首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
The kinetics of calcite precipitation induced in response to the hydrolysis of urea by Bacillus pasteurii at different temperatures in artificial groundwater (AGW) was investigated. The hydrolysis of urea by B. pasteurii exhibited a temperature dependence with first order rate constants of 0.91 d−1 at 20°C, 0.18 d−1 at 15°C, and 0.09 d−1 at 10°C. At all temperatures, the pH of the AGW increased from 6.5 to 9.3 in less than 1 d. Dissolved Ca2+ concentrations decreased in an asymptotic fashion after 1 d at 20°C and 15°C, and 2 d at 10°C. The loss of Ca2+ from solution was accompanied by the development of solid phase precipitates that were identified as calcite by X-ray diffraction. The onset of calcite precipitation at each temperature occurred after similar amounts of urea were hydrolyzed, corresponding to 8.0 mM NH4+. Specific rate constants for calcite precipitation and critical saturation state were derived from time course data following a second-order chemical affinity-based rate law. The calcite precipitation rate constants and critical saturation states varied by less than 10% between the temperatures with mean values of 0.16 ± 0.01 μmoles L−1 d−1 and 73 ±3, respectively. The highest calcite precipitation rates (ca. 0.8 mmol L−1 d−1) occurred near the point of critical saturation. While unique time course trajectories of dissolved Ca2+ concentrations and saturation state values were observed at different temperatures, calcite precipitation rates all followed the same asymptotic profile decreasing with saturation state regardless of temperature. This emphasizes the fundamental kinetic dependence of calcite precipitation on saturation state, which connects the otherwise dissimilar temporal patterns of calcite precipitation that evolved under the different temperature and biogeochemical regimes of the experiments.  相似文献   

2.
Ureolysis-driven calcite precipitation has potential to seal porosity and fracture networks in rocks thus preventing groundwater flow and contaminant transport. In this study urea hydrolysis and calcite precipitation rates for the model bacterium Sporosarcina pasteurii were compared with those of indigenous groundwater communities under conditions required to precipitate large volumes of calcite (up to 50 g L−1). We conducted microcosm experiments in oxic artificial and anoxic natural groundwaters (collected from the Permo-Triassic sandstone aquifer at Birmingham, UK) that were inoculated with aerobically grown S. pasteurii. The rate constants for urea hydrolysis, kurea, ranged between 0.06 and 3.29 d−1 and were only affected by inoculum density. Higher Ca2+ concentration (50-500 mM Ca2+) as well as differences in fO2 did not inhibit the ureolytic activity of S. pasteurii and did not significantly impact kurea. These results demonstrate that S. pasteurii has potential to improve calcite precipitation in both oxic and anoxic groundwaters, especially if indigenous communities lack ureolytic activity. Urea hydrolysis by indigenous groundwater communities was investigated in anoxic, natural groundwaters amended with urea and CaCl2. A notable increase in ureolysis rates was measured only when these communities were stimulated with dilute nutrients (with best results from blackstrap molasses). Furthermore, there was a considerable lag time (12-20 days) before ureolysis and calcite precipitation began. Calculated ureolysis rate constants, kurea, ranged between 0.03 and 0.05 d−1 and were similar to kurea values produced by S. pasteurii at low inoculum densities. Overall, this comparative study revealed that the growth of ureolytic microorganisms present within groundwaters can easily be stimulated to enhance rates of urea hydrolysis in the subsurface, and thus can be used to induce calcite precipitation in these environments. The time required for urea hydrolysis to begin is almost instantaneous if an inoculum of S. pasteurii is included, while it may take several weeks for ureolytic groundwater communities to grow and become ureolytically active.  相似文献   

3.
Strontium incorporation into calcite generated by bacterial ureolysis was investigated as part of an assessment of a proposed remediation approach for 90Sr contamination in groundwater. Urea hydrolysis produces ammonium and carbonate and elevates pH, resulting in the promotion of calcium carbonate precipitation. Urea hydrolysis by the bacterium Bacillus pasteurii in a medium designed to mimic the chemistry of the Snake River Plain Aquifer in Idaho resulted in a pH rise from 7.5 to 9.1. Measured average distribution coefficients (DEX) for Sr in the calcite produced by ureolysis (0.5) were up to an order of magnitude higher than values reported in the literature for natural and synthetic calcites (0.02-0.4). They were also higher than values for calcite produced abiotically by ammonium carbonate addition (0.3). The precipitation of calcite in these experiments was verified by X-ray diffraction. Time-of-flight secondary ion mass spectrometry (ToF SIMS) depth profiling (up to 350 nm) suggested that the Sr was not merely sorbed on the surface, but was present at depth within the particles. X-ray absorption near edge spectra showed that Sr was present in the calcite samples as a solid solution. The extent of Sr incorporation appeared to be driven primarily by the overall rate of calcite precipitation, where faster precipitation was associated with greater Sr uptake into the solid. The presence of bacterial surfaces as potential nucleation sites in the ammonium carbonate precipitation treatment did not enhance overall precipitation or the Sr distribution coefficient. Because bacterial ureolysis can generate high rates of calcite precipitation, the application of this approach is promising for remediation of 90Sr contamination in environments where calcite is stable over the long term.  相似文献   

4.
The enzyme urease drives the hydrolysis of urea leading to the release of ammonium ions and bicarbonate; in the presence of calcium, the rise in pH leads to increased calcium carbonate saturation and the subsequent precipitation of calcite. Although such alkalinizing ureolysis is widespread in nature, most studies have focussed on bacteria (i.e. indigenous communities or urease-active Sporosarcina pasteurii) for calcite precipitation technologies. In this study, urease-active jack bean meal (from the legume Canavalia ensiformis) was used to drive calcite precipitation. The rates of ureolysis (k urea ), determined from measured NH4 +, enabled a direct comparison to microbial ureolysis rates reported in literature. It is also demonstrated that a simple single reaction model approach can simulate calcite precipitation very effectively (3–6 % normalised root-mean-square deviation). To investigate the reduction of permeability in porous media, jack bean meal (0.5 g L?1) and solutions (400 mM urea and CaCl2) were simultaneously pumped into a borosilicate bead column. One-dimensional magnetic resonance profiling techniques were used, non-invasively, for the first time to quantify the porosity changes following calcite precipitation. In addition, two-dimensional slice selective magnetic resonance images (resolution of ~0.5 × 1.0 mm) revealed that the exact location of calcite deposition was within the first 10 mm of the column. Column sacrifice and acid digestion also confirmed that 91.5 % of calcite was located within the first 14 mm of the column. These results have important implications for the design of future calcite precipitation technologies and present a possible alternative to the well known bacterial approaches.  相似文献   

5.
Over the last decade, sea surface temperature (SST) reconstructed from the Mg/Ca ratio of foraminiferal calcite has increasingly been used, in combination with the δ18O signal measured on the same material, to calculate the δ18Ow, a proxy for sea surface salinity (SSS). A number of studies, however, have shown that the Mg/Ca ratio is also sensitive to other parameters, such as pH or , and salinity. To increase the reliability of foraminiferal Mg/Ca ratios as temperature proxies, these effects should be quantified in isolation. Individuals of the benthic foraminifera Ammonia tepida were cultured at three different salinities (20, 33 and 40 psu) and two temperatures (10-15 °C). The Mg/Ca and Sr/Ca ratios of newly formed calcite were analyzed by Laser Ablation ICP-MS and demonstrate that the Mg concentration in A. tepida is overall relatively low (mean value per experimental condition between 0.5 and 1.3 mmol/mol) when compared to other foraminiferal species, Sr being similar to other foraminiferal species. The Mg and Sr incorporation are both enhanced with increasing temperatures. However, the temperature dependency for Sr disappears when the distribution factor DSr is plotted as a function of calcite saturation state (Ω). This suggests that a kinetic process related to Ω is responsible for the observed dependency of Sr incorporation on sea water temperature. The inferred relative increase in DMg per unit salinity is 2.8% at 10 °C and 3.3% at 15 °C, for the salinity interval 20-40 psu. This implies that a salinity increase of 2 psu results in enhanced Mg incorporation equivalent to 1 °C temperature increase. The DSr increase per unit salinity is 0.8% at 10 °C and 1.3% at 15 °C, for the salinity interval 20-40 psu.  相似文献   

6.
Coral proxy records of sea surface temperature (SST) and hydrological balance have become important tools in the field of tropical paleoclimatology. However, coral aragonite is subject to post-depositional diagenetic alteration in both the marine and vadose environments. To understand the impact of diagenesis on coral climate proxies, two mid-Holocene Porites corals from raised reefs on Muschu Island, Papua New Guinea, were analysed for Sr/Ca, δ18O, and δ13C along transects from 100% aragonite to 100% calcite. Thin-section analysis showed a characteristic vadose zone diagenetic sequence, beginning with leaching of primary aragonite and fine calcite overgrowths, transitional to calcite void filling and neomorphic, fabric selective replacement of the coral skeleton. Average calcite Sr/Ca and δ18O values were lower than those for coral aragonite, decreasing from 0.0088 to 0.0021 and −5.2 to −8.1‰, respectively. The relatively low Sr/Ca of the secondary calcite reflects the Sr/Ca of dissolving phases and the large difference between aragonite and calcite Sr/Ca partition coefficients. The decrease in δ18O of calcite relative to coral aragonite is a function of the δ18O of precipitation. Carbon-isotope ratios in secondary calcite are variable, though generally lower relative to aragonite, ranging from −2.5 to −10.4%. The variability of δ13C in secondary calcite reflects the amount of soil CO2 contributing 13C-depleted carbon to the precipitating fluids. Diagenesis has a greater impact on Sr/Ca than on δ18O; the calcite compositions reported here convert to SST anomalies of 115°C and 14°C, respectively. Based on calcite Sr/Ca compositions in this study and in the literature, the sensitivity of coral Sr/Ca-SST to vadose-zone calcite diagenesis is 1.1 to 1.5°C per percent calcite. In contrast, the rate of change in coral δ18O-SST is relatively small (−0.2 to 0.2°C per percent calcite). We show that large shifts in δ18O, reported for mid-Holocene and Last Interglacial corals with warmer than present Sr/Ca-SSTs, cannot be caused by calcite diagenesis. Low-level calcite diagenesis can be detected through X-ray diffraction techniques, thin section analysis, and high spatial resolution sampling of the coral skeleton and thus should not impede the production of accurate coral paleoclimate reconstructions.  相似文献   

7.
Specimens of two species of planktic foraminifera, Globigerinoides ruber and Globigerinella siphonifera, were grown under controlled laboratory conditions at a range of temperatures (18-31 °C), salinities (32-44 psu) and pH levels (7.9-8.4). The shells were examined for their calcium isotope compositions (δ44/40Ca) and strontium to calcium ratios (Sr/Ca) using Thermal Ionization Mass Spectrometry and Inductively Coupled Plasma Mass Spectrometry. Although the total variation in δ44/40Ca (∼0.3‰) in the studied species is on the same order as the external reproducibility, the data set reveals some apparent trends that are controlled by more than one environmental parameter. There is a well-defined inverse linear relationship between δ44/40Ca and Sr/Ca in all experiments, suggesting similar controls on these proxies in foraminiferal calcite independent of species. Analogous to recent results from inorganically precipitated calcite, we suggest that Ca isotope fractionation and Sr partitioning in planktic foraminifera are mainly controlled by precipitation kinetics. This postulation provides us with a unique tool to calculate precipitation rates and draws support from the observation that Sr/Ca ratios are positively correlated with average growth rates. At 25 °C water temperature, precipitation rates in G. siphonifera and G. ruber are calculated to be on the order of 2000 and 3000 μmol/m2/h, respectively. The lower δ44/40Ca observed at ?29 °C in both species is consistent with increased precipitation rates at high water temperatures. Salinity response of δ44/40Ca (and Sr/Ca) in G. siphonifera implies that this species has the highest precipitation rates at the salinity of its natural habitat, whereas increasing salinities appear to trigger higher precipitation rates in G. ruber. Isotope effects that cannot be explained by precipitation rate in planktic foraminifera can be explained by a biological control, related to a vacuolar pathway for supply of ions during biomineralization and a pH regulation mechanism in these vacuoles. In case of an additional pathway via cross-membrane transport, supplying light Ca for calcification, the δ44/40Ca of the reservoir is constrained as −0.2‰ relative to seawater. Using a Rayleigh distillation model, we calculate that calcification occurs in a semi-open system, where less than half of the Ca supplied by vacuolization is utilized for calcite precipitation. Our findings are relevant for interpreting paleo-proxy data on δ44/40Ca and Sr/Ca in foraminifera as well as understanding their biomineralization processes.  相似文献   

8.
Partitioning of strontium during spontaneous calcite formation was experimentally studied using an advanced CO2-diffusion technique. Results at different precipitation rates and T = 5, 25, and 40 °C show that at constant temperature Sr incorporation into calcite is controlled by the precipitation rate (R in μmol/m2/h) according to the individual expressions
  相似文献   

9.
Ca isotope fractionation during inorganic calcite formation was experimentally studied by spontaneous precipitation at various precipitation rates (1.8 < log R < 4.4 μmol/m2/h) and temperatures (5, 25, and 40 °C) with traces of Sr using the CO2 diffusion technique.Results show that in analogy to Sr/Ca [see Tang J., Köhler S. J. and Dietzel M. (2008) Sr2+/Ca2+ and 44Ca/40Ca fractionation during inorganic calcite formation: I. Sr incorporation. Geochim. Cosmochim. Acta] the 44Ca/40Ca fractionation during calcite formation can be followed by the Surface Entrapment Model (SEMO). According to the SEMO calculations at isotopic equilibrium no fractionation occurs (i.e., the fractionation coefficient αcalcite-aq = (44Ca/40Ca)s/(44Ca/40Ca)aq = 1 and Δ44/40Cacalcite-aq = 0‰), whereas at disequilibrium 44Ca is fractionated in a primary surface layer (i.e., the surface entrapment factor of 44Ca, F44Ca < 1). As a crystal grows at disequilibrium, the surface-depleted 44Ca is entrapped into the newly formed crystal lattice. 44Ca depletion in calcite can be counteracted by ion diffusion within the surface region. Our experimental results show elevated 44Ca fractionation in calcite grown at high precipitation rates due to limited time for Ca isotope re-equilibration by ion diffusion. Elevated temperature results in an increase of 44Ca ion diffusion and less 44Ca fractionation in the surface region. Thus, it is predicted from the SEMO that an increase in temperature results in less 44Ca fractionation and the impact of precipitation rate on 44Ca fractionation is reduced.A highly significant positive linear relationship between absolute 44Ca/40Ca fractionation and the apparent Sr distribution coefficient during calcite formation according to the equation
Δ44/40Cacalcite-aq=(1.90±0.26)·logDSr2.83±0.28  相似文献   

10.
Calcite is frequently cited as a source of excess Ca, Sr and alkalinity in solutes discharging from silicate terrains yet, no previous effort has been made to assess systematically the overall abundance, composition and petrogenesis of accessory calcite in granitoid rocks. This study addresses this issue by analyzing a worldwide distribution of more than 100 granitoid rocks. Calcite is found to be universally present in a concentration range between 0.028 to 18.8 g kg−1 (mean = 2.52 g kg−1). Calcite occurrences include small to large isolated anhedral grains, fracture and cavity infillings, and sericitized cores of plagioclase. No correlation exists between the amount of calcite present and major rock oxide compositions, including CaO. Ion microprobe analyses of in situ calcite grains indicate relatively low Sr (120 to 660 ppm), negligible Rb and 87Sr/86Sr ratios equal to or higher than those of coexisting plagioclase. Solutes, including Ca and alkalinity produced by batch leaching of the granitoid rocks (5% CO2 in DI water for 75 d at 25°C), are dominated by the dissolution of calcite relative to silicate minerals. The correlation of these parameters with higher calcite concentrations decreases as leachates approach thermodynamic saturation. In longer term column experiments (1.5 yr), reactive calcite becomes exhausted, solute Ca and Sr become controlled by feldspar dissolution and 87Sr/86Sr by biotite oxidation. Some accessory calcite in granitoid rocks is related to intrusion into carbonate wall rock or produced by later hydrothermal alteration. However, the ubiquitous occurrence of calcite also suggests formation during late stage (subsolidus) magmatic processes. This conclusion is supported by petrographic observations and 87Sr/86Sr analyses. A review of thermodynamic data indicates that at moderate pressures and reasonable CO2 fugacities, calcite is a stable phase at temperatures of 400 to 700°C.  相似文献   

11.
Distribution coefficients, as a function of precipitation rate, were determined for the metals Sr2+, Co2+, Mn2+ and Cd2+in calcite. A pH-stat was used to maintain a constant degree of-saturation, and hence precipitation rate, during each coprecipitation run. The precipitation rate was proportional to the degree of supersaturation and the mass of seed crystal introduced. Distribution coefficients (λ) as a function of rate were determined using radioactive isotopes for solutions with saturations Ω = 1 to Ω = 5.5. Strontium distribution coefficients increased with increasing precipitation rate, while Co, Mn and Cd distribution coefficients decreased with increasing precipitation rate. The following rate expressions (at 25°C) were derived: logλSr = 0.249 log R ?1.57logλMn = ?0.266 log R + 1.35logλCo = ?0.173 log R + 0.68logλCd = ?0.194 log R + 1.46 where R is the observed precipitation rate in nmoles CaCO3 per mg seed crystal per min.In separate experiments the uptake of radioactive isotopes was monitored during the recrystallization of calcite seed crystals. Rates of recrystallization were from 100 to 10, 000 times slower than the pH-stat experiments, but yielded distribution coefficients consistent with the above rate expressions.Using gross estimates of biogenic crystal growth rates, aragonite to calcite transformation rates, and the above Sr rate expression, biogenic calcite and diagenetic calcite Sr contents are estimated. These experiments indicate that in addition to solution composition, precipitation rate is a significant factor influencing the trace metal content of naturally occurring calcite.  相似文献   

12.
Calcium isotope fractionation in calcite and aragonite   总被引:1,自引:0,他引:1  
Calcium isotope fractionation was measured on skeletal aragonite and calcite from different marine biota and on inorganic calcite. Precipitation temperatures ranged from 0 to 28°C. Calcium isotope fractionation shows a temperature dependence in accordance with previous observations: 1000 · ln(αcc) = −1.4 + 0.021 · T (°C) for calcite and 1000 · ln(αar) = −1.9 + 0.017 · T (°C) for aragonite. Within uncertainty the temperature slopes are identical for the two polymorphs. However, at all temperatures calcium isotopes are more fractionated in aragonite than in calcite. The offset in δ44/40Ca is about 0.6‰. The underlying mechanism for this offset may be related to the different coordination numbers and bond strengths of the calcium ions in calcite and aragonite crystals, or to different Ca reaction behavior at the solid-liquid interface. Recently, the observed temperature dependence of the Ca isotope fractionation was explained quantitatively by the temperature control on precipitation rates of calcium carbonates in an experimental setting (Lemarchand et al., 2004). We show that this mechanism can in principle also be applied to CaCO3 precipitation in natural environments in normal marine settings. Following this model, Ca isotope fractionation in marine Ca carbonates is primarily controlled by precipitation rates. On the other hand the larger Ca isotope fractionation of aragonite compared to calcite can not be explained by different precipitation rates. The rate control model of Ca isotope fractionation predicts a strong dependence of the Ca isotopic composition of carbonates on ambient CO32− concentration. While this model is in general accordance with our observations in marine carbonates, cultured specimens of the planktic foraminifer Orbulina universa show no dependence of Ca-isotope fractionation on the ambient CO32− concentration. The latter observation implies that the carbonate chemistry in the calcifying vesicles of the foraminifer is independent from the ambient carbonate ion concentration of the surrounding water.  相似文献   

13.
Two strains of moderately halophilic bacteria were grown in aerobic culture experiments containing gel medium to determine the Sr partition coefficient between dolomite and the medium from which it precipitates at 15 to 45 °C. The results demonstrate that Sr incorporation in dolomite does occur not by the substitution of Ca, but rather by Mg. They also suggest that Sr partitioning between the culture medium and the minerals is better described by the Nernst equation (DSrdol = Srdol/Srbmi), instead of the Henderson and Kracek equation (DSrdol = (Sr/Ca)dol/(Sr/Ca)solution. The maximum value for DSrdol occurs at 15 °C in cultures with and without sulfate, while the minimum values occur at 35 °C, where the bacteria exhibit optimal growth. For experiments at 25, 35 and 45 °C, we observed that DSrdol values are greater in cultures with sulfate than in cultures without sulfate, whereas DSrdol values are smaller in cultures with sulfate than in cultures without sulfate at 15 °C.Together, our observations suggest that DSrdol is apparently related to microbial activity, temperature and sulfate concentration, regardless of the convention used to assess the DSrdol. These results have implications for the interpretation of depositional environments of ancient dolomite. The results of our culture experiments show that higher Sr concentrations in ancient dolomite could reflect microbial mediated primary precipitation. In contrast, previous interpretations concluded that high Sr concentrations in ancient dolomites are an indication of secondary replacement of aragonite, which incorporates high Sr concentrations in its crystal lattice, reflecting a diagenetic process.  相似文献   

14.
Secondary calcite, silica and minor amounts of fluorite deposited in fractures and cavities record the chemistry, temperatures, and timing of past fluid movement in the unsaturated zone at Yucca Mountain, Nevada, the proposed site of a high-level radioactive waste repository. The distribution and geochemistry of these deposits are consistent with low-temperature precipitation from meteoric waters that infiltrated at the surface and percolated down through the unsaturated zone. However, the discovery of fluid inclusions in calcite with homogenization temperatures (Th) up to ∼80 °C was construed by some scientists as strong evidence for hydrothermal deposition. This paper reports the results of investigations to test the hypothesis of hydrothermal deposition and to determine the temperature and timing of secondary mineral deposition. Mineral precipitation temperatures in the unsaturated zone are estimated from calcite- and fluorite-hosted fluid inclusions and calcite δ18O values, and depositional timing is constrained by the 207Pb/235U ages of chalcedony or opal in the deposits. Fluid inclusion Th from 50 samples of calcite and four samples of fluorite range from ∼35 to ∼90 °C. Calcite δ18O values range from ∼0 to ∼22‰ (SMOW) but most fall between 12 and 20‰. The highest Th and the lowest δ18O values are found in the older calcite. Calcite Th and δ18O values indicate that most calcite precipitated from water with δ18O values between −13 and −7‰, similar to modern meteoric waters.  相似文献   

15.
16.
From conductance measurements, the negative logarithm of the dissociation constant of the CaHCO3+ ion pair, pK(CaHCO3+), is 0.7, 1.0 and 1.35 within ±0.05 units at 0, 25 and 60°C, respectively. A revaluation of published and unpublished data yields pK(CaCO30) ≈ 3.2 at 25°C. Use of these pK's to compute the dissociation constant of calcite (Kc) from published calcite solubility measurements in pure water gives pKc values which increase markedly with ionic strength. However, if the ion pairs are ignored, computed pKc values are nearly constant with ionic strength. All reasonable attempts to eliminate the trend in pKc by adjusting ion activity coefficients, and/or values of K(CaCO30) failed, so the dilemma remains. Kc values computed from the most reliable published calcite solubility data are in good agreement with such values based on solubility data measured in this study at 5, 15, 35 and 50°C. Study results ignoring ion pairs are accurately represented by the equation log Kc = 13.870 — (3059/T) ?0.04035T, and correspond to ?8.35, ?8.42, and ?8.635 at 0, 25 and 50°C, respectively. The logarithmic expression leads to ΔHro = ?2420 ± 300 cal/mol, ΔCp = ?110 ± 2 cal/deg mol, and ΔSro = ?46.6 ± 1.0 cal/deg mol for the calcite dissociation reaction at 25°C. The dependence of Kc on temperature when CaCO30 and CaHCO3+ are assumed, is described by log Kc = 13.543 ? (3000/T) ? 0.0401T which yields ?8.39, ?8.47, and -8.70 at 0, 25 and 50°C. This gives ΔHro = ?2585 ± 300 cal/mol, ΔCp = ?109 ± 2 cal/deg mol, and ΔSr0 = ?47.4 ± 1.0 cal/deg mol at 25°C.  相似文献   

17.
The δ18O of ground water (−13.54 ± 0.05 ‰) and inorganically precipitated Holocene vein calcite (+14.56 ± 0.03 ‰) from Devils Hole cave #2 in southcentral Nevada yield an oxygen isotopic fractionation factor between calcite and water at 33.7 °C of 1.02849 ± 0.00013 (1000 ln αcalcite-water = 28.09 ± 0.13). Using the commonly accepted value of ∂(αcalcite-water)/∂T of −0.00020 K−1, this corresponds to a 1000 ln αcalcite-water value at 25 °C of 29.80, which differs substantially from the current accepted value of 28.3. Use of previously published oxygen isotopic fractionation factors would yield a calcite precipitation temperature in Devils Hole that is 8 °C lower than the measured ground water temperature. Alternatively, previously published fractionation factors would yield a δ18O of water, from which the calcite precipitated, that is too negative by 1.5 ‰ using a temperature of 33.7 °C. Several lines of evidence indicate that the geochemical environment of Devils Hole has been remarkably constant for at least 10 ka. Accordingly, a re-evaluation of calcite-water oxygen isotopic fractionation factor may be in order.Assuming the Devils Hole oxygen isotopic value of αcalcite-water represents thermodynamic equilibrium, many marine carbonates are precipitated with a δ18O value that is too low, apparently due to a kinetic isotopic fractionation that preferentially enriches 16O in the solid carbonate over 18O, feigning oxygen isotopic equilibrium.  相似文献   

18.
Continuous culture of the coccolithophorid Emiliania huxleyi reveals that coccolith Sr/Ca ratios depend on temperature and growth rate. At a constant temperature of 18°C, coccolith Sr/Ca ratios increased nearly 15% as growth rate increased from 0.1 to 1.5 divisions per day and calcification rate increased from 1.5 to 50 pg calcite per cell per day. When temperature increased from 7 to 26°C, Sr/Ca ratios increased by more than 25% (i.e., 1%/1°C), although the range in growth and calcification rates was the same as for experiments at constant temperature. The temperature dependence of Sr/Ca ratios in coccoliths is consistent with that observed in planktonic foraminifera and abiogenic calcites, suggesting that it is controlled by thermodynamic processes. However, the positive correlation of coccolith Sr/Ca with temperature contrasts with field studies in the equatorial Pacific, where Sr/Ca ratios are highest at the locus of maximum upwelling and productivity despite depressed temperatures. This paradox may reflect different calcification rate effects between E. huxleyi and the other species dominating assemblages in the equatorial Pacific sediments, which may be resolved by new techniques for separation of monospecific coccolith samples from sediments. Models of crystal growth indicate that kinetic effects on Sr partitioning in calcite due to surface enrichment could explain the Sr/Ca variations observed in constant temperature experiments but not the larger amplitude calcification rate effects observed in equatorial Pacific sediments. Despite the dual influence of temperature and growth rate on coccolith Sr/Ca, coccolith Sr/Ca correlates with “b,” the slope of the dependence of carbon isotope fractionation in biomarkers (εp) on CO2(aq) at a range of growth rates and temperatures. Consequently, using coccolith Sr/Ca in combination with alkenone εp may improve paleo-CO2 determinations.  相似文献   

19.
Partitioning of Ni in calcite, CaCO3, was evaluated with the aim of collecting data on partition and distribution coefficients and to enhance understanding about the interaction of Ni with the calcite surface and further incorporation into the bulk. This information will aid in the interpretation of geological processes for safety assessment of waste repositories and contamination of groundwater. Coprecipitation experiments were carried out by the constant addition method at 25 °C and pCO2 = 1 and 10−3.5 atm. Ni was moderately partitioned from solution into calcite. For dilute solid solutions (XNi < 0.001), Ni partition coefficients were estimated to be ∼1 and found to be weakly dependent on calcite precipitation rate in the range of 3-230 nmol m−2 s−1. Ni molar fraction in the solid is directly proportional to Ni concentration in the solution. The fit of the data to such a model is good evidence that Ni is taken up as a true solid solution, not simply by physical trapping.  相似文献   

20.
We investigated the oxygen isotope composition (δ18O) of shell striae from juvenile Comptopallium radula (Mollusca; Pectinidae) specimens collected live in New Caledonia. Bottom-water temperature and salinity were monitored in-situ throughout the study period. External shell striae form with a 2-day periodicity in this scallop, making it possible to estimate the date of precipitation for each calcite sample collected along a growth transect. The oxygen isotope composition of shell calcite (δ18Oshell calcite) measured at almost weekly resolution on calcite accreted between August 2002 and July 2003 accurately tracks bottom-water temperatures. A new empirical paleotemperature equation for this scallop species relates temperature and δ18Oshell calcite:
t(°C)=20.00(±0.61)-3.66(±0.39)×(δ18Oshell calcite VPDB18Owater VSMOW)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号