首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Cymrite: new occurrence and stability   总被引:2,自引:0,他引:2  
The rare mineral cymrite, BaAl2Si2O8·H2O, was discovered in Nevada in a Cambrian bedded barite sequence that exhibits low-grade metamorphism. The mineral occurs exclusively in thin-bedded siliceous rock containing anhedral pyrite crystals up to 1 cm. Cymrite forms rectangular grains ca 40 m across, distributed throughout the chalcedonic quartz matrix. An SEM image of one such blocky grain shows that it is filled by tiny aggregates, instead of a single crystal of cymrite. This cymrite may have replaced a pre-existing rectangular mineral, most likely barite. The Nevada occurrence of cymrite prompted a restudy of its stability relations. Conventional hydrothermal techniques were adopted in the experimental work with run durations up to 7 months. The univariant curve for the dehydration reaction: BaA12Si2O8· H2O -BaA12Si2O8 +H2O passes the following reversed brackets: 300–315° C at 3 kbar, 290–300° C at a 2 kbar, 270–285° C at 1 kbar, and 240–270° C at 0.5 kbar. These results indicate that cymrite can be stable at much lower pressures than those previously reported. The replacement of barite by cymrite was experimentally demonstrated with an alkaline solution as depicted by the reaction: BaSO4+2OH-+A12O3-2SiO2=BaA12Si2O8·H2O+SO 4 2 Such replacement failed to take place when an acidic solution was used instead.  相似文献   

2.
First isotopic-geochemical data were obtained on basite-ultrabasite rocks from the southern Kovdor area that were previously provisionally ascribed to the drusite (coronite) complex based on the occurrence of drusite (coronite) textures. The mineral and whole-rock Sm-Nd isochron age determined for five rock samples from the Sorkajoki and Poioiva massifs and the massif of Elevation 403 m turned out to be close (within the error): 2485 ± 51, 2509 ± 93, and 2517 ± 75 Ma, respectively. The crystallization age was evaluated for the two massifs (Poiojovski and Mount Krutaya Vostochnaya) by the U-Pb system of zircons. Our samples contained both magmatic and xenogenic crustal zircons, whose age was estimated at 2700 Ma. The crystallization age of the massifs themselves (data on the magmatic zircons) is 2410 ± 10 Ma. The undepleted character of the mantle source (ɛNd = +0.9) and the much younger age of the massifs than that of other known manifestations of ultrabasic magmatism in the territory of Karelia and the Kola Peninsula (including the layered pluton classic drusite massifs) suggest that the central part of the Belomorian Mobile Belt hosts one more independent intrusive rock complex, which has never been recognized previously and which is different from typical drusites.  相似文献   

3.
The Lovozero pluton (Kola Peninsula, Russia) is an unique object from the standpoint of the abundance, diversity, and originality of Th mineralization. In contrast to other igneous rocks and to such chemical elements as Ca, REE, U, and Na, Th in the hyperalkaline pegmatites and hydrothermalites of the Lovozero pluton commonly occurs as its own mineral phases. Umbozerite Na3Sr4Th(Mn,Zn,Fe,Mg)[Si8O24](OH) (7 samples), Ti-Th silicate Na0–7Sr0–1ThTi1–2Si8O22–23(OH) · nH2O (8 samples), Na-Th silicate (Na,K)4Th3[Si8(O,OH)24] · nH2O (6 samples), thorite (2 samples), steenstrupine-(Ce)-thorosteenstrupine series minerals (5 samples), and Th phosphate (Th,Na,K,Ca,Mg,U,Sr,Ba)[(P,Si, Al)1O4] · nH2O (1 sample) were investigated in this study. Ti-Th silicates and Th phosphate have been described for the first time. All of the above-mentioned minerals have been examined with electron microprobe, IR spectroscopy, powder diffraction, thermogravimetric and optical methods. High-Th minerals such as steenstrupine, umbozerite, Th phosphate, and Na-Th silicates crystallized mainly during the ussingite stage of the pegmatite-forming process. At the early hydrothermal high-alkaline stage, steenstrupine was replaced with REE and Th aggregates (belovite, vitusite, seidite, Na-Th silicates, Ti-Th silicates, etc.). Thorite, Ti-Th silicates, and minerals of the rhabdophane and monazite groups were formed at the late hydrothermal low-alkaline stage. Despite the metamict features of almost all samples, stoichiometric ratios of cations in umbozerites and Ti-Th silicates remain stable. Clear relationships have been revealed between umbozerites and Ti-Th silicates, on the one hand, and seidite-(Ce), a Ti-silicate that has a zeolite-like structure, on the other. This implies that, under certain conditions, these minerals may be regarded as potential suppliers of Th to the environment due to the leaching of Th from zeolite channels.  相似文献   

4.
The paper describes the first finding of quintinite [Mg4Al2(OH)12][(CO3)(H2O)3] at the Mariinsky deposit in the Central Urals, Russia. The mineral occurs as white tabular crystals in cavities within altered gabbro in association with prehnite, calcite, and a chlorite-group mineral. Quintinite is the probable result of late hydrothermal alteration of primary mafic and ultramafic rocks hosting emerald-bearing glimmerite. According to electron microprobe data, the Mg: Al ratio is ~2: 1. IR spectroscopy has revealed hydroxyl and carbonate groups and H2O molecules in the mineral. According to single crystal XRD data, quintinite is monoclinic, space group C2/m, a =5.233(1), b = 9.051(2), c = 7.711(2) Å, β = 103.09(3)°, V = 355.7(2) Å3. Based on structure refinement, the polytype of quintinite should be denoted as 1M. This is the third approved occurrence of quintinite-1M in the world after the Kovdor complex and Bazhenovsky chrysotile–asbestos deposit.  相似文献   

5.
Carbonatites and related pyroxenites from the Seblyavr alkaline-ultramafic massif were analyzed for isotopic composition and concentrations of carbon (in carbon dioxide), nitrogen, and noble gases using the stepwise crushing technique. The C isotopic composition in crushing steps of calcite from the carbonatite varies from ?6.6 to ?15.0‰ (PDB) with average values from ?8.5 to ?10.5‰, which is lower than the mantle range for \(\delta ^{13} C_{(CO_2 )} \) (from ?3 to ?5‰) and can likely be explained by long-term isotopic exchange between the carbon of CO2 in inclusions and their host Ca carbonate. The 40Ar/36Ar ratios in the crushing extractions of the calcites vary from the atmospheric value of 296 to 3200. Diopside from the pyroxenite has these ratios as high as 26000–33000 (such high values for pyroxenite in the Kola alkaline-ultramafic province have been obtained for the first time), which corresponds to the values obtained for MORB chilled glasses. Nitrogen in the samples is isotopically heavy, δ15N from +1 to +2 on average, which is consistent with earlier data on carbonatite massifs in the Kola alkaline province (Dauphas and Marty, 1999) and carbonatites of the Guli Massif (Buikin et al., 2011). The N2 content in the crushing extractions is correlated with the 36Ar concentration, which is an indicator of atmospheric contamination and suggests the dominance of the crustal N component in the samples, likely as a result of subduction or penetration of the ancient meteoric water into the magma chamber or a metasomatic source. The variations in the isotopic and elemental composition of the gas components between crushing steps suggest that the investigated samples contain inclusions of at least two populations.  相似文献   

6.
The Devonian (ca. 385–360 Ma) Kola Alkaline Province includes 22 plutonic ultrabasic–alkaline complexes, some of which also contain carbonatites and rarely phoscorites. The latter are composite silicate–oxide–phosphate–carbonate rocks, occurring in close space-time genetic relations with various carbonatites. Several carbonatites types are recognized at Kola, including abundant calcite carbonatites (early- and late-stage), with subordinate amounts of late-stage dolomite carbonatites, and rarely magnesite, siderite and rhodochrosite carbonatites. In phoscorites and early-stage carbonatites the rare earth elements (REE) are distributed among the major minerals including calcite (up to 490 ppm), apatite (up to 4400 ppm in Kovdor and 3.5 wt.% REE2O3 in Khibina), and dolomite (up to 77 ppm), as well as accessory pyrochlore (up to 9.1 wt.% REE2O3) and zirconolite (up to 17.8 wt.% REE2O3). Late-stage carbonatites, at some localities, are strongly enriched in REE (up to 5.2 wt.% REE2O3 in Khibina) and the REE are major components in diverse major and minor minerals such as burbankite, carbocernaite, Ca- and Ba-fluocarbonates, ancylite and others. The rare earth minerals form two distinct mineral assemblages: primary (crystallized from a melt or carbohydrothermal fluid) and secondary (formed during metasomatic replacement). Stable (C–O) and radiogenic (Sr–Nd) isotopes data indicate that the REE minerals and their host calcite and/or dolomite have crystallized from a melt derived from the same mantle source and are co-genetic.  相似文献   

7.
Gas chromatography and other analytical techniques (EMR, PMR, and IR spectroscopy) were used to examine volatile components (CH4, C2-C3, CO2, CO, H2, H2O, and others) in alkaline rocks and minerals from the Ukrainian Shield (eight massifs and dikes of grorudites) and from the Khibina and Lovozero massifs in the Baltic Shield. The alkaline rocks from the Ukrainian Shield are mostly of Proterozoic (1.7–2.1 Ga) age. The alkaline rocks from the Kola Peninsula were confirmed to be rich in methane (21 ± 14 μl/g on average) and other hydrocarbons, whereas the analogous rocks from the Ukrainian Shield are poor in methane (2.1 ± 1.6 μl/g on average at a maximum of 14 μl/g). The latter rocks are richer in CO2, which is one of the major volatile components of alkaline rocks, including agpaitic nepheline syenites from the Kola Peninsula. The rocks from the Ukrainian Shield often have elevated contents of nitrogen (up to 20 μl/g). The reasons for the differences in the composition of volatile components of rocks from the Kola Peninsula and Ukrainian Shield are as follows: the agpaitic crystallization trends of large massifs in the Kola Peninsula and much less clearly pronounced agpaitic trends in the small massifs in the Ukrainian Shield, the affiliation of these rocks with different complexes, the deeper erosion levels of the Ukrainian alkaline massifs, different ages of these rocks, etc.  相似文献   

8.
Rare-earth element distribution in the rocks and minerals of the olivinite-clinopyroxenitemelilitolite-melteigite-ijolite-nepheline syenite series was analyzed to study the evolution trends of the alkaline-ultrabasic series of the Kola province. The contents of REE and some other trace elements were determined in olivine, melilite, clinopyroxene, nepheline, apatite, perovskite, titanite, and magnetite. It was established that distribution of most elements in the rocks of the Kovdor, Afrikanda, Vuoriyarvi, and other massifs differ from that in the Khibiny ultrabasic-alkaline series, being controlled by perovskite crystallization. Primary olivine-melanephelinite melts of the minor ultrabasic-alkaline massifs are characterized by the early crystallization of perovskite, the main REE-Nb-Ta-Th-U depository. Precipitation of perovskite simultaneously with olivine and clinopyroxene results in the depletion of residual magma in rare-earth elements and formation of low-REE- and HFSE ijolite and nepheline syenite derivatives. In contrast, the formation of the Khibiny ultrabasic-alkaline series was complicated by mixing of olivine melanephelinite magma with small batches of phonolitic melt. This led to a change in crystallization order of REE-bearing titanates and Ti-silicates and accumulation of the most incompatible elements in the late batches of the melt. As a result, the Khibiny ijolites have the highest REE contents, which are accommodated by high-REE apatite and titanite.  相似文献   

9.
Pyroaurite [Mg6Fe23+ (OH)16][(CO3)(H2O)] from the Kovdor Pluton on the Kola Peninsula, Russia, and the Långban deposit in Filipstad, Värmland, Sweden were studied with single crystal and powder X-ray diffraction, an electron microprobe, and Raman spectroscopy. Both samples are rhombohedral, space group R3?m, a = 3.126(3), c = 23.52(2) Å (Kovdor), and a = 3.1007(9), c = 23.34(1) (Långban). The powder XRD revealed only the 3R polytype. The ratio of di- and trivalent cations M2+: M3+ was determined as ~3.1–3.2 (Kovdor) and ~3.0 (Långban). The Raman spectroscopy of the Kovdor sample verified hydroxyl groups and/or water molecules in the mineral (absorption bands in the region of 3600–3500 cm–1) and carbonate groups (absorption bands in the region of 1346–1058 cm–1). Based on the data obtained, the studied samples should be identified as pyroaurite-3R (hydrotalcite group).  相似文献   

10.
Pyrochlore-group minerals are the main concentrators of niobium in carbonatites of the Belaya Zima alkaline pluton. Fluorcalciopyrochlore, kenopyrochlore and hydropyrochlore were identified in chemical composition. Their main characteristics are given: compositional variation, morphology, and zoning. During evolution from early calcite to late ankerite carbonatites, the UO2, TiO2, REE, and Y contents gradually increased. All carbonatite types are suggested to contain initial fluorcalciopyrochlore. However, in calcite–dolomite and ankerite carbonatites, it is partially or completely hydrated due to hydrothermal processes at the late stage of the pluton. This hydration resulted in the appearance of kenopyrochlore and hydropyrochlore due to removal of Ca, Na and F, and input of Ba, H2O, K, Si, Fe, and probably U and REE. At the last stage of the pluton, this hydrated pyrochlore was replaced by Fe-bearing columbite.  相似文献   

11.
Hydrocarbon gases (HCG) were studied in fluid inclusions from seven alkaline-ultramafic massifs of the Kola Peninsula. All the massifs (Sebljavr, Kovdor, Lesnaya Varaka, Ozernaya Varaka, Vuorijarvi, Turii Peninsula, and Salma) are central-type cratonic intrusions with ages of 360–410 Ma. Previous He isotopic investigations showed that the massifs have high 3He/4He ratios (up to 3.3 × 10?5), which are usually higher than the upper mantle value. Similar to He, HCG were extracted by crushing. The HCG were analyzed for CH4 (main component), C2H6, and C3H8. A comparison of HCG component contents with He isotope abundances and ratios showed that the HCG were probably not supplied by mantle-derived melts. Their formation during a postmagmatic stage at relatively low temperatures is our favored model.  相似文献   

12.
Manganese-rich rocks from the island of Andros (Cyclades/Greece) contain cymrite (BaAl2Si2O8·H2O) and celsian. The textural relationships indicate replacement of celsian by cymrite. Several microprobe analyses of cymrites show a solid solution of 0.7–6.1 mole% KAlSi3O8·H2O. The relic celsians have similar K contents. Thus the described rocks from Andros represent the first natural example for the reaction celsian+water= cymrite. The rocks from Andros underwent an Eocene high pressure metamorphism. Lateron, the high pressure parageneses were nearly effaced by a Late Oligocene Barrovian type metamorphism. It is assumed that both cymrite and celsian were formed at conditions near the reaction curve celsianss+water= cymritess during the Barrovian type event.  相似文献   

13.
Mont Semiol (also called Mont Semiouse), Montbrison, Loire, France, is the only place where the zeolite offrettite is known to occur. Now, a new mineral, Mazzite, has been found in the same locality. It occurs in the form of tiny needles, and its properties closely match those of the synthetic “molecular sieve” Ω. The chemical formula is Na0.03K1.91Ca1.35Mg1.99[Al9.77Si26.54O72]·28.03 H2O. Lattice dimensions are a=18.392 Å, c=7.646 Å, with P 63/mmc as most probable space group; Dcalc.=2.108. Offrettite and mazzite occur in association with phillipsite, chabazite, calcite and siderite. The mineral has been so named in honour of Prof. Fiorenzo Mazzi.  相似文献   

14.
Andradite-rich garnet is a common U-bearing mineral in a variety of alkalic igneous rocks and skarn deposits, but has been largely neglected as a U–Pb chronometer. In situ laser ablation-inductively coupled plasma mass spectrometry U–Pb dates of andradite-rich garnet from a syenite pluton and two iron skarn deposits in the North China craton demonstrate the suitability and reliability of the mineral in accurately dating magmatic and hydrothermal processes. Two hydrothermal garnets from the iron skarn deposits have homogenous cores and zoned rims (Ad86Gr11 to Ad98Gr1) with 22–118 ppm U, whereas one magmatic garnet from the syenite is texturally and compositionally homogenous (Ad70Gr22 to Ad77Gr14) and has 0.1–20 ppm U. All three garnets have flat time-resolved signals obtained from depth profile analyses for U, indicating structurally bound U. Uranium is correlated with REE in both magmatic and hydrothermal garnets, indicating that the incorporation of U into the garnet is largely controlled by substitution mechanisms. Two hydrothermal garnets yielded U–Pb dates of 129 ± 2 (2σ; MSWD = 0.7) and 130 ± 1 Ma (2σ; MSWD = 0.5), indistinguishable from zircon U–Pb dates of 131 ± 1 and 129 ± 1 Ma for their respective ore-related intrusions. The magmatic garnet has a U–Pb age of 389 ± 3 Ma (2σ; MSWD = 0.6), consistent with a U–Pb zircon date of 388 ± 2 Ma for the syenite. The consistency between the garnet and zircon U–Pb dates confirms the reliability and accuracy of garnet U–Pb dating. Given the occurrence of andradite-rich garnet in alkaline and ultramafic magmatic rocks and hydrothermal ore deposits, our results highlight the potential utilization of garnet as a powerful U–Pb geochronometer for dating magmatism and skarn-related mineralization.  相似文献   

15.
A new mineral, yegorovite, has been identified in the late hydrothermal, low-temperature assemblage of the Palitra hyperalkaline pegmatite at Mt. Kedykverpakhk, Lovozero alkaline pluton, Kola Peninsula, Russia. The mineral is intimately associated with revdite and megacyclite, earlier natrosilite, microcline, and villiaumite. Yegorovite occurs as coarse, usually split prismatic (up to 0.05 × 0.15 × 1 mm) or lamellar (up to 0.05 × 0.7 × 0.8 mm) crystals. Polysynthetic twins and parallel intergrowths are typical. Mineral individuals are combined in bunches or chaotic groups (up to 2 mm); radial-lamellar clusters are less frequent. Yegorovite is colorless, transparent with vitreous luster. Cleavage is perfect parallel to (010) and (001). Fracture is splintery; crystals are readily split into acicular fragments. The Mohs hardness is ~2. Density is 1.90(2) g/cm3 (meas) and 1.92 g/cm3 (calc). Yegorovite is biaxial (?), with α = 1.474(2), β = 1.479(2), and γ = 1.482(2), 2V meas > 70°, 2V calc = 75°. The optical orientation is Xa ~ 15°, Y = c, Z = b. The IR spectrum is given. The chemical composition determined using an electron microprobe (H2O determined from total deficiency) is (wt %): 23.28 Na2O, 45.45 SiO2, 31.27 H2Ocalc; the total is 100.00. The empirical formula is Na3.98Si4.01O8.02(OH)3.98 · 7.205H2O. The idealized formula is Na4[Si4O8(OH)4] · 7H2O. Yegorovite is monoclinic, space group P21/c. The unit-cell dimensions are a = 9.874, b= 12.398, c = 14.897 Å, β = 104.68°, V = 1764.3 Å3, Z = 4. The strongest reflections in the X-ray powder pattern (d, Å (I, %)([hkl]) are 7.21(70)[002], 6.21(72)[012, 020], 4.696(44)[022], 4.003(49)[211], 3.734(46)[\(\bar 2\) 13], 3.116(100)[024, 040], 2.463(38)[\(\bar 4\)02, \(\bar 2\)43]. The crystal structure was studied by single-crystal method, R hkl = 0.0745. Yegorovite is a representative of a new structural type. Its structure consists of single chains of Si tetrahedrons [Si4O8(OH)4]∞ and sixfold polyhedrons of two types: [NaO(OH)2(H2O)3] and [NaO(OH)(H2O)4] centered by Na. The mineral was named in memory of Yu. K. Yegorov-Tismenko (1938–2007), outstanding Russian crystallographer and crystallochemist. The type material of yegorovite has been deposited at the Fersman Mineralogical Museum of Russian Academy of Sciences, Moscow.  相似文献   

16.
Textural, electron microprobe and whole rock geochemical evidence from carbonatites and associated silicate rocks on Alnö Island, Sweden, suggest that the carbonatite, at the time of emplacement, could have been an (almost) pure CaCO3 liquid with a high volatile (H2O–CO2) content and that most silicate minerals, which are ubiquitously present, are either (1) assimilated from the surrounding wall rock, by progressive and coupled fragmentation and corrosion; or (2) by‐products of corrosive interaction between the carbonatite liquid and the wall rock. This interpretation is supported by balancing a reaction to describe interaction between carbonatite and a cpx + ne‐bearing (ijolite) wall rock. Although our analysis does not preclude the possibility that fenitizing agents (e.g. Na, Fe) were transported by the carbonatite liquid, these components are not required to drive the observed mineralogical changes in the carbonatite.  相似文献   

17.
Middendorfite, a new mineral species, has been found in a hydrothermal assemblage in Hilairite hyperperalkaline pegmatite at the Kirovsky Mine, Mount Kukisvumchorr apatite deposit, Khibiny alkaline pluton, Kola Peninsula, Russia. Microcline, sodalite, cancrisilite, aegirine, calcite, natrolite, fluorite, narsarsukite, labuntsovite-Mn, mangan-neptunite, and donnayite are associated minerals. Middendorfite occurs as rhombshaped lamellar and tabular crystals up to 0.1 × 0.2 × 0.4 mm in size, which are combined in worm-and fanlike segregations up to 1 mm in size. The color is dark to bright orange, with a yellowish streak and vitreous luster. The mineral is transparent. The cleavage (001) is perfect, micalike; the fracture is scaly; flakes are flexible but not elastic. The Mohs hardness is 3 to 3.5. Density is 2.60 g/cm3 (meas.) and 2.65 g/cm3 (calc.). Middendorfite is biaxial (?), α = 1.534, β = 1.562, and γ = 1.563; 2V (meas.) = 10°. The mineral is pleochroic strongly from yellowish to colorless on X through brown on Y and to deep brown on Z. Optical orientation: X = c. The chemical composition (electron microprobe, H2O determined with Penfield method) is as follows (wt %): 4.55 Na2O, 10.16 K2O, 0.11 CaO, 0.18 MgO, 24.88 MnO, 0.68 FeO, 0.15 ZnO, 0.20 Al2O3, 50.87 SiO2, 0.17 TiO2, 0.23 F, 7.73 H2O; ?O=F2?0.10, total is 99.81. The empirical formula calculated on the basis of (Si,Al)12(O,OH,F)36 is K3.04(Na2.07Ca0.03)Σ2.10(Mn4.95Fe0.13Mg0.06Ti0.03Zn0.03)Σ5.20(Si11.94Al0.06)Σ12O27.57(OH)8.26F0.17 · 1.92H2O. The simplified formula is K3Na2Mn5Si12(O,OH)36 · 2H2O. Middenforite is monoclinic, space group: P21/m or P21. The unit cell dimensions are a = 12.55, b = 5.721, c = 26.86 Å; β = 114.04°, V = 1761 Å3, Z = 2. The strongest lines in the X-ray powder pattern [d, Å, (I)(hkl)] are: 12.28(100)(002), 4.31(81)(11\(\overline 4 \)), 3.555(62)(301, 212), 3.063(52)(008, 31\(\overline 6 \)), 2.840(90)(312, 021, 30\(\overline 9 \)), 2.634(88)(21\(\overline 9 \), 1.0.\(\overline 1 \)0, 12\(\overline 4 \)), 2.366(76)(22\(\overline 6 \), 3.1.\(\overline 1 \)0, 32\(\overline 3 \)), 2.109(54)(42–33, 42–44, 51\(\overline 9 \), 414), 1.669(64)(2.2.\(\overline 1 \)3, 3.2.\(\overline 1 \)3, 62\(\overline 3 \), 6.1.\(\overline 1 \)3), 1.614(56)(5.0.\(\overline 1 \)6, 137, 333, 71\(\overline 1 \)). The infrared spectrum is given. Middendorfite is a phyllosilicate related to bannisterite, parsenttensite, and the minerals of the ganophyllite and stilpnomelane groups. The new mineral is named in memory of A.F. von Middendorff (1815–1894), an outstanding scientist, who carried out the first mineralogical investigations in the Khibiny pluton. The type material of middenforite has been deposited at the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow.  相似文献   

18.
This paper reports the results of U-Pb geochronological and Sr-Nd isotopic geochemical investigations (LA-ICP-MS) for perovskite, apatite, titanite, and calcite from the ultrabasic-alkaline rocks of the Paleozoic Kola alkaline province of the Fennoscandian Shield. Based on the obtained data, two main stages were distinguished in the history of Paleozoic intrusions in this province: (1) formation of ultrabasic-alkaline series of the Kovdor, Afrikanda, Turiy Mys, Ozernaya Varaka, Lesnaya Varaka, and other massifs, as well as the ultrabasic-alkaline series of the Khibiny and Lovozero massifs (385–375 Ma) and (2) formation of agpaitic syenites in the Khibiny and Lovozero calderas (375–360 Ma) and related apatite-nepheline deposits (370 Ma). The Sr-Nd isotopic geochemical investigations of perovskite, apatite, and titanite, which are the main hosts for the rare earth elements and Sr in ultrabasic-alkaline rocks, showed that variations in the Sr and Nd isotopic characteristics of these rocks are related to a large extent to crustal contamination during the ascent of their parental melts toward the surface and crystallization in magma chambers. As a result, the Sr and Nd isotopic characteristics of late minerals (apatite and titanite) do not reflect the initial Sr and Nd isotopic ratios of the primary magma. Initial ratios in the primary mantle melts are most closely approximated by the isotopic characteristics of phases crystallizing during early stages (e.g., perovskite).  相似文献   

19.
A new mineral depmeierite, the first cancrinite-group member with the species-forming extraframework anion PO 4 3? , has been found at Mt. Karnasurt in the Lovozero alkaline pluton on the Kola Peninsula in Russia. Natrolite and depmeierite are the major components of a hydrothermal peralkaline veinlet 1.5 cm thick, which cross cuts the foyaite-urtite-lujavrite complex. The associated minerals are steenstrupine-(Ce), vuonnemite, epistolite, sodalite, aegirine, serandite, natisite, and vitusite-(Ce). Depmeierite occurs as colorless transparent isometric grains up to 1 cm in size. Its luster is vitreous. The mineral is brittle, and its cleavage (100) is perfect. Its Mohs hardness is 5, and D(meas) = 2.321(1) and D(calc) = 2.313 g/cm3. Depmeierite is optically biaxial positive, ω = 1.493(2), and ? = 1.497(2). The IR spectrum is given. The chemical composition is as follows (wt %, the average of 10 microprobe analyses with the H2O and CO2 determined by selective sorption): 23.04 Na2O, 0.54 K2O, 0.03 Fe2O3, 29.07 Al2O3, 36.48 SiO2, 3.30 P2O5, 0.08 SO3, 0.97 CO2, and 5.93 H2O; the total is 99.44. The empirical formula based on (Si,Al)12O24 is (Na758K0.12)Σ7.70(Si6.19Al5.81O24)[(PO4)0.47(CO3)0.22(OH)0.02(SO4)0.01]Σ0.72 · 3.345H2O. The simplified formula is Na8[Al6Si6O24](CO3)1 ? x · 3H2O (x < 0.05). Depmeierite is hexagonal with space group P63, and the unit-cell dimensions are a = 12.7345(2), c = 5.1798(1), V = 727.46(2) Å3, and Z = 1. The strongest reflections of the X-ray powder pattern (d, Å (I, %) [hkl]) are as follows: 6.380(30) [110], 4.695(91) [101], 3.681(37) [300], 3.250(100) [211], 2.758 (33) [400], 2.596(31) [002], and 2.121(24) [330, 302]. The crystal structure was studied using a single crystal, and R hkl = 0.0362. Depmeierite differs from cancrinite in the development of wide channels containing Na cations, H2O molecules, prevailing PO 4 3? -anionic groups, and CO 3 2? . The mineral is named in honor of the German crystallographer Wulf Depmeier (born in 1944). The type specimen is deposited at the Fersman Mineralogical Museum of the Russian Academy of Sciences in Moscow. The cancrinite sensu stricto subgroup separated within the cancrinite group comprises six minerals with AB frameworks, the smallest unit cell is (a ≈ 12.55–12.75, c ≈ 5.1–5.4 Å), and the chain […Na…H2O…] exists in narrow channels: cancrinite, vishnevite, cancrisilite, hydroxycancrinite, kyanoxalite, and depmeierite. The P-bearing varieties of the cancrinite-group minerals are discussed, as well as the formation conditions of the noncarbonate members of the group related to intrusive alkaline complexes.  相似文献   

20.
New U–Pb and Sm–Nd isotopic geochronological data are reported for rocks of the Monchegorsk pluton and massifs of its southern framing, which contain low-sulfide PGE ores. U–Pb zircon ages have been determined for orthopyroxenite (2506 ± 3 Ma) and mineralized norite (2503 ± 8 Ma) from critical units of Monchepluton at the Nyud-II deposit, metaplagioclasite (2496 ± 4 Ma) from PGE-bearing reef at the Vurechuaivench deposit, and host metagabbronorite (2504.3 ± 2.2. Ma); the latter is the youngest in Monchepluton. In the southern framing of Monchepluton, the following new datings are now available: U–Pb zircon ages of mineralized metanorite from the lower marginal zone (2504 ± 1 Ma) and metagabbro from the upper zone (2478 ± 20 Ma) of the South Sopcha PGE deposit, as well as metanorite from the Lake Moroshkovoe massif (2463.1 ± 2.7 Ma). The Sm–Nd isochron (rock-forming minerals, sulfides, whole-rock samples) age of orthopyroxenite from the Nyud-II deposit (2497 ± 36 Ma) is close to results obtained using the U–Pb method. The age of harzburgite from PGE-bearing 330 horizon reef of the Sopcha massif related to Monchepluton is 2451 ± 64 Ma at initial εNd =–6.0. The latter value agrees with geological data indicating that this reef was formed due to the injection of an additional portion of high-temperature ultramafic magma, which experienced significant crustal contamination. The results of Sm–Nd isotopic geochronological study of ore-bearing metaplagioclasite from PGE reef of the Vurechuaivench deposit (2410 ± 58 Ma at εNd =–2.4) provide evidence for the appreciable effect of metamorphic and hydrothermal metasomatic alterations on PGE ore formation. The Sm–Nd age of mineralized norite from the Nyud-II deposit is 1940 ± 32 Ma at initial εNd =–7.8. This estimate reflects the influence of the Svecofennian metamorphism on the Monchepluton ore–magmatic system, which resulted in the rearrangement of the Sm–Nd system and its incomplete closure. Thus, the new isotopic geochronological data record the polychronous development of the Monchegorsk ore–magmatic systems and the massifs in its southern framing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号