首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
2.
The effects of building-roof cooling on flow and air temperature in 3D urban street canyons are numerically investigated using a computational fluid dynamics (CFD) model. The aspect ratios of the building and street canyon considered are unity. For investigating the building-roof cooling effects, the building-roof temperatures are systematically changed. The traditional flow pattern including a portal vortex appears in the spanwise canyon. Compared with the case of the control run, there are minimal differences in flow pattern in the cases in which maximum building-roof cooling is considered. However, as the building roof becomes cooler, the mean kinetic energy increases and the air temperature decreases in the spanwise canyon. Building-roof cooling suppresses the upward and inward motions above the building roof, resultantly increasing the horizontal velocity near the roof level. The increase in wind velocity above the roof level intensifies the secondarily driven vortex circulation as well as the inward (outward) motion into (out of) the spanwise canyon. Finally, building-roof cooling reduces the air temperature in the spanwise canyon, supplying much relatively cool air from the streamwise canyon into the spanwise canyon.  相似文献   

3.
在当前中国城市化进程愈演愈烈的情形下,城市热岛冷却效应的研究对于确立城市生态环境可持续化发展的正确途径等有重要意义。采用离线城市冠层模型分析了城市冠层中街区形态和屋顶材料的变化对辐射热量、表面温度及冠层内气温的影响。研究发现:建筑物高度、宽度以及街道宽度等参数的改变对冠层各表面温度的影响较大,当街道宽度增加3 m时,地面温度升高约3.5 K。但是街道宽度增加,多重反射导致的辐射截陷效应减弱,墙面上更多的热量释放出去,各墙面温度降低约1.5 K;冠层气温先增加,日出后降低约0.4 K。屋顶材料的改变对辐射及热通量和表面温度也有较大影响,与灰色水泥屋顶相比,采用高反照率白色涂料冷却屋顶后,屋顶净辐射热量损失约380 W m-2,屋顶表面温度降低约10 K。冠层内街区形态和屋顶材料对城市辐射热环境产生直接的影响。  相似文献   

4.
Water tank experiments are carried out to investigate the convection flow induced by bottom heating and the effects of the ambient wind on the flow in non-symmetrical urban street canyons based on the PIV (Particle Image Visualization) technique. Fluid experiments show that with calm ambient wind,the flows in the street canyon are completely driven by thermal force, and the convection can reach the upper atmosphere of the street canyon. Horizontal and vertical motions also appear above the roofs of the buildings. These are the conditions which favor the exchange of momentum and air mass between the street canyon and its environment. More than two vortices are induced by the convection, and the complex circulation pattern will vary with time in a wider street canyon. However, in a narrow street canyon, just one vortex appears. With a light ambient wind, the bottom heating and the associated convection result in just one main vortex. As the ambient wind speed increases, the vortex becomes more organized and its center shifts closer to the leeward building.  相似文献   

5.
吕萍  袁九毅  张文煜 《高原气象》2004,23(4):534-539
利用数值模拟方法研究了微尺度街道峡谷范围内街谷几何结构及街道两侧建筑物高度对称性对街谷内流场及机动车排放污染物扩散规律的影响。结果表明:当街道峡谷高宽比>2.1时,街谷内的流场结构由一个完整的垂直涡旋变为上下两个反向运动的强弱不同的垂直涡旋。各类型街谷内污染物扩散水平从强到弱依次为迎风面建筑物高度大于背风面建筑物高度的街道峡谷,迎风面建筑物高度小于背风面建筑物高度的街道峡谷;平行型街道峡谷。  相似文献   

6.
二维街谷地面加热引起的流场特征的水槽实验研究   总被引:5,自引:0,他引:5  
利用拖曳式水槽,采用激光粒子成像速度场测量系统(PIV),模拟了街谷存在地面加热时流场特征;讨论了环境风场对其的影响。我们发现在静风条件下,街谷中环流完全由热力驱动,对流活动可伸展至街谷上方;在建筑物层顶以上,也可发现水平和垂直方向的运动。这些对流活动有助于基本风场为零时,街谷内外动量和物质的交换。当街谷较宽时,对流形成的涡旋可能为两个以上,形态较为复杂并随时间变化,当街谷变窄时,涡旋蜕化成只有一个。当有弱环境风场存在时,街谷中的对流呈现为一个主涡旋,随着风速增加,涡旋形状更加规则,其中心并向下风向移动。  相似文献   

7.
An Urban Surface Exchange Parameterisation for Mesoscale Models   总被引:9,自引:11,他引:9  
A scheme to represent the impact of urban buildings on airflow in mesoscale atmospheric models is presented. In the scheme, the buildings are not explicitly resolved, but their effects on the grid-averaged variables are parameterised. An urban quarter is characterised by a horizontal building size, a street canyon width and a building density as a function of height. The module computes the impact of the horizontal (roof and canyon floor) and vertical (walls) surfaces on the wind speed, temperature and turbulent kinetic energy. The computation of the shortwave and longwave radiation, needed to compute the temperature of the urban surfaces, takes into account the shadowing and radiation trapping effects induced by the urban canyons. The computation of the turbulent length scales in the TKE equation is also modified to take into account the presence of the buildings.The parameterisation is introduced into a mesoscale model and tested in a bidimensional case of a city over flat terrain. The new parameterisation is shown to be able to reproduce the most important features observed in urban areas better than the traditional approach which is based only on the modification of the roughness length, thereby retaining the Monin–Obukhov similarity theory. The new surface exchange parameterisation is furthermore shown to have a strong impact on the dispersion characteristics of air pollutants in urban areas.  相似文献   

8.
Summary The paper presents an overview of the influence of street architecture on the wind and turbulence patterns in street canyons and discusses the effects on local air quality. The findings of recent experimental and numerical studies are summarized and wind-tunnel data sets are presented that illustrate the flow-field variability. It is shown that small-scale features of the street architecture play an important role. The formation of a vortex inside the street canyon is affected by the roof configuration. In shorter street canyons, the flow component along the street becomes important for pollutant transport. These results are of importance for urban air quality modeling in particular when dealing with pollution problems caused by road traffic. Furthermore, the findings should be taken into account in fast response models that are used to assess critical areas in the case of accidental or non-accidental releases of hazardous material in urban areas.  相似文献   

9.
城市湍流边界层内汽车尾气扩散规律数值模拟研究   总被引:2,自引:1,他引:1  
吕萍  袁九毅  张文煜 《高原气象》2005,24(2):167-172
以纳维斯托克斯方程组、大气平流扩散方程、湍流动能及湍流动能耗散率方程组为基础.采用伪不定常方法,建立了一个数值模式.利用该模式列城市湍流边界层内流场结构及汽车排放污染物扩散规律进行了研究。结果表明:街谷内会形成一个涡旋型流场.汽车排放污染物浓度在地面及建筑物背风面产生堆积,且其沿高度方向的梯度变化在背风面大.迎风而小。随着街谷两侧建筑物屋顶风速的增大,峡谷内形成的涡旋流场的强度增大,污染物扩散速率增大:当屋顶来流与街道之间的夹角逐渐增大时.涡旋中心位置由街道中心偏向于背风面及更高层且污染物扩散速度加快。  相似文献   

10.
The proposed methodology relies on the modelling capabilities of the thermo-radiative model Solene to simulate the heat and radiation energy exchanges between an actual urban district and the atmosphere. It is based on the comparison of the simulated upward infrared and sensible heat flux diurnal cycles that may be measured by elevated sensors above the three-dimensional scene, as a function of sensor position: the heat flux is a function of an equivalent surface temperature given by the infrared sensor and an equivalent heat transfer coefficient deduced from Solene simulations with the actual geometry. The method is tested against measurements obtained in the city centre of Toulouse, France during an experimental campaign in 2004–2005. To improve the computation of the heat exchanges between air and building surfaces a new algorithm is first implemented, based on an empirical model of the wind distribution within street canyons. This improvement is assessed by a direct comparison of the simulated brightness surface temperatures of the Toulouse city centre to measurements obtained with an airborne infrared sensor. The optimization of the infrared remote sensor position is finally analyzed as a function of its height above the mean roof level: it allows evaluation of the heat flux from an urban district when the three different classes of surfaces (roofs, walls, grounds) have similar contributions to the infrared flux towards the sensor, and to the heat flux into the atmosphere.  相似文献   

11.
The Budget of Turbulent Kinetic Energy in the Urban Roughness Sublayer   总被引:4,自引:4,他引:0  
Full-scale observations from two urban sites in Basel, Switzerland were analysed to identify the magnitude of different processes that create, relocate, and dissipate turbulent kinetic energy (TKE) in the urban atmosphere. Two towers equipped with a profile of six ultrasonic anemometers each sampled the flow in the urban roughness sublayer, i.e. from street canyon base up to roughly 2.5 times the mean building height. This observational study suggests a conceptual division of the urban roughness sublayer into three layers: (1) the layer above the highest roofs, where local buoyancy production and local shear production of TKE are counterbalanced by local viscous dissipation rate and scaled turbulence statistics are close to to surface-layer values; (2) the layer around mean building height with a distinct inflexional mean wind profile, a strong shear and wake production of TKE, a more efficient turbulent exchange of momentum, and a notable export of TKE by transport processes; (3) the lower street canyon with imported TKE by transport processes and negligible local production. Averaged integral velocity variances vary significantly with height in the urban roughness sublayer and reflect the driving processes that create or relocate TKE at a particular height. The observed profiles of the terms of the TKE budget and the velocity variances show many similarities to observations within and above vegetation canopies.  相似文献   

12.
Scalar Fluxes from Urban Street Canyons Part II: Model   总被引:1,自引:1,他引:0  
A practical model is developed for the vertical flux of a scalar, such as heat, from an urban street canyon that accounts for variations of the flow and turbulence with canyon geometry. The model gives the magnitude and geometric dependence of the flux from each facet of the urban street canyon, and is shown to agree well with wind-tunnel measurements described in Part I. The geometric dependence of the flux from an urban street canyon is shown to be determined by two physical processes. Firstly, as the height-to-width ratio of the street canyon increases, so does the roughness length and displacement height of the surface. This increase leads to a reduction in the wind speed in the inertial sublayer above the street canyons. Since the speed of the circulations in the street are proportional to this inertial sublayer wind speed, the flux then reduces with the inertial sublayer wind speed. This process is dominant at low height-to-width ratios. Secondly, the character of the circulations within the street canyon also varies as the height-to-width ratio increases. The flow in the street is partitioned into a recirculation region and a ventilated region. When the street canyon has high height-to-width ratios the recirculation region occupies the whole street canyon and the wind speeds within the street are low. This tendency decreases the flux at high height-to-width ratios. These processes tend to reduce the flux density from the individual facets of the street canyon, when compared to the flux density from a horizontal surface of the same material. But the street canyon has an increased total surface area, which means that the total flux from the street canyon is larger than from a horizontal surface. The variations in scalar flux from an urban street canyon with geometry is over a factor of two, which means that the physical mechanisms responsible should be incorporated into energy balance models for urban areas.  相似文献   

13.
街谷环流和热力结构的数值模拟   总被引:11,自引:1,他引:11  
文章介绍一种用于模拟街谷流场和温度场的动力学模式和热力学模式.应用动力模式模拟了方柱体塔楼和圆柱体塔楼形成的流场,应用动力和热力模式模拟了街谷中流场和温度场的日变化过程.计算实例表明,上述模式可用于城市街谷和建筑群风环境和热力环境研究以及街谷中空气污染物传输和扩散的计算.  相似文献   

14.
An observational campaign was conducted in the street canyon of Zhujiang Road in Nanjing city in 2007.Hourly mean concentrations of PM10 were measured at street and roof levels.The Operational Street Pollution Model(OSPM)street canyon dispersion model was used to calculate the street concentrations and the results were compared with the measurements.The results show that there is good agreement between measured and predicted concentrations.The correlation coecient R2 values(R2 is a measure of the correlation of the predicted and measured time series of concentrations)are 0.5319,0.8044,and 0.6630 for the scatter plots of PM10 corresponding to light wind speed conditions,higher wind speed conditions,and all wind speed conditions,respectively.PM10 concentrations tend to be smaller for the higher wind speed cases and decrease rapidly with increasing wind speed.The presentations of measured and modelled concentration dependence on wind direction show fairly good agreement.PM10 concentrations measured on the windward side are relatively smaller,compared with the corresponding results for the leeward side.This study demonstrates that it is possible to use the OSPM to model PM10 dispersion rules for an urban street canyon.  相似文献   

15.
Scalar fluxes from urban street canyons. Part I: Laboratory simulation   总被引:3,自引:3,他引:0  
Flow over urban surfaces depends on surface morphology and interaction with the boundary layer above. However, the effect of the flow on scalar fluxes is hard to quantify. The naphthalene sublimation technique was used to quantify scalar vertical fluxes out of a street canyon under neutral conditions. For an array of eight canyons with aspect ratio H/W=0.75 (here, H is building height and W is the street width), increased flux was observed in the first two or three canyons for moderate and low roughness upstream. This is consistent with predictions of the length scale for initial adjustment of flow to an urban canopy. The flux was constant after the initial adjustment region and thus dependent only on local geometry. For a street canyon in the equilibrium part of the array, each facet of the street canyon was coated with naphthalene to simulate scalar release from street, walls and roof, to evaluate the effect of street canyon geometry on fluxes for H/W=0.25, 0.6, 1 and 2. Fluxes from the roof and downstream wall were considerably larger than fluxes from the street and upstream wall, and only the flux from the downstream wall exhibited a simple decrease with H/W. For each H/W there was a monotonic decrease between downstream wall, street and upstream wall transfer. This suggests that flow decelerates around the recirculation region in the lee of the upstream building, i.e. a recirculating jet rather than a symmetrical vortex. The addition of a second source within the street canyon resulted in reduced fluxes from each facet for H/W>0.25, due to increased concentration of naphthalene in the canyon air.  相似文献   

16.
The simulation performance over complex building clusters of a wind simulation model(Wind Information Field Fast Analysis model, WIFFA) in a micro-scale air pollutant dispersion model system(Urban Microscale Air Pollution dispersion Simulation model, UMAPS) is evaluated using various wind tunnel experimental data including the CEDVAL(Compilation of Experimental Data for Validation of Micro-Scale Dispersion Models) wind tunnel experiment data and the NJU-FZ experiment data(Nanjing University-Fang Zhuang neighborhood wind tunnel experiment data). The results show that the wind model can reproduce the vortexes triggered by urban buildings well, and the flow patterns in urban street canyons and building clusters can also be represented. Due to the complex shapes of buildings and their distributions, the simulation deviations/discrepancies from the measurements are usually caused by the simplification of the building shapes and the determination of the key zone sizes. The computational efficiencies of different cases are also discussed in this paper. The model has a high computational efficiency compared to traditional numerical models that solve the Navier–Stokes equations, and can produce very high-resolution(1–5 m) wind fields of a complex neighborhood scale urban building canopy(~ 1 km ×1km) in less than 3 min when run on a personal computer.  相似文献   

17.
The convective heat transfer coefficient (CHTC) of an urban canopy is a crucial parameter for estimating the turbulent heat flux in an urban area. We compared recent experimental research on the CHTC and the mass transfer coefficient (MTC) of urban surfaces in the field and in wind tunnels. Our findings are summarised as follows.
(1)  In full-scale measurements on horizontal building roofs, the CHTC is sensitive to the height of the reference wind speed for heights below 1.5 m but is relatively independent of roof size.
(2)  In full-scale measurements of vertical building walls, the dependence of the CHTC on wind speed is significantly influenced by the choice of the measurement position and wall size. The CHTC of the edge of the building wall is much higher than that near the centre.
(3)  In spite of differences of the measurement methods, wind-tunnel experiments of the MTC give similar relations between the ratio of street width to canopy height in the urban canopy. Moreover, this relationship is consistent with known properties of the flow regime of an urban canopy.
(4)  Full-scale measurements on roofs result in a non-dimensional CHTC several tens of times greater than that in scale-model experiments with the same Reynolds number.
Although there is some agreement in the measured values, our overall understanding of the CHTC remains too low for accurate modelling of urban climate.  相似文献   

18.
A Double-Canyon Radiation Scheme for Multi-Layer Urban Canopy Models   总被引:1,自引:0,他引:1  
We develop a double-canyon radiation scheme (DCEP) for urban canopy models embedded in mesoscale numerical models based on the Building Effect Parametrization (BEP). The new scheme calculates the incoming and outgoing longwave and shortwave radiation for roof, wall and ground surfaces for an urban street canyon characterized by its street and building width, canyon length, and the building height distribution. The scheme introduces the radiative interaction of two neighbouring urban canyons allowing the full inclusion of roofs into the radiation exchange both inside the canyon and with the sky. In contrast to BEP, we also treat direct and diffuse shortwave radiation from the sky independently, thus allowing calculation of the effective parameters representing the urban diffuse and direct shortwave radiation budget inside the mesoscale model. Furthermore, we close the energy balance of incoming longwave and diffuse shortwave radiation from the sky, so that the new scheme is physically more consistent than the BEP scheme. Sensitivity tests show that these modifications are important for urban regions with a large variety of building heights. The evaluation against data from the Basel Urban Boundary Layer Experiment indicates a good performance of the DCEP when coupled with the regional weather and climate model COSMO-CLM.  相似文献   

19.
This study constitutes a further step in the analysis of the performances of a street network model to simulate atmospheric pollutant dispersion in urban areas. The model, named SIRANE, is based on the decomposition of the urban atmosphere into two sub-domains: the urban boundary layer, whose dynamics is assumed to be well established, and the urban canopy, represented as a series of interconnected boxes. Parametric laws govern the mass exchanges between the boxes under the assumption that the pollutant dispersion within the canopy can be fully simulated by modelling three main bulk transfer phenomena: channelling along street axes, transfers at street intersections, and vertical exchange between street canyons and the overlying atmosphere. Here, we aim to evaluate the reliability of the parametrizations adopted to simulate these phenomena, by focusing on their possible dependence on the external wind direction. To this end, we test the model against concentration measurements within an idealized urban district whose geometrical layout closely matches the street network represented in SIRANE. The analysis is performed for an urban array with a fixed geometry and a varying wind incidence angle. The results show that the model provides generally good results with the reference parametrizations adopted in SIRANE and that its performances are quite robust for a wide range of the model parameters. This proves the reliability of the street network approach in simulating pollutant dispersion in densely built city districts. The results also show that the model performances may be improved by considering a dependence of the wind fluctuations at street intersections and of the vertical exchange velocity on the direction of the incident wind. This opens the way for further investigations to clarify the dependence of these parameters on wind direction and street aspect ratios.  相似文献   

20.
As urbanization progresses, more realistic methods are required to analyze the urban microclimate. However, given the complexity and computational cost of numerical models, the effects of realistic representations should be evaluated to identify the level of detail required for an accurate analysis. We consider the realistic representation of surface heating in an idealized three-dimensional urban configuration, and evaluate the spatial variability of flow statistics (mean flow and turbulent fluxes) in urban streets. Large-eddy simulations coupled with an urban energy balance model are employed, and the heating distribution of urban surfaces is parametrized using sets of horizontal and vertical Richardson numbers, characterizing thermal stratification and heating orientation with respect to the wind direction. For all studied conditions, the thermal field is strongly affected by the orientation of heating with respect to the airflow. The modification of airflow by the horizontal heating is also pronounced for strongly unstable conditions. The formation of the canyon vortices is affected by the three-dimensional heating distribution in both spanwise and streamwise street canyons, such that the secondary vortex is seen adjacent to the windward wall. For the dispersion field, however, the overall heating of urban surfaces, and more importantly, the vertical temperature gradient, dominate the distribution of concentration and the removal of pollutants from the building canyon. Accordingly, the spatial variability of concentration is not significantly affected by the detailed heating distribution. The analysis is extended to assess the effects of three-dimensional surface heating on turbulent transfer. Quadrant analysis reveals that the differential heating also affects the dominance of ejection and sweep events and the efficiency of turbulent transfer (exuberance) within the street canyon and at the roof level, while the vertical variation of these parameters is less dependent on the detailed heating of urban facets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号