under the Antarctica Plate from Cretaceous to Tertiary. Isotopically (87Sr/86Sr)o ratios vary from 0.7033 to 0.7046 and (143Nd/144Nd)o ratios from 0.5127 to 0.5129. εNd values vary from +2.71 to +7.30 that indicate asthenospheric mantle source for the analysed samples. 208Pb/204Pb ratios vary from 38.12 to 38.70, 207Pb/204Pb ratios are between 15.49 and 15.68, and 206Pb/204Pb from 18.28 to 18.81. The South Shetland rocks are thought to be derived from a depleted MORB mantle source (DMM) modified by mixtures of two enriched mantle components such as slab-derived melts and/or fluids and small fractions of oceanic sediment (EM I and EM II). The isotopic compositions of the subduction component can be explained by mixing between at least 4 wt.% of sediment and 96 wt.% of melts and/or fluids derived from altered MORB.  相似文献   

19.
Lavas from several major bathymetric highs in the eastern Indian Ocean that are likely to have formed as Early to Middle Cretaceous manifestations of the Kerguelen hotspot are predominantly tholeiitic; so too are glass shards from Eocene to Paleocene volcanic ash layers on Broken Ridge, which are believed to have come from eruptions on the Ninetyeast Ridge. The early dominance of tholeiitic compositions contrasts with the more recent intraplate, alkalic volcanism of the Kerguelen Archipelago. Isotopic and incompatible-element ratios of the plateau lavas are distinct from those of Indian mid-ocean ridge basalts; their Nd, Sr, 207Pb/204Pb and isotopic ratios overlap with but cover a much wider range than measured for more recent oceanic products of the Kerguelen hotspot (including the Ninetyeast Ridge) or, indeed, oceanic lavas from any other hotspot in the world. Samples from the Naturaliste Plateau and ODP Site 738 on the southern tip of the Kerguelen Plateau are particularly noteworthy, with εNd(T) = − 13 to −7, (87Sr/86Sr)T=0.7090 to 0.7130 and high 207Pb/204Pb relative to 206Pb/204Pb. In addition, the low-εNd(T) Naturaliste Plateau samples are elevated in SiO2 (> 54 wt%). In contrast to “DUPAL” oceanic islands such as the Kerguelen Archipelago, Pitcairn and Tristan da Cunha, the plateau lavas with extreme isotopic characteristics also have relative depletions in Nb and Ta (e.g., Th/Ta, La Nb > primitive mantle values); the lowest εNd(T) and highest Th/Ta and La Nb values occur at sites located closest to rifted continental margins. Accepting a Kerguelen plume origin for the plateau lavas, these characteristics probably reflect the shallow-level incorporation of continental lithosphere in either the head of the early Kerguelen plume or in plume-derived magmas, and suggest that the influence of such material diminished after the period of plateau construction. Contamination of asthenosphere with the type of material affecting Naturaliste Plateau and Site 738 magmatism appears unlikely to be the cause of low-206Pb/04Pb Indian mid-ocean ridge basalts. Finally, because isotopic data for the plateaus do not cluster or form converging arrays in isotope-ratio plots, they provide no evidence for either a quickly evolving, positive εNd, relatively high-206Pb/204Pb plume composition, or a plume source dominated by mantle with εNd of −3 to 0.  相似文献   

20.
Andreas Stracke  Ernst Hegner 《Lithos》1998,45(1-4):545-560
The Tabar–Lihir–Tanga–Feni (TLTF) volcanic island chain occurs in a zone of lithospheric extension superimposed on a post-collisonal tectonic setting along the Pacific and Indo-Australian plates northeast of Papua New Guinea. We present geochemical and Sr, Nd, and Pb isotope data for volcanic rocks from these islands and three recently discovered seamounts located at Lihir island. Major element data document an alkalic affinity of the sample suite and trachybasalts as the predominant rock type. Negative Nb-anomalies in extended trace element patterns, enrichment of the light rare earth elements, and Ce/Pb ratios of about 4 are typical of the values in calc alkaline island arc volcanics and support an origin from subduction-modified mantle. 87Sr/86Sr ratios of 0.7037 to 0.7044 and Nd values of +5.6 to +6.8 indicate that the upper mantle evolved with a time-integrated depletion in LREE, however, not as severe as that recorded in basalts from the East Pacific Rise. Variable 87Sr/86Sr ratios at less variable 143Nd/144Nd ratios suggest that 87Sr/86Sr ratios of the melts were modified by secondary processes, such as assimilation of seawater Sr from crustal rocks. The Pb isotope ratios are uniform, moderately radiogenic (206Pb/204Pb ca. 18.7 to 18.8), and similar to those reported for the active Mariana arc. Elevated 207Pb/204Pb ratios relative to Pacific MORB suggest melting of small amounts of subducted sediments (ca. 1–2 wt.%). An important control of subducted sediment on the chemistry of the melts can also be inferred from the ratios of highly incompatible trace elements (e.g., Th, U, Pb, La, and Nb). Additional mantle enrichment by subduction derived fluids is reflected in high values of highly incompatible trace element ratios between fluid mobile (e.g., Ba) and fluid immobile elements (e.g., Th, Nb). The results of this study document that the chemical composition of igneous rocks from post-collisional tectonic settings are strongly influenced by previous plate tectonics. This conclusion implies that the information conveyed by tectonic discrimination diagrams for these rocks must be interpreted with care.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号