首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The location of H filaments is compared with maps of the photospheric line of sight velocity V and the magnetic field H . It is found that (1) H filaments are associated with regions of ¦V ¦ 300m s–1, (2) always both positive as well as negative velocities are present under H structures, (3) stable (long lasting) portion of filaments frequently occur at the position of H = 0 as well as V = 0 lines, (4) this association remains valid for the longitudes less than 50° from central meridian.  相似文献   

2.
Infinite series expansions are obtained for the doubly averaged effects of the Moon and Sun on a high altitude Earth satellite, and the results used to interpret numerically integrated examples. New in this paper are: (1) both sublunar and translunar satellites are considered; (2) analytic expansions include all powers in the satellite and perturbing body semi-major axes; (3) the fact that retrograde orbits have more benign eccentricity behavior than direct orbits should be exploited for high altitude satellite systems; and (4) near circular orbits can be maintained with small expenditures of fuel in the face of an exponential driving force one forI ab, whereI b=180°–I a andI a is somewhat less than 39.2° for sublunar orbits and somewhat greater than 39.2° for translunar orbits.Nomenclature a semi-major axis - A lk coefficient defined in Equation (11) - B lk coefficient defined in Equation (24) - C km coefficient defined in Equation (25) - D, E, F coefficients in Equations (38), (39) - e eccentricity - H k expression defined in Equation (34) - expression defined in Equation (35) - I inclination of satellite orbit on lunar (or solar) ring plane - J 2 coefficient of second harmonic of Earth's gravitational potential (1082.637×10–6 R E 2 ) - K k, Lk, Mk expressions in Section 4 - expressions in Section 4 - p=a(1–e 2) semi-latus rectum - P l Legendre polynomial of degreel - q argument of Legendre polynomial - radial distance of satellite - R E Earth equatorial radius (6378.16 km) - R, S, W perturbing accelerations in the radial, tangential and orbit normal directions - syn synchronous orbit radius (42 164.2 km=6.6107R E) - t time - T satellite orbital period - T orbital period of perturbing body (Moon) - T e period of long periodic oscillations ine for |I|<I a - T s synodic period - U gravitational potential of lunar (or solar) ring - x, y, z Cartesian coordinates of a satellite with (x, y) being the ring plane - coefficient defined in Equation (20) - average change in orbital element over one orbit (=a, e, I, , ) - 1,23 unit vectors in thex, y, z coordinate directions - r , s , w unit vectors in the radial, tangential and orbit normal directions - =+ angle along the orbital plane from the ascending node on the ring plane to the true position of the satellite - angle around the ring - gravitational constant times mass of Earth (3.986 013×105 km s–2) - gravitational constant times mass of Moon (or Sun) - m gravitational constant times mass of Moon (/81.301) - s gravitational constant time mass of Sun (332 946 ) - ratio of the circumference of a circle to its diameter - radius of lunar (or solar) ring - m radius of lunar ring (60.2665R E) - s radius of solar ring (23455R E) - true anomaly - argument of perigee - 0 initial value of - i critical value of in quadranti(i=1, 2, 3, 4) - longitude of ascending node on ring plane This work was sponsored by the Department of the Air Force.  相似文献   

3.
I give an interpretation of a result of Simpsonet al. (1988) on the variation with kinetic energyT i of the mean pathlengthX m (T i ) of the galactic cosmic rays (CGRs) in the range 0.1T i 10.0 GeV nucl–1. I argue that the data onX m (T i ) may be interpreted in terms of a model of GCR diffusion on the one-dimensional Alfvén-wave turbulence, having a cutoff in the spectrum at frequencies h , where h is the proton gyrofrequency. The cutoff results in changing of the character of variation of the GCR diffusion coefficientD(T i )T a in the rangeT i 1 GeV nucl–1 towards some more complicated variation at 0.1T i 1.0 GeV nucl–1 due to the peculiarities of the pitch-angle scattering at 900.  相似文献   

4.
Analytic structure of high-density steady isothermal spheres is discussed using the TOV equation of hydrostatic equilibrium which satisfies an equation of state of the kind:P = K g , = g c 2.Approximate analytical solutions to the Tolman-Oppenheimer-Volkoff (TOV) equations of hydrostatic equilibrium in (, ), (,U) and (u, v) phase planes in concise and simple form useful for short computer programmes or on small calculator, have been given. In Figures 1, 2, and 3, respectively, we display the qualitative behaviours of the ratio of gas density g to the central density gc , g / gc ; pressureP to the gc ,P/ gc ; and the metric componente , for three representative general relativistic (GR) isothermal configurations =0.1, 0.2, and 0.3. Figure 4 shows the solution curve (, ) for =0.1, 0.2, and 0.3 (=0 represents the classical (Newtonian) curve). Numerical values of physical quantitiesv (=4r 2 P *(r)), in steps ofu (=M(r)/r)=0.03, and the mass functionU, in steps of =0.2 (dimensionless radial distance), are given, respectively, in Tables I and II. Other interesting features of the configurations, such as ratio of gravitational radius 2GM/c 2 to the coordinate radiusR, mass distributionM(r)/M, pressure (or density) distributionP/P c , binding energy (B.E.), etc., have also been incorporated in the text. It has further been shown that velocity of sound inside the configurations is always less than the velocity of light.Part of the work done at Azerbaijan State University, Baku, U.S.S.R., and Mosul University, Mosul, Iraq, 1985-1986  相似文献   

5.
Bord  Donald J.  Cowley  Charles R. 《Solar physics》2002,211(1-2):3-16
The abundance of holmium (Z=67) in the Sun remains uncertain. The photospheric abundance, based on lines of Hoii, has been reported as + 0.26±0.16 (on the usual scale where log(H) = 12.00), while the meteoritic value is + 0.51±0.02. Cowan-code calculations have been undertaken to improve the partition function for this ion by including important contributions from unobserved levels arising from the (4f 116p+4f 10(5d+6s)2) group. Based on 6994 computed energy levels, the partition function for Hoii is 67.41 for a temperature of 6000 K. This is 1.5 times larger than the value derived from the 49 published levels. The new partition function alone leads to an increase in the solar abundance of Ho to log (Ho) =+ 0.43. This is within 0.08 dex of the meteoritic abundance. Support for this result has been obtained through LTE spectrum synthesis calculations of a previously unidentified weak line at 3416.38. Attributing the feature to Hoii, the observations may be fitted with log (Ho) =+ 0.53. This calculation assumes log (gf)=0.25 and is uncertain by at least 0.1 dex.  相似文献   

6.
A detailed investigation of the evolution of low-mass binaries is performed for the case when the secondary fills its Roche lobe at the stage of core hydrogen exhaustion. The obtained results are compared with observational data for ultra-short periodic X-ray systems MXB 1820-30 and MXB 1916-05. In the frame of the proposed evolutionary scenario it is possible to obtain for MXB 1820-30 its periodP=11.4 min twice (see Figure 2). In the first case the parameters of the system are:M 2 0.13–0.15M ,X0.05–0.13, |P/P| (3.6–6.2) } 10–7 yr–1, M2 (4.1–9.6) } 10–9 M yr–1, for the second:M 2 0.08–0.09M ,X= 0, |P/P| (1.3–1.5) } 10–7 yr–1, M2 (1.4–1.8) } 10–8 M yr–1. It is suggested that MXB 1916-05 is the progenitor of the system MXB 1820-30 (M 2 = 0.1M,X 0.221,M 2 1.8 × 10–10 M yr–1).  相似文献   

7.
The observed energy spectra in synchrotron sources are power laws,N (E)=KE , with the distribution in peaked around 2.5. These are consistent with initially injected spectra with between 1 and 2, subsequently steepened by synchrotron losses. Contrary to the results of Kardashev (1962), it is shown that statistical acceleration when coupled with synchrotron losses lead naturally to the formation of flat stationary spectra with 1. These stationary spectra have bends near the energy at which synchrotron losses balance the energy gains by acceleration. Above this bend the spectrum tends to =2. The time evolution of an initial spectrum towards the stationary spectrum is investigated. It is suggested that the initially flat spectra with 1 to 1.5 observed in some variable sources result from an incomplete approach to the stationary spectrum, and that in sources with constant acceleration spectra with 2 are to be expected.  相似文献   

8.
The exact geometry of the Roche curvilinear coordinates (, , ) in which corresponds to the zero-velocity surfaces is investigated numerically in the plane, as well as in the spatial, case for various values of the mass-ratio between the two point-masses (m 1,m 2) constituting a binary system.The geometry of zero-velocity surfaces specified by -values at the Lagrangian points are first discussed by taking their intersections with various planes parallel to thexy-, xz- andyz-planes. The intersection of the zero-velocity surface specified by the -value at the Lagrangian equilateral-triangle pointsL 4,5 with the planex=1/2 discloses two invariable curves passing through the pointsL 4,5 and situated symmetrically with respect to thexy-plane whose form is independent of the mass-ratio.The geometry of the remaining two coordinates (, ) orthogonal to the zero-velocity surfaces is investigated in thexy- andxz-planes from extensive numerical integrations of differential equations generated from the orthogonality relations among the coordinates. The curves (x, y)=constant in thexy-plane are found to be separated into three families by definite envelopes acting as boundaries whose forms depend upon the mass-ratio only: the inner -constant curves associated with the masspointm 1, the inner -constant curves associated with the mass-pointm 2 and the outer -constant curves. All the -constant curves in thexy-plane coalesce at either of the Lagrangian equilateraltriangle pointsL 4,5, except for a limiting case coincident with thex-axis. The curves (x, z)=constant in thexz-plane are also separated by definite envelopes depending upon the mass-ratio into different families: the inner -constant curves associated with the mass-pointm 1, the inner -constant curves associated with the mass-pointm 2 and the outer -constant curves on both sides out of the envelopes. For larger values ofz, the curves =constant tend asymptotically to the line perpendicular to thex-axis and passing through the centre of mass of the system, except for a limiting case coincident with thex-axis. The geometrical aspects of the envelopes for the curves (x, y)=constant in thexy-plane and the curves (x, z)=constant in thexz-plane are also discussed independently.In the three-dimensional space, the Roche coordinates can be conveniently defined in such a way as to correspond to the polar coordinates in the immediate neighbourhood of the origin, and to the cylindrical coordinates at great distances. From numerical integrations of simultaneous differential equations generating spatial curves orthogonal to the zero-velocity surfaces, the surfaces (x, y, z)=constant and the surfaces (x, y, z)=constant are constructed as groups of such spatial curves with common values of some parameters specifying the respective surfaces.On leave of absence from the University of Tokyo as an Honorary Fellow of the Victoria University of Manchester.  相似文献   

9.
The velocity gradients of the contrastreaming electron beams observed in the Earth's magnetosphere can excite three types of ordinary mode instabilities, namely (i) B-resonance electron instability, (ii) ion cyclotron instability, and (iii) unmagnetized ion instability. The B-resonance electron instability occurs at small values of the shear parameter 10–4<S<10–3, whereS = [(1/e){dU o(x)}/(dx)] (U 0(x) and e being the streaming velocity of the electron beams and the electron cyclotron frequency, respectively). Near the equatorial plane of the bouncing electron beams region, this instability can generate electromagnetic waves having frequenciesf(0.045–0.2) Hz and wavelentghs (0.5–10)km, and the wave magnetic field is polarised in a radial direction. This instability can also occur in the plasma sheet region during the earthwards and tailwards plasma flows events and can generate waves, with wave magnetic field polarised along north-south direction, in the frequency rangef(0.007–0.02) Hz with (10–100)km nearR=–35R E . For 10–3<S<10–2, the ion cyclotron instability is excited and it can generate waves up to 5th harmonic or so of ion cyclotron frequency. ForS>10–2, the unmagnetized ion instability is excited which can generate electromagnetic waves having frequences from 5 to 50 Hz and typical wavelengths (0.5–6)km. The growth rates of all the three velocity shear driven instabilities are reduced in the presence of cold background plasma. The turbulence generated by these instabilities may give rise to enhanced effective electron-electron and electron-ion collisions and broaden the bouncing electron beams.  相似文献   

10.
The radiation of ultrarelativistic particles is examined in a quasi-uniform magnetic field superimposed by a wide spectrum of magnetic, electric, and electron density inhomogeneities created in a turbulent plasma. The radiation spectrum from a particle of a given energy is shown to acquire a high-frequency power-law tail with the same spectral index as the index of small-scale turbulence. For a power-law spectrum of ultrarelativistic electrons, dN()/d ~ , with a cut-off at some energy max, the radiation spectrum consists of a few power-law ranges; the radiation intensity may suffer jumps at frequencies which separate these ranges.In the high-frequency range the spectral index is determined by small-scale magnetic and electric fields. At intermediate frequencies the main contribution comes from the synchrotron radiation in a large-scale field; the radiation spectrum has an index =(–1)/2. The same index may be produced by large-scale Langmuir waves. At lower frequencies the radiation spectrum increases owing to the transition radiation caused by electron density fluctuations; in this case the spectral index is equal to +1–.The possibility of diagnostics of high-frequency cosmic plasma turbulence from radiation of high-energy particles is discussed. It is shown that the proposed theory may explain some features in the spectra of several cosmic objects.  相似文献   

11.
The purpose of this paper is to present a general analysis of the planar circular restricted problem of three bodies in the case of exterior mean-motion resonances. Particularly, our aim is to map the phase space of various commensurabilities and determine the singular solutions of the averaged system, comparing them to the well-known case of interior resonances.In some commensurabilities (e.g. 1/2, 1/3) we show the existence of asymmetric librations; that is, librations in which the stationary value of the critical angle =(p+q)1pq is not equal to either zero or . The origin, stability and morphogenesis of these solutions are discussed and compared to symmetric librations. However, in some other resonances (e.g. 2/3, 3/4), these fixed points of the mean system seem to be absent. Librations in such cases are restricted to =0 mod(). Asymmetric singular solutions of the planar circular problem are unkown in the case of interior resonances and cannot be reproduced by the reduced Andoyer Hamiltonian known as the Second Fundamental Model for Resonance. However, we show that the extended version of this Hamiltonian function, in which harmonics up to order two are considered, can reproduce fairly well the principal topological characteristics of the phase space and thereby constitutes a simple and useful analytical approximation for these resonances.  相似文献   

12.
The relevant data for the known 147 pulsars are presented in graphical and tabular forms. Various data correlations are discussed, and a detailed analysis of pulsar dispersion measures and distances is given. The range of the electron densities in the diffuse interstellar medium is found to be 0.01 cm–3n e0.1 cm–3, and n e0.03 cm–3. The dispersion scale height for pulsars is found to be 5.9±0.7 pc cm–3 implying a linear scale height of 200 pc, which is much smaller than the electron scale height of our Galaxy.Astrophysics and Space Science Review Paper.  相似文献   

13.
Spherically symmetric, steady-state, optically thick accretion onto a nonrotating black hole with the mass of is studied. The gas accreting onto the black hole is assumed to be a fully ionized hydrogen plasma withn 0=108 cm–3 andT 0=104 K far from the black hole, and a new approximate expression for the Eddington factor is introduced. The luminosity is estimated to beL=1.875×1033 erg s–1, which primarily arises from the optical surface (1) ofT104 K. The accretion flow is characterized by 1 and (v/c)10. In the optically thin region, the flow remains isothermal, and the increase of temperature occurs at 1. The radiative equilibrium is strictly realized at (v/c)10.  相似文献   

14.
The consequences of a cosmological term varying asS –2 in a spatially isotropic universe with scale factorS and conserved matter tensor are investigated. One finds a perpetually expanding universe with positive and gravitational constantG that increases with time. The hard equation of state 3P>U (U mass-energy density,P scalar pressure) applied to the early universe leads to the expansion lawSt (t cosmic time) which solves the horizon problem with no need of inflation. Also the flatness problem is resolved without inflation. The model does not affect the well known predictions on the cosmic light elements abundance which come from standard big bang cosmology.In the present, matter dominated universe one findsdG/dt=2H/U (H is the Hubble parameter) which is consistent with observations provided <10–57 cm–2. Asymptotically (S) the term equalsGU/2, in agreement with other studies.  相似文献   

15.
A detailed study of classical polytropes in general relativity has been presented for O ((dP/dE)O) 1.0 and O((P/E O)O. The behaviour of various structural parameters with O/O, O and O are the values ofP/E and dP/dE at the centre) has been studied. The most important result of this study is the fact the qualitative behaviour of all the structural parameters depends only on the value of µO for the various assigned O values. The maximum value of surface red shift occurs when µO=0.6 and for O=1.0 it equals 0.618. These structures are gravitationally bound for µO0.8 and most so for µO=0.4. The maximum value of binding coefficient comes out to be 0.181 when O=1.0. These structures have been used to model neutron stars. The maximum mass of neutron star based upon such a model comes out to be 2.55M (for µO=0.4 and O=1.0) and maximum size comes out to be 15.0 km (for µO=0.2 and O=1.0). It is also seen that the structures are pulsationally stable for µ0.6.  相似文献   

16.
The stars in the Main Sequence are seen as a hierarchy of objects with different massesM and effective dynamical radiiR eff=R/ given by the stellar radii and the coefficients for the inner structure of the stars.As seen in a previous work (Paper I), during the lifetime in the Main SequenceR eff(t) remains a near invariant when compared to the variation in the time ofR(t) and (t).With such an effectiveR eff one obtains the amounts of actionA c(M), the effective densities eff(M)=(M)3(M), the densities of action and of energy (or mean presures in the stellar interior)a c(M),e c(M), and the potential energiesE p(M).The amounts of action areA cM k withk1.87 for the M stars,k5/3 for the KGF stars, andk1.83 for the A and earlier stars, representing very simples conditions for the other dynamical parameters. For instancek5/3 means a near invariant effective density eff for the KGF stars, while for such stars the mean densities and coefficients present the strongest variations with masses (M)M –1.81, (M)M0.6.The cases for the M stars (e c(M)M –1) and for the A and earlier stars (betweena c(M)=constant and eff(M)M –1) and also discussed. These conditions for the earlier stars also represent reasonable mean values for the whole stellar hierarchy in the range of masses 0.2M M25M .With all this, one can build dynamical HR diagrams withA c(M), Ep(M), eff M p , etc., whose characteristics are analogous to these in the photometrical HR diagram. A comparison is made betweenA c(M) from the models here and the HR diagram with the best known stars of luminosity classes IV, V, and white dwarfs.The comparison of the potential energiesE p(M)M –p according to the stellar models used here and the observed frequency function (MM –q (number of stars in a given interval of masses) from different authors suggests the possibility that the productE p(M)(M) is a constant, but this must be confirmed with further studies of the function (M) and its fine structure.There are analogies between the formulation used here for the stellar hierarchy and other physical processes, for instance, in modified forms of the Kolmogorov law of turbulence and in the formulation used for the hierarchy of molecular clouds in gravitational equilibrium. Besides, the function of actionA c(M) for the stars has analogous properties to the relations of angular momenta and massesJ(M) for different types of objects. The cosmological implications of all this are discussed.  相似文献   

17.
R. Grant Athay 《Solar physics》1988,116(2):223-237
An attempt is made in this paper to determine the coefficient a in a power-law relationship of the form V ~T between the r.m.s. velocity fluctuation, V for raster images with 3 resolution and the temperature, T of line formation using SMM solar data. For T between 8000 and 105 K, the data suggest a best fit with 3/4 < 1. It is argued, however, that unresolved fine structure tends to reduce the observed value of V and that higher resolution data may yield different values for . Skylab data have shown that the non-thermal line broadening velocity, , is proportional to T 1/2. Also, for all temperatures less than 105 K, V . This latter result, however, is again dependent on spatial resolution and may not be true in observations made with sufficient spatial resolution. The magnitudes of both V and indicate that bulk motions play important roles in the structure of the solar atmosphere as well as in its energy and momentum balance. It is important, therefore, to identify the true nature of such motions with better accuracy than is possible with currently available data.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

18.
Doyle  J.G.  Keenan  F.P.  Ryans  R.S.I.  Aggarwal  K.M.  Fludra  A. 《Solar physics》1999,188(1):73-80
Using new close-coupling excitation rates for the C-like ion Siix, density-diagnostic ratios based on Siix lines have been re-evaluated and applied to a sequence of CDS observations taken above a polar coronal hole. The derived electron densities are in excellent agreement with previous values of Neestimated from the N-like ion Siviii for another coronal hole. The confirmed trend is for a fall-off of one order of magnitude within the first 0.3 Rabove the limb. These densities are well fitted with an analytic formula for the density profile out to at least 8 R, by which stage the electron density has fallen to 4×103 cm–3, from 1.5×108 cm–3at 1.0 R.  相似文献   

19.
Pioneer 11 magnetic field data at 20 AU are analysed by the computational method of Moussas, Quenby, and Webb (1975), Moussas and Quenby (1978), and Moussas, Quenby, and Valdes-Galicia (1982a, b) to obtain the parallel mean free path , and the diffusion coefficient parallel to the magnetic field line K . This method is the most appropriate for the mean free path calculation at large heliodistances since the alternative method which is based on fitting of energetic particle intensities cannot be easily and accurately be used because the association of energetic particles with their parent flares is not precise. The results show that the mean free path has values between 0.85 and 0.98 AU, linearly increasing with energy according to (Tkinetic) = + MT, where = 0.846 AU and M = 4.44 × 10 –5 AU MeV–1 for energies between 10 MeV and 3 GeV for protons. These values of the parallel mean free path are much larger than the values estimated by previous studies up to 6 AU. The diffusion coefficient dependence upon energy follows a relation which simply reflects an almost constant mean free path and a linear dependence on the velocity of the particle, so that at 20 AU heliodistance K (T kin) = K , 1 MeV(T kin)T kinetic , with = 1/2. The distance dependence of the parallel diffusion mean free path follows a power law, (R) = , 1 AU R , where is 1 ± 0.1. While the parallel diffusion coefficient obeys a power-law relation with heliodistance R, K (R, T kin) = K , 1 AU(T kin)R , with = 1 ± 0.1. The radial diffusion coefficient of cosmic rays is not expected to strongly depend upon the parallel diffusion coefficient because the nominal magnetic field at these large heliodistances (20 AU) is almost perpendicular to the radial direction and the contribution of the diffusion coefficient perpendicular to the magnetic field is expected to play a dominant role. However, the actual garden hose angle varies drastically and for long time periods and hence the contribution of the diffusion parallel to the field may continue to be important for the small scale structure of intensity gradients.  相似文献   

20.
Among the lunar laser range measurements obtained during the past six years at McDonald Observatory, those available cover the period August 1969-November 1974, being 1377 normal observations made on the three Apollo reflectors and that of Lunokhod II. The fit of these data led to a rms residual of 55 cm. In this study, a large number of parameters have been resolved, including the geocentric coordinates of the telescope, the selenocentric coordinates of each of the reflectors, as well as orbital elements of the Moon. In addition, the interest has been directed more specially towards the study of the rotational motion of the Moon and particularly the problem of its free librations. The performed resolutions give the evidence of the three modes of free oscillations. The determined amplitudes arise to 1.7 in longitude and 0.5 and 8.7 in latitude, with the respective periods of 2.9 years, 27.3 days and 75 years. In connection with these parameters, the fittings determined also the most of part of elements of lunar gravitational field: the moment of inertia parameters and, and a number of the third degree harmonics. These new results should now permit a research on the implications of these oscillations effects, concerning the impact history of the Moon and the properties of its internal structure. On the basis of the amplitudes determined here, one can already estimate an order of the magnitude for theQ dissipation coefficient comparable with that determined from seismic studies of the Moon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号