首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Four Holocene-long East Antarctic deuterium excess records are used to study past changes of the hydrological cycle in the Southern Hemisphere. We combine simple and complex isotopic models to quantify the relationships between Antarctic deuterium excess fluctuations and the sea surface temperature (SST) integrated over the moisture source areas for Antarctic snow. The common deuterium excess increasing trend during the first half of the Holocene is therefore interpreted in terms of a warming of the average ocean moisture source regions over this time. Available Southern Hemisphere SST records exhibit opposite trends at low latitudes (warming) and at high latitudes (cooling) during the Holocene. The agreement between the Antarctic deuterium excess and low-latitude SST trends supports the idea that the tropics dominate in providing moisture for Antarctic precipitation. The opposite trends in SSTs at low and high latitudes can potentially be explained by the decreasing obliquity during the Holocene inducing opposite trends in the local mean annual insolation between low and high latitudes. It also implies an increased latitudinal insolation gradient that in turn can maintain a stronger atmospheric circulation transporting more tropical moisture to Antarctica. This mechanism is supported by results from a mid-Holocene climate simulation performed using a coupled ocean-atmosphere model. Received: 7 July 1999 / Accepted: 21 July 2000  相似文献   

2.
有关南半球大气环流与东亚气候的关系研究的若干新进展   总被引:14,自引:15,他引:14  
范可  王会军 《大气科学》2006,30(3):402-412
南半球大气环流是全球大气环流的重要组成部分,也是影响气候变化和亚洲季风系统的一个重要因素.中国气象学家很早就注意到南半球大气环流对东亚夏季风降水的影响.近年来,有关南半球气候变率的研究目前正受到世界气象学家越来越多的关注.南半球中高纬大气资料的丰富及南极涛动的确定,使得认识南半球高中纬环流的年际变动规律及其与东亚气候关系成为可能.本文主要介绍近年来有关南极涛动的年际变化与沙尘天气发生频次及东亚冬春季气候的关系,古气候资料揭示的南极涛动与华北降水的关系,以及南半球大气环流与长江中下游夏季降水的关系和南极涛动变率的可预测性等方面的研究进展.并对未来研究方向作了初步的展望.  相似文献   

3.
Connections between the spring Antarctic Oscillation(AAO)and the East Asian summer monsoon (EASM)in two reanalysis datasets—NCEP-1(NCEP/NCAR Reanalysis 1)and ERA-40(ECMWF 40- year Reanalysis)—are investigated in this study.Both show significant correlation between AAO and EASM rainfall over the Yangtze River valley,especially after about 1985.Though ERA-40 shows weaker anomalous signals connecting AAO and EASM over southern high latitudes than NCEP-1,both datasets reveal similar connecting patterns between ...  相似文献   

4.
异常弱的南极涛动和2006年我国春季沙尘气候形势   总被引:2,自引:0,他引:2  
从2005/2006年冬季南极涛动的变异出发,讨论2006年我国春季沙尘气候形势,进而考察南极涛动对我国沙尘气候的预测能力。2005/2006年冬季南极涛动非常弱,在两半球间的经向遥相关的作用下,出现南半球中高纬西风减弱,欧亚西风减弱,欧亚冷空气活跃,西伯利亚、蒙古国、我国北方大部地区(包括华北)2005年冬季12月气温较多年平均偏低,这样就造成沙源地区的冻土层增厚,春季回暖后,沙尘物质条件丰富。因此,在弱南极涛动的影响下,春季蒙古气旋活跃,地面大风增加,我国华北地区春季沙尘天气频繁发生。  相似文献   

5.
Snow precipitation is the primary mass input to the Antarctic ice sheet and is one of the most direct climatic indicators, with important implications for paleoclimatic reconstruction from ice cores. Provenance of precipitation and the dynamic conditions that force these precipitation events at four deep ice core sites (Dome C, Law Dome, Talos Dome, and Taylor Dome) in East Antarctica were analysed with air mass back trajectories calculated using the Lagrangian model and the mean composite data for precipitation, geopotential height and wind speed field data from the European Centre for Medium Range Weather Forecast from 1980 to 2001. On an annual basis, back trajectories showed that the Atlantic-Indian and Ross-Pacific Oceans were the main provenances of precipitation in Wilkes Land (80%) and Victoria Land (40%), respectively, whereas the greatest influence of the ice sheet was on the interior near the Vostok site (80%) and in the Southwest Ross Sea (50%), an effect that decreased towards the coast and along the Antarctic slope. Victoria Land received snowfall atypically with respect to other Antarctica areas in terms of pathway (eastern instead of western), seasonality (summer instead of winter) and velocity (old air age). Geopotential height patterns at 500 hPa at low (>10 days) and high (2–6 days) frequencies during snowfall cycles at two core sites showed large positive anomalies at low frequencies developing in the Tasman Sea-Eastern Indian Ocean at higher latitudes (60–70°S) than normal. This could be considered part of an atmospheric blocking event, with transient eddies acting to decelerate westerlies in a split region area and accelerate the flow on the flanks of the low-frequency positive anomalies.  相似文献   

6.
 The Younger Dryas (YD, dated between 12.7–11.6 ky BP in the GRIP ice core, Central Greenland) is a distinct cold period in the North Atlantic region during the last deglaciation. A popular, but controversial hypothesis to explain the cooling is a reduction of the Atlantic thermohaline circulation (THC) and associated northward heat flux as triggered by glacial meltwater. Recently, a CH4-based synchronization of GRIP δ18O and Byrd CO2 records (West Antarctica) indicated that the concentration of atmospheric CO2 (COatm 2) rose steadily during the YD, suggesting a minor influence of the THC on COatm 2 at that time. Here we show that the COatm 2 change in a zonally averaged, circulation-biogeochemistry ocean model when THC is collapsed by freshwater flux anomaly is consistent with the Byrd record. Cooling in the North Atlantic has a small effect on COatm 2 in this model, because it is spatially limited and compensated by far-field changes such as a warming in the Southern Ocean. The modelled Southern Ocean warming is in agreement with the anti-phase evolution of isotopic temperature records from GRIP (Northern Hemisphere) and from Byrd and Vostok (East Antarctica) during the YD. δ13C depletion and PO4 enrichment are predicted at depth in the North Atlantic, but not in the Southern Ocean. This could explain a part of the controversy about the intensity of the THC during the YD. Potential weaknesses in our interpretation of the Byrd CO2 record in terms of THC changes are discussed. Received: 27 May 1998 / Accepted: 5 November 1998  相似文献   

7.
Simultaneous measurements of soluble and insoluble impurities were made on the 950 m deep Vostok (78°30′S, 106°54′E, 3420 m a.s.l.) ice core, spanning roughly 50000 yr, using various analytical techniques. We observed higher continental (×37) and marine (×5.1) inputs during the last glacial age than during the Holocene stage. A study of microparticle compositions and of volcanic indicators (Zn, H2SO4), shows that the high observed crustal input is not due to enhanced volcanism, but is rather of continental eolian origin. For the first time, the ionic balance along a deep ice core is established, mainly used in discussing the evolution of the Cl to Na ratio over central East Antarctica with changing climatic conditions: the presence of relatively high amounts of Na2SO4 in the marine aerosol at the Vostok site during the Holocene is demonstrated. Comparison with the Dome C (74°39′S, 124°10′E, 3040 m a.s.l.) results confirms the chronology of the major events: (i) maximum terrestrial input around the last glacial maximum (~18 ka BP); (ii) end of the high continental flux over Antarctica near 13 ka BP; (iii) marine input varying in an opposing manner to isotopic fluctuations with rather high concentrations beginning to decrease when isotopic values increase and reaching Holocene values at the end of the transition between cold and warmer climate conditions. Detailed comparison with results provided by deep ice cores from other sites which are probably more influenced by oceanic air masses seems to indicate that most of the aerosol reaching central East Antarctica travel over large distance probably at rather high altitude through the troposphere. We can consider that central East Antarctica is well representative of the upper part of the troposphere (higher than i.e., 3000 m) and should, therefore, provide valuable data for global and Antarctic paleoclimatological models.  相似文献   

8.
The temperature anomaly and dust concentrations recorded from central Antarctic ice core records display a strong negative correlation. The dust concentration recorded from an ice core in central Antarctica is 50-70 times higher during glacial periods than interglacial periods. This study investigated the impact of dust aerosol on glacial-interglacial climate, using a zonal energy balance model and dust concentration data from an Antarctica ice core. Two important effects of dust, the direct radiative effect and dust-albedo feedback, were considered. On the one hand, the direct radiative effect of dust significantly cooled the climate during the glacial period, with cooling during the last glacial maximum being as much as 2.05℃ in Antarctica. On the other hand, dust deposition onto the ice decreased the surface albedo over Antarctica, leading to increased absorption of solar radiation, inducing a positive feedback that warmed the region by as much as about 0.9℃ during the glacial period. However, cooling by the direct dust effect was found to be the controlling effect for the glacial climate and may be the major influence on the strong negative correlation between temperature and dust concentration during glacial periods.  相似文献   

9.
A new ice core drilled at the Russian station of Vostok in Antarctica reached 2755 m depth in September 1993. At this depth, the glaciological time scale provides an age of 260 ky BP (±25). We refine this estimate using records of dust and deuterium in the ice and of 18O of O2 in the entrapped air. 18O of O2 is highly correlated with insolation over the last two climatic cycles if one assumes that the EGT chronology overestimates the increase of age with depth by 12% for ages older than 112 ky BP. This modified age-depth scale gives an age of 244 ky BP at 2755 m depth and agrees well with the age-depth scale of Walbroeck et al. (in press) derived by orbital tuning of the Vostok D record. We discuss the temperature interpretation of this latter record accounting for the influence of the origin of the ice and using information derived from deuterium-excess data. We conclude that the warmest period of stage 7 was likely as warm as today in Antarctica. A remarkable feature of the Vostok record is the high level of similarity of proxy temperature records for the last two climatic cycles (stages 6 and 7 versus stages 1–5). This similarity has no equivalent in other paleorecords.  相似文献   

10.
In the interpretation of the Antarctic deep ice-core data, little attention has been given to the Holocene part of the records. As far as translation of the stable isotope content in terms of temperature is concerned, this can be understood because expected temperature changes may be obscured by isotopic noise of various origins and because no 14C dating has yet been available for this type of sequence. In this article, we focus on the Dome C and Vostok cores and on a new 850-m long ice core drilled out at Komsomolskaïa by the Soviet Antarctic Expeditions. These three sites are located in East Antarctica, on the Antarctic plateau, in a region essentially undisturbed by ice-flow conditions, so that their detailed intercomparison may allow us to identify the climatically significant isotopic signal. Our results compare well with the proximal records of Southern Hemisphere high latitudes and support the existence of a warmer climatic optimum between 10 and 6 ka y BP. Maximum temperatures are reached just at the end of the last deglaciation, which confirms previous observations at high latitudes, in contrast with later dates for the Atlantic and hypsithermal optima in Europe and North America.Contribution to Clima Locarno — Past and Present Climate Dynamics; Conference September 1990, Swiss Academy of Sciences — National Climate Program  相似文献   

11.
南极海冰的变化和全球大气环流关系密切。南极各区海冰的不同变化, 对南北半球大气环流有着不同的影响。文中基于对南极海冰变化的客观分区, 定义了南极海冰北界涛动指数 (ASEOI), 并结合中央气象台提供的南方涛动指数、北半球500 hPa和100 hPa高度场资料以及我国160站降水、温度资料, 利用诊断分析方法, 对ASEOI与我国夏季天气气候的关系进行了研究。研究表明:ASEOI对我国长江中下游降水及全国大部分地区温度具有指示意义。若前一年10月ASEOI偏低, 则当年7月我国长江中下游降水偏多, 引发洪涝灾害的可能性很大; 温度场上, 我国北方气温偏高, 南方气温偏低, 而高温往往伴随着少雨, 这无疑会加剧华北本就严重的旱情。  相似文献   

12.
Samples of surface snow were collected for stable isotope analysis along the traverse route from Zhongshan to Dome A (East Antarctica) from Dec 28th, 2007 to Feb. 8th, 2008. The local relationship between δD and surface temperature is established to be 6.4 ± 0.2 ‰ per °C, very similar to the average for East Antarctic. The deuterium excess shows a pattern of high values over Antarctica, particularly at Dome A. We compare our data with an atmospheric general circulation model which includes stable water isotopes (ECHAM5-wiso). The model simulation captures the right levels of δD, but overestimates δ18O. This study provides support for the ongoing deep ice core project at Dome A.  相似文献   

13.
Taking advantage of the fact that the Vostok deuterium (δD) record now covers almost two entire climatic cycles, we have applied the orbital tuning approach to derive an age-depth relation for the Vostok ice core, which is consistent with the SPECMAP marine time scale. A second age-depth relation for Vostok was obtained by correlating the ice isotope content with estimates of sea surface temperature from Southern Ocean core MD 88-770. Both methods lead to a close correspondence between Vostok and MD 88-770 time series. However, the coherence between the correlated δD and insolation is much lower than between the orbitally tuned δD and insolation. This reflects the lower accuracy of the correlation method with respect to direct orbital tuning. We compared the ice and marine records, set in a common temporal framework, in the time and frequency domains. Our results indicate that changes in the Antarctic air temperature quite clearly lead variations in global ice volume in the obliquity and precession frequency bands. Moreover, the average phase we estimated between the filtered δD and insolation signals at precessional frequencies indicates that variations in the southern high latitude surface temperature could be induced by changes in insolation taking place during a large period of the summer in northern low latitudes or winter in southern low latitudes. The relatively large lag found between Vostok δD variations and obliquity-driven changes in insolation suggests that variations in the local radiative balance are not the only mechanism responsible for the variability in surface temperature at those frequencies. Finally, in contrast to the cross-spectral analysis method used in previous studies, the method we use here to estimate the phases can reveal errors in cross-correlations with orbitally tuned chronologies. Received: 11 April 1995 / Accepted: 19 July 1995  相似文献   

14.
The mechanisms involved in the glacial inception are still poorly constrained due to a lack of high resolution and cross-dated climate records at various locations. Using air isotopic measurements in the recently drilled NorthGRIP ice core, we show that no evidence exists for stratigraphic disturbance of the climate record of the last glacial inception (∼123–100 kyears BP) encompassing Dansgaard–Oeschger events (DO) 25, 24 and 23, even if we lack sufficient resolution to completely rule out disturbance over DO 25. We quantify the rapid surface temperature variability over DO 23 and 24 with associated warmings of 10±2.5 and 16±2.5°C, amplitudes which mimic those observed in full glacial conditions. We use records of δ18O of O2 to propose a common timescale for the NorthGRIP and the Antarctic Vostok ice cores, with a maximum uncertainty of 2,500 years, and to examine the interhemispheric sequence of events over this period. After a synchronous North–South temperature decrease, the onset of rapid events is triggered in the North through DO 25. As for later events, DO 24 and 23 have a clear Antarctic counterpart which does not seem to be the case for the very first abrupt warming (DO 25). This information, when added to intermediate levels of CO2 and to the absence of clear ice rafting associated with DO 25, highlights the uniqueness of this first event, while DO 24 and 23 appear similar to typical full glacial DO events.  相似文献   

15.
 The atmospheric CO2 concentrations have been reconstructed over the past 600 ka based on regression between the Vostok CO2 data and the SPECMAP oxygen isotope values. A lag of 4.5 ka (CO2 preceding δ18O) gives the best results. A polynomial of order 5 explains 66% of the Vostok CO2 variance over the last 220 ka. The Northern Hemisphere ice-sheet volume was simulated over the past 575 ka using the LLN 2-D model, forced by insolation and these statistically reconstructed atmospheric CO2 concentrations. The simulated ice volume fluctuations resemble the deep-sea oxygen isotope variations. CO2 of interglacial level is necessary for explaining both the interglacial at oxygen isotopic stage 11 and our present-day interglacial.  相似文献   

16.
近20年来中国极地大气科学研究进展   总被引:14,自引:0,他引:14  
南极、北极和青藏高原是地球上的 3大气候敏感地区 ,是多个国际计划研究全球变化的关键地区。中国的南极和北极实地考察研究 ,分别始于 2 0世纪 80和 90年代 ,起步较晚 ,但近 2 0余年来有较大的进展。极地大气科学考察与研究是极地科学研究的重要组成部分。讫今为止 ,中国已组织了 2 0次南极考察和 3次北极考察 ,建立了中国南极长城站、中山站和北极黄河站等 3个常年科学考察站 ;进行了常规地面气象、Brewer大气臭氧、近地面物理、高层大气物理、冰雪和大气化学等观测 ,获得了较为系统的极地大气科学第一手资料 ;开展了有关极地与全球变化的研究 ,取得了新的进展。南极地区大气温度、臭氧和海冰的气候变化在时间和空间上都是多样的。南极地区的增暖主要发生在南极半岛地区 ,在南极大陆主体并不明显 ,近 10余年来还有降温趋势。中国南极长城站和中山站的观测资料也证实了这一点。此外 ,还揭示了南极半岛西侧和罗斯海外围的海冰变化具有“翘翘板”特征 ,由此定义的南极涛动指数可用来讨论南极海冰状况和海冰关键区的活动 ;用实地考察资料研究了极地不同下垫面的近地面物理和海 -冰 -气相互作用特征 ,给出了边界层特征参数 ;讨论了极地天气气候和大气环境特征及其对东亚大气环流和中国天气气候的影响 ;利用  相似文献   

17.
Summary Meteorological and glaciological analyses are integrated to examine the precipitation trends during the last three decades over the ice sheets covering Antarctica and Greenland. For Antarctica, the best data source is provided by glaciologically-measured trends of snow accumulation, and for limited sectors of East Antarctica consistency with precipitation amounts calculated from the atmospheric water balance equation is obtained. For Greenland, precipitation rates parameterized from atmospheric analyses yield the only comprehensive depiction. The precipitation rate over Antarctica appears to have increased by about 5% over a time period spanning the accumulation means for the 1955–65 to 1965–75 periods, while over Greenland it has decreased by about 15% since 1983 with a secondary increase over the southern part of the ice sheet starting in 1977. At the end of the 10-year overlapping period, the global sea-level impact of the precipitation changes over Antarctica dominates that for Greenland and yields a net ice-sheet precipitation contribution of roughly 0.02 mm yr–1. These changes are likely due to marked variations in the cyclonic forcing affecting the ice sheets, but are only weakly reflected in the temperature regime, consistent with the episodic nature of cyclonic precipitation. These conclusions are not founded on high quality data bases. The importance of such changes for understanding global sea-level variations argues for a modest research effort to collect simultaneous meteorological and glaciological observations in order to describe and understand the current precipitation variations over both ice sheets. Some suggestions are offered for steps that could be taken.With 8 Figures  相似文献   

18.
Ice samples from the 905 m deep Dome C core (East Antarctica) were studied in terms of insoluble microparticle contents. Various techniques were used: right angle light scattering, nephelometer (multiangle light scattering), Coulter counter and microscope analyses, in order to make a thorough study of the physical and optical properties of microparticles and their variations over the last 30000 years. Because of the possible effect of atmospheric turbidity on the earth-atmosphere radiation balance, optical parameters of climatic importance were estimated for insoluble microparticles. The detailed profile of total microparticle mass concentrations shows a drastic (factor of 17 ± 13) difference between high Last Glacial Maximum (LGM) and low Holocene concentrations. The optical scattering properties of 18000 BP continental dust do not indicate a significant difference with respect to Holocene dust in terms of particle size distribution and complex refractive index. The number to log radius size distribution of microparticles for the entire 30 000 yr period can be fitted by a log-normal distribution with two parameters (modal radius 0.25 ± 0.08 μm; geometric standard deviation 2.2. ± 0.2). However, for the smallest particles a better adjustment between experimental and theoretical scattering diagrams is obtained by adding to the observed size distribution another log-normal distribution (modal radius = 0.025 μm, σ g = 2). The complex refractive index is 1.53 to 1.56 for the real part and 0.005 ± 0.005 for the imaginary part at the wavelength used (λ= 546 nm). During the LGM stage, over the whole of Antarctica, the change in the total optical depth due to the drastic change in the insoluble aerosol loading is small because insoluble impurities are not the dominant aerosol component. It may have produced a slight warming of the snow surface (≈ 2 K). In the dust source regions, the optical depth would have been a maximum of 2 to 4 times the present value. The possible warming of the atmosphere in these regions is estimated at 3 K per day and should therefore be taken into account in paleoclimate reconstruction models.  相似文献   

19.
In this study, we investigated the features of Arctic Oscillation (AO) and Antarctic Oscillation (AAO), that is, the annular modes in the extratropics, in the internal atmospheric variability attained through an ensemble of integrations by an atmospheric general circulation model (AGCM) forced with the global observed SSTs. We focused on the interannual variability of AO/AAO, which is dominated by internal atmospheric variability. In comparison with previous observed results, the AO/AAO in internal atmospheric variability bear some similar characteristics, but exhibit a much clearer spatial structure: significant correlation between the North Pacific and North Atlantic centers of action, much stronger and more significant associated precipitation anomalies, and the meridional displacement of upper-tropospheric westerly jet streams in the Northern/Southern Hemisphere. In addition, we examined the relationship between the North Atlantic Oscillation (NAO)/AO and East Asian winter monsoon (EAWM). It has been shown that in the internal atmospheric variability, the EAWM variation is significantly related to the NAO through upper-tropospheric atmospheric teleconnection patterns.  相似文献   

20.
Snow accumulation and its moisture origin over Dome Argus, Antarctica   总被引:1,自引:0,他引:1  
The spatial and temporal variability of snow accumulation near Dome Argus, Antarctica, is assessed using new snow pit and stake measurement data together with existing snow pit, ice core and automatic weather station records. Snow accumulation rate shows large inter-annual variations, but stable multi-decadal levels over the last seven centuries. Spatial variations in snow accumulation within the space of 50 km of Dome Argus are relatively small, probably thanks to the smooth topography. A comparison of theses accumulation observations with ECMWF reanalyses (ERA-40 and ERA-Interim) suggests ECMWF reanalysis captures the seasonal variations, but underestimates the overall snow accumulation at Dome Argus by ~50 %. The moisture sources for precipitation over Dome Argus are examined by means of a Lagrangian moisture source diagnostic, based on the tracing of specific humidity changes along air parcel trajectories, for the period 2000–2004 using operational ECMWF analysis data. Dome Argus mainly receives moisture from the mid-latitude (46 ± 4°S) South Indian Ocean, with a seasonal latitudinal shift of about 6°. Compared to other central East Antarctic deep ice core sites such as Dome F, Dome C, Vostok, and EPICA Dronning Maud Land, Dome Argus has a more southerly moisture origin, probably due to topographic influences on the moisture transport paths. These results have important implications for the interpretation of future ice cores at Dome Argus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号