首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The timescale of accretion and differentiation of asteroids and the terrestrial planets can be constrained using the extinct 182Hf-182W isotope system. We present new Hf-W data for seven carbonaceous chondrites, five eucrites, and three shergottites. The W isotope data for the carbonaceous chondrites agree with the previously revised 182W/184W of chondrites, and the combined chondrite data yield an improved ?W value for chondrites of −1.9 ± 0.1 relative to the terrestrial standard. New Hf-W data for the eucrites, in combination with published results, indicate that mantle differentiation in the eucrite parent body (Vesta) occurred at 4563.2 ± 1.4 Ma and suggest that core formation took place 0.9 ± 0.3 Myr before mantle differentiation. Core formation in asteroids within the first ∼5 Myr of the solar system is consistent with the timescales deduced from W isotope data of iron meteorites. New W isotope data for the three basaltic shergottites EETA 79001, DaG 476, and SAU 051, in combination with published 182W and 142Nd data for Martian meteorites reveal the preservation of three early formed mantle reservoirs in Mars. One reservoir (Shergottite group), represented by Zagami, ALH77005, Shergotty, EETA 79001, and possibly SAU 051, is characterized by chondritic 142Nd abundances and elevated ?W values of ∼0.4. The 182W excess of this mantle reservoir results from core formation. Another mantle reservoir (NC group) is sampled by Nakhla, Lafayette, and Chassigny and shows coupled 142Nd-182W excesses of 0.5-1 and 2-3 ? units, respectively. Formation of this mantle reservoir occurred 10-20 Myr after CAI condensation. Since the end of core formation is constrained to 7-15 Myr, a time difference between early silicate mantle differentiation and core formation is not resolvable for Mars. A third early formed mantle reservoir (DaG group) is represented by DaG 476 (and possibly SAU 051) and shows elevated 142Nd/144Nd ratios of 0.5-0.7 ? units and ?W values that are indistinguishable from the Shergottite group. The time of separation of this third reservoir can be constrained to 50-150 Myr after the start of the solar system. Preservation of these early formed mantle reservoirs indicates limited convective mixing in the Martian mantle as early as ∼15 Myr after CAI condensation and suggests that since this time no giant impact occurred on Mars that could have led to mantle homogenization. Given that core formation in planetesimals was completed within the first ∼5 Myr of the solar system, it is most likely that Mars and Earth accreted from pre-differentiated planetesimals. The metal cores of Mars and Earth, however, cannot have formed by simply combining cores from these pre-differentiated planetesimals. The 182W/184W ratios of the Martian and terrestrial mantles require late effective removal of radiogenic 182W, strongly suggesting the existence of magma oceans on both planets. Large impacts were probably the main heat source that generated magma oceans and led to the formation metallic cores in the terrestrial planets. In contrast, decay of short-lived 26Al and 60Fe were important heat sources for melting and core formation in asteroids.  相似文献   

2.
The 182Hf-182W systematics of meteoritic and planetary samples provide firm constraints on the chronology of the accretion and earliest evolution of asteroids and terrestrial planets and lead to the following succession and duration of events in the earliest solar system. Formation of Ca,Al-rich inclusions (CAIs) at 4568.3 ± 0.7 Ma was followed by the accretion and differentiation of the parent bodies of some magmatic iron meteorites within less than ∼1 Myr. Chondrules from H chondrites formed 1.7 ± 0.7 Myr after CAIs, about contemporaneously with chondrules from L and LL chondrites as shown by their 26Al-26Mg ages. Some magmatism on the parent bodies of angrites, eucrites, and mesosiderites started as soon as ∼3 Myr after CAI formation and may have continued until ∼10 Myr. A similar timescale is obtained for the high-temperature metamorphic evolution of the H chondrite parent body. Thermal modeling combined with these age constraints reveals that the different thermal histories of meteorite parent bodies primarily reflect their initial abundance of 26Al, which is determined by their accretion age. Impact-related processes were important in the subsequent evolution of asteroids but do not appear to have induced large-scale melting. For instance, Hf-W ages for eucrite metals postdate CAI formation by ∼20 Myr and may reflect impact-triggered thermal metamorphism in the crust of the eucrite parent body. Likewise, the Hf-W systematics of some non-magmatic iron meteorites were modified by impact-related processes but the timing of this event(s) remains poorly constrained.The strong fractionation of lithophile Hf from siderophile W during core formation makes the Hf-W system an ideal chronometer for this major differentiation event. However, for larger planets such as the terrestrial planets the calculated Hf-W ages are particularly sensitive to the occurrence of large impacts, the degree to which impactor cores re-equilibrated with the target mantle during large collisions, and changes in the metal-silicate partition coefficients of W due to changing fO2 in differentiating planetary bodies. Calculated core formation ages for Mars range from 0 to 20 Myr after CAI formation and currently cannot distinguish between scenarios where Mars formed by runaway growth and where its formation was more protracted. Tungsten model ages for core formation in Earth range from ∼30 Myr to >100 Myr after CAIs and hence do not provide a unique age for the formation of Earth. However, the identical 182W/184W ratios of the lunar and terrestrial mantles provide powerful evidence that the Moon-forming giant impact and the final stage of Earth’s core formation occurred after extinction of 182Hf (i.e., more than ∼50 Myr after CAIs), unless the Hf/W ratios of the bulk silicate Moon and Earth are identical to within less than ∼10%. Furthermore, the identical 182W/184W of the lunar and terrestrial mantles is difficult to explain unless either the Moon consists predominantly of terrestrial material or the W in the proto-lunar magma disk isotopically equilibrated with the Earth’s mantle.Hafnium-tungsten chronometry also provides constraints on the duration of magma ocean solidification in terrestrial planets. Variations in the 182W/184W ratios of martian meteorites reflect an early differentiation of the martian mantle during the effective lifetime of 182Hf. In contrast, no 182W variations exist in the lunar mantle, demonstrating magma ocean solidification later than ∼60 Myr, in agreement with 147Sm-143Nd ages for ferroan anorthosites. The Moon-forming giant impact most likely erased any evidence of a prior differentiation of Earth’s mantle, consistent with a 146Sm-142Nd age of 50-200 Myr for the earliest differentiation of Earth’s mantle. However, the Hf-W chronology of the formation of Earth’s core and the Moon-forming impact is difficult to reconcile with the preservation of 146Sm-142Nd evidence for an early (<30 Myr after CAIs) differentiation of a chondritic Earth’s mantle. Instead, the combined 182W-142Nd evidence suggests that bulk Earth may have superchondritic Sm/Nd and Hf/W ratios, in which case formation of its core must have terminated more than ∼42 Myr after formation of CAIs, consistent with the Hf-W age for the formation of the Moon.  相似文献   

3.
Application of 182Hf-182W chronometry to constrain the duration of early solar system processes requires the precise knowledge of the initial Hf and W isotope compositions of the solar system. To determine these values, we investigated the Hf-W isotopic systematics of bulk samples and mineral separates from several Ca,Al-rich inclusions (CAIs) from the CV3 chondrites Allende and NWA 2364. Most of the investigated CAIs have relative proportions of 183W, 184W, and 186W that are indistinguishable from those of bulk chondrites and the terrestrial standard. In contrast, one of the investigated Allende CAIs has a lower 184W/183W ratio, most likely reflecting an overabundance of r-process relative to s-process isotopes of W. All other bulk CAIs have similar 180Hf/184W and 182W/184W ratios that are elevated relative to average carbonaceous chondrites, probably reflecting Hf-W fractionation in the solar nebula within the first ∼3 Myr. The limited spread in 180Hf/184W ratios among the bulk CAIs precludes determination of a CAI whole-rock isochron but the fassaites have high 180Hf/184W and radiogenic 182W/184W ratios up to ∼14 ε units higher than the bulk rock. This makes it possible to obtain precise internal Hf-W isochrons for CAIs. There is evidence of disturbed Hf-W systematics in one of the CAIs but all other investigated CAIs show no detectable effects of parent body processes such as alteration and thermal metamorphism. Except for two fractions from one Allende CAI, all fractions from the investigated CAIs plot on a single well-defined isochron, which defines the initial ε182W = −3.28 ± 0.12 and 182Hf/180Hf = (9.72 ± 0.44) × 10−5 at the time of CAI formation. The initial 182Hf/180Hf and 26Al/27Al ratios of the angrites D’Orbigny and Sahara 99555 are consistent with the decay from initial abundances of 182Hf and 26Al as measured in CAIs, suggesting that these two nuclides were homogeneously distributed throughout the solar system. However, the uncertainties on the initial 182Hf/180Hf and 26Al/27Al ratios are too large to exclude that some 26Al in CAIs was produced locally by particle irradiation close to an early active Sun. The initial 182Hf/180Hf of CAIs corresponds to an absolute age of 4568.3 ± 0.7 Ma, which may be defined as the age of the solar system. This age is 0.5-2 Myr older than the most precise 207Pb-206Pb age of Efremovka CAI 60, which does not seem to date CAI formation. Tungsten model ages for magmatic iron meteorites, calculated relative to the newly and more precisely defined initial ε182W of CAIs, indicate that core formation in their parent bodies occurred in less than ∼1 Myr after CAI formation. This confirms earlier conclusions that the accretion of the parent bodies of magmatic iron meteorites predated chondrule formation and that their differentiation was triggered by heating from decay of abundant 26Al. A more precise dating of core formation in iron meteorite parent bodies requires precise quantification of cosmic-ray effects on W isotopes but this has not been established yet.  相似文献   

4.
Metal segregation and silicate melting on asteroids are the most incisive differentiation events in the early evolution of planetary bodies. The timing of these events can be constrained using the short-lived 182Hf-182W radionuclide system. Here we present new 182Hf-182W data for major types of primitive achondrites including acapulcoites, winonaites and one lodranite. These meteorites are of particular interest because they show only limited evidence for partial melting of silicates and are therefore intermediate between chondrites and achondrites.For acapulcoites we derived a 182Hf-182W age of ΔtCAI = 4.1 +1.2/−1.1 Ma. A model age for winonaite separates calculated from the intercept of the isochron defines an age of ΔtCAI = 4.8 +3.1/−2.6 Ma (assuming a bulk Hf/W ratio of ∼1.2). Both ages most likely define primary magmatic events on the respective parent bodies, such as melting of metal, although metal stayed in place and did not segregate to form a core. A later thermal event is responsible for resetting of the winonaite isochron, yielding an age of ΔtCAI = 14.3 +2.7/−2.2 Ma, significantly younger than the model age. Assuming a co-genetic relationship between winonaites and silicates present in IAB iron meteorites (based on oxygen isotope composition) and including data by Schulz et al. (2009), a common parent body chronology can be established. Magmatic activity occurred between ∼1.5 and 5 Ma after CAIs. More than 5 Ma later, intensive thermal metamorphism has redistributed Hf-W. Average cooling rates calculated for the winonaite/IAB parent asteroid range between ∼35 and ∼4 K/Ma, most likely reflecting different burial depths. Cooling rates obtained for acapulcoites were ∼40 K/Ma to ∼720 K and then ∼3 K/Ma to ∼550 K.Accretion and subsequent magmatism on the acapulcoite parent body occurred slightly later if compared to most achondrite parent bodies (e.g., angrites, ureilites and eucrites), in this case supporting the concept of an inverse correlation between accretion-age of asteroids and intensity of heating in their interiors as expected from heating by 26Al and 60Fe decay. However, the early accretion of the parent asteroid of primitive IAB silicates (∼1.0 Ma after CAIs; Schulz et al., 2009) and the possibly impact-induced melting-history of winonaites show that this concept is too simplistic. Parent body size, impact-driven melting as well as heat-insulating regolith cover also need to be considered in the early history of asteroid differentiation.  相似文献   

5.
An excellent 53Mn-53Cr isochron for bulk CI, CM, CO, CV, CB, and ungrouped C3 chondrites seems to suggest that each carbonaceous chondrite group acquired its Mn/Cr ratio 4568 ± 1 Myr ago. This age is indistinguishable from the age of Ca-Al-rich inclusions (CAIs), which is considered to be the start of the solar system (t0). However, carbonaceous chondrites were not assembled until at least 1.5-5 Myr after t0, to judge by the 207Pb-206Pb and 26Al-26Mg ages of the chondrules within them, and by the fact that they were not melted by heat from the decay of 26Al. Presumably, therefore, these meteorites inherited their bulk Mn-Cr isochron from precursor materials which experienced Mn-Cr fractionation at t0. As a possible physical mechanism for how the isochron was established initially, and later inherited by the carbonaceous chondrites, we propose the rapid formation at t0 of planetesimals that were variably depleted in moderately volatile elements, and hence had variably low Mn/Cr. The planetesimals and the undepleted (high Mn/Cr) primitive dust from which they were made shared the same initial ε53Cr, and therefore evolved on an isochron. We suggest that later impact-disruption of the planetesimals produced dusty debris, which became mixed, in various proportions, with unprocessed (high Mn/Cr) dust before accreting to the carbonaceous chondrite parent bodies. With mixing in a closed system, the isochron was unchanged. We infer that some debris-rich material was converted to chondrules prior to accretion. The chondrules could have been formed by flash melting of the mixed dust, or could instead have been made directly by the impact splashing of molten planetesimals, or by condensation from impact-generated vapor plumes.  相似文献   

6.
Origin and chronology of chondritic components: A review   总被引:1,自引:0,他引:1  
Mineralogical observations, chemical and oxygen-isotope compositions, absolute 207Pb-206Pb ages and short-lived isotope systematics (7Be-7Li, 10Be-10B, 26Al-26Mg, 36Cl-36S, 41Ca-41K, 53Mn-53Cr, 60Fe-60Ni, 182Hf-182W) of refractory inclusions [Ca,Al-rich inclusions (CAIs) and amoeboid olivine aggregates (AOAs)], chondrules and matrices from primitive (unmetamorphosed) chondrites are reviewed in an attempt to test (i) the x-wind model vs. the shock-wave model of the origin of chondritic components and (ii) irradiation vs. stellar origin of short-lived radionuclides. The data reviewed are consistent with an external, stellar origin for most short-lived radionuclides (7Be, 10Be, and 36Cl are important exceptions) and a shock-wave model for chondrule formation, and provide a sound basis for early Solar System chronology. They are inconsistent with the x-wind model for the origin of chondritic components and a local, irradiation origin of 26Al, 41Ca, and 53Mn. 10Be is heterogeneously distributed among CAIs, indicating its formation by local irradiation and precluding its use for the early solar system chronology. 41Ca-41K, and 60Fe-60Ni systematics are important for understanding the astrophysical setting of Solar System formation and origin of short-lived radionuclides, but so far have limited implications for the chronology of chondritic components. The chronological significance of oxygen-isotope compositions of chondritic components is limited. The following general picture of formation of chondritic components is inferred. CAIs and AOAs were the first solids formed in the solar nebula ∼4567-4568 Myr ago, possibly within a period of <0.1 Myr, when the Sun was an infalling (class 0) and evolved (class I) protostar. They formed during multiple transient heating events in nebular region(s) with high ambient temperature (at or above condensation temperature of forsterite), either throughout the inner protoplanetary disk (1-4 AU) or in a localized region near the proto-Sun (<0.1 AU), and were subsequently dispersed throughout the disk. Most CAIs and AOAs formed in the presence of an 16O-rich (Δ17O ∼ −24 ± 2‰) nebular gas. The 26Al-poor [(26Al/27Al)0 < 1 × 10−5], 16O-rich (Δ17O ∼ −24 ± 2‰) CAIs - FUN (fractionation and unidentified nuclear effects) CAIs in CV chondrites, platy hibonite crystals (PLACs) in CM chondrites, pyroxene-hibonite spherules in CM and CO chondrites, and the majority of grossite- and hibonite-rich CAIs in CH chondrites—may have formed prior to injection and/or homogenization of 26Al in the early Solar System. A small number of igneous CAIs in ordinary, enstatite and carbonaceous chondrites, and virtually all CAIs in CB chondrites are 16O-depleted (Δ17O > −10‰) and have (26Al/27Al)0 similar to those in chondrules (<1 × 10−5). These CAIs probably experienced melting during chondrule formation. Chondrules and most of the fine-grained matrix materials in primitive chondrites formed 1-4 Myr after CAIs, when the Sun was a classical (class II) and weak-lined T Tauri star (class III). These chondritic components formed during multiple transient heating events in regions with low ambient temperature (<1000 K) throughout the inner protoplanetary disk in the presence of 16O-poor (Δ17O > −5‰) nebular gas. The majority of chondrules within a chondrite group may have formed over a much shorter period of time (<0.5-1 Myr). Mineralogical and isotopic observations indicate that CAIs were present in the regions where chondrules formed and accreted (1-4 AU), indicating that CAIs were present in the disk as free-floating objects for at least 4 Myr. Many CAIs, however, were largely unaffected by chondrule melting, suggesting that chondrule-forming events experienced by a nebular region could have been small in scale and limited in number. Chondrules and metal grains in CB chondrites formed during a single-stage, highly-energetic event ∼4563 Myr ago, possibly from a gas-melt plume produced by collision between planetary embryos.  相似文献   

7.
Recent 182Hf-182W age determinations on Allende Ca-, Al-rich refractory inclusions (CAIs) and on iron meteorites indicate that CAIs have initial ε182W (−3.47 ± 0.20, 2σ) identical to that of magmatic iron meteorites after correction of cosmogenic 182W burn-out (−3.47 ± 0.35, 2σ). Either the Allende CAIs were isotopically disturbed or the differentiation of magmatic irons (groups IIAB, IID, IIIAB, and IVB) all occurred <1 m.y. after CAI formation. To assess the extent of isotopic disturbance, we have analyzed the elemental distribution of Hf and W in two CAIs, Ef2 from Efremovka (CV3 reduced), and Golfball from Allende (CV3 oxidized). Fassaite is the sole host of Hf (10-25 ppm) and, therefore, of radiogenic W in CAIs, with 180Hf/184W > 103, which is lowered by the ubiquitous presence of metal inclusions to 180Hf/184W > 10 in bulk fassaite. Metal alloy (Ni ∼ 50%) is the sole host of W (∼500 ppm) in Ef2, while opaque assemblages (OAs) and secondary veins are the hosts of W in Golfball. A large metal alloy grain from Ef2, EM2, has 180Hf/184W < 0.006. Melilite has both Hf and W below detection limits (<0.01 ppm), but the presence of numerous metallic inclusions or OAs makes melilite a carrier for W, with 180Hf/184W < 1 in bulk melilite. Secondary processes had little impact on the 182Hf-182W systematics of Ef2, but a vein cross-cutting fassaite in Golfball has >100 ppm W with no detectable Pt or S. This vein provides evidence for transport of oxidized W in the CAI. Because of the ubiquitous distribution of OAs, interpretations of the 182Hf-182W isochron reported for Allende CAIs include: (i) all W in the OAs was derived by alteration of CAI metal, or (ii) at least some of the W in OAs may have been equilibrated with radiogenic W during metamorphism of Allende. Since (ii) cannot be ruled out, new 182Hf-182W determinations on CAIs from reduced CV3 chondrites are needed to firmly establish the initial W isotopic composition of the solar system.  相似文献   

8.
Amoeboid olivine aggregates (AOAs) are the most common type of refractory inclusions in CM, CR, CH, CV, CO, and ungrouped carbonaceous chondrites Acfer 094 and Adelaide; only one AOA was found in the CBb chondrite Hammadah al Hamra 237 and none were observed in the CBa chondrites Bencubbin, Gujba, and Weatherford. In primitive (unaltered and unmetamorphosed) carbonaceous chondrites, AOAs consist of forsterite (Fa<2), Fe, Ni-metal (5-12 wt% Ni), and Ca, Al-rich inclusions (CAIs) composed of Al-diopside, spinel, anorthite, and very rare melilite. Melilite is typically replaced by a fine-grained mixture of spinel, Al-diopside, and ±anorthite; spinel is replaced by anorthite. About 10% of AOAs contain low-Ca pyroxene replacing forsterite. Forsterite and spinel are always 16O-rich (δ17,18O∼−40‰ to −50‰), whereas melilite, anorthite, and diopside could be either similarly 16O-rich or 16O-depleted to varying degrees; the latter is common in AOAs from altered and metamorphosed carbonaceous chondrites such as some CVs and COs. Low-Ca pyroxene is either 16O-rich (δ17,18O∼−40‰) or 16O-poor (δ17,18O∼0‰). Most AOAs in CV chondrites have unfractionated (∼2-10×CI) rare-earth element patterns. AOAs have similar textures, mineralogy and oxygen isotopic compositions to those of forsterite-rich accretionary rims surrounding different types of CAIs (compact and fluffy Type A, Type B, and fine-grained, spinel-rich) in CV and CR chondrites. AOAs in primitive carbonaceous chondrites show no evidence for alteration and thermal metamorphism. Secondary minerals in AOAs from CR, CM, and CO, and CV chondrites are similar to those in chondrules, CAIs, and matrices of their host meteorites and include phyllosilicates, magnetite, carbonates, nepheline, sodalite, grossular, wollastonite, hedenbergite, andradite, and ferrous olivine.Our observations and a thermodynamic analysis suggest that AOAs and forsterite-rich accretionary rims formed in 16O-rich gaseous reservoirs, probably in the CAI-forming region(s), as aggregates of solar nebular condensates originally composed of forsterite, Fe, Ni-metal, and CAIs. Some of the CAIs were melted prior to aggregation into AOAs and experienced formation of Wark-Lovering rims. Before and possibly after the aggregation, melilite and spinel in CAIs reacted with SiO and Mg of the solar nebula gas enriched in 16O to form Al-diopside and anorthite. Forsterite in some AOAs reacted with 16O-enriched SiO gas to form low-Ca pyroxene. Some other AOAs were either reheated in 16O-poor gaseous reservoirs or coated by 16O-depleted pyroxene-rich dust and melted to varying degrees, possibly during chondrule formation. The most extensively melted AOAs experienced oxygen isotope exchange with 16O-poor nebular gas and may have been transformed into magnesian (Type I) chondrules. Secondary mineralization and at least some of the oxygen isotope exchange in AOAs from altered and metamorphosed chondrites must have resulted from alteration in the presence of aqueous solutions after aggregation and lithification of the chondrite parent asteroids.  相似文献   

9.
This study attempts to identify the astrophysical setting in which properties of the Ca,Al-rich inclusions (CAIs) found in chondritic meteorites are best understood. Importance is attached to the short time period in which most or all of the CAIs were formed (<∼0.5 Myr, corresponding to the observed dispersion of values of initial 26Al/27Al about the canonical value of ∼5 × 10−5), a constraint that has been overlooked. This period is dissimilar to the time scale of evolution of T Tauri stars, ∼10 Myr; it corresponds instead to the time scale of Class 0 and Class I young stellar objects, protostars as they exist during the massive infall of interstellar material that creates stars. The innermost portion of the sun’s rapidly accreting nebular disk, kept hot during that period by viscous dissipation, is the most plausible site for CAI formation. Once condensed, CAIs must be taken out of that hot zone rather promptly in order to preserve their specialized mineralogical compositions, and they must be transported to the radial distance of the asteroid belt to be available for accretion into the chondrites that contain them today. Though this paper is critical of some aspects of the x-wind model of CAI formation, something akin to the x-wind may be the best way of understanding this extraction and transport of CAIs.  相似文献   

10.
We evaluate initial (26Al/27Al)I, (53Mn/55Mn)I, and (182Hf/180Hf)I ratios, together with 207Pb/206Pb ages for igneous differentiated meteorites and chondrules from ordinary chondrites for consistency with radioactive decay of the parent nuclides within a common, closed isotopic system, i.e., the early solar nebula. The relative initial isotopic abundances of 26Al, 53Mn, and 182Hf in differentiated meteorites and chondrules are consistent with decay from common solar system initial values, here denoted by I(Al)SS, I(Mn)SS, and I(Hf)SS, respectively. I(Mn)SS and I(Hf)SS = 9.1 ± 1.7 × 10−6 and 1.07 ± 0.08 × 10−4, respectively, correspond to “canonical” I(Al)SS = 5.1 × 10−5. I(Hf)SS so determined is consistent with I(Hf)SS = 9.72 ± 0.44 × 10−5 directly determined from an internal Hf-W isochron for CAI minerals. I(Mn)SS is within error of the lowest value directly measured for CAIs. We suggest that erratically higher values measured for CAIs in carbonaceous chondrites may reflect proton irradiation of unaccreted CAIs by the early Sun after other asteroids destined for melting by 26Al decay had already accreted. The 53Mn incorporated within such asteroids would have been shielded from further “local” spallogenic contributions from within the solar system. The relative initial isotopic abundances of the short-lived nuclides are less consistent with the 207Pb/206Pb ages of the corresponding materials than with one another. The best consistency of short- and long-lived chronometers is obtained for (182Hf/180Hf)I and the 207Pb/206Pb ages of angrites. (182Hf/180Hf)I decreases with decreasing 207Pb/206Pb ages at the rate expected from the 8.90 ± 0.09 Ma half-life of 182Hf. The model solar system age thus determined is TSS,Hf-W = 4568.3 ± 0.7 Ma. (26Al/27Al)I and (53Mn/55Mn)I are less consistent with 207Pb/206Pb ages of the corresponding meteorites, but yield TSS,Mn-Cr = 4568.2 ± 0.5 Ma relative to I(Al)SS = 5.1 × 10−5 and a 207Pb/206Pb age of 4558.55 ± 0.15 Ma for the LEW86010 angrite. The Mn-Cr method with I(Mn)SS = 9.1 ± 1.7 × 10−6 is useful for dating accretion (if identified with chondrule formation), primary igneous events, and secondary mineralization on asteroid parent bodies. All of these events appear to have occurred approximately contemporaneously on different asteroid parent bodies. For I(Mn)SS = 9.1 ± 1.7 × 10−6, parent body differentiation is found to extend at least to ∼5 Ma post-TSS, i.e., until differentiation of the angrite parent body ∼4563.5 Ma ago, or ∼4564.5 Ma ago using the directly measured 207Pb/206Pb ages of the D’Orbigny-clan angrites. The ∼1 Ma difference is characteristic of a remaining inconsistency for the D’Orbigny-clan between the Al-Mg and Mn-Cr chronometers on one hand, and the 207Pb/206Pb chronometer on the other. Differentiation of the IIIAB iron meteorite and ureilite parent bodies probably occurred slightly later than for the angrite parent body, and at nearly the same time as one another as shown by the Mn-Cr ages of IIIAB irons and ureilites, respectively. The latest recorded episodes of secondary mineralization are for carbonates on the CI carbonaceous chondrite parent body and fayalites on the CV carbonaceous chondrite parent body, both extending to ∼10 Ma post-TSS.  相似文献   

11.
We have studied metal grains in the hosts and lithic fragments of widely differing petrologic types in four xenolithic chondrftes, using reflected-light microscopy and electron-probe analysis. In Weston and Fayetteville, which both contain solar-flare tracks and solar-wind gases, kamacite, taenite and tetrataenite (ordered FeNi) and troilite show a variety of textures. On a Wood plot of central Ni content vs dimension, taenite analyses scatter as if metal grains cooled at rates of 10–1000 and 1–100 K/Myr respectively through 700 K, although metal in an H6 clast in Fayetteville plots coherently with a cooling rate of 50 K/Myr. We propose that metal grains cooled at these rates in chondritic clasts at different locations before host and clasts were compacted, and were not subsequently heated above 650 K. We predict a similar history for all gas-rich ordinary chondrites.By contrast, metallic minerals throughout Bhola and Mezö-Madaras show more uniform textures and plot coherently giving cooling rates in the range 750 to ~600 K of 0.1 and 1 K/Myr, respectively. We conclude that host and xenoliths in both chondrites were slowly cooled after compaction. Thus clasts in these chondrites experienced peak metamorphic temperatures and slow cooling through 700 K in different environments.According to the conventional onion-shell model for H, L or LL chondrite parent bodies, material of petrologic types 3–5 was arranged in successive shells around a type 6 core prior to catastrophic collisions which mixed all types intimately. But if peak metamorphic temperatures were reached during, not after accretion, as seems plausible, maximum metamorphism may have occurred in planetesimals <10 km in radius. Cooling through 700 K may then have occurred in larger bodies that accreted from these planetesimals. Iron meteorites, mesosiderites and some achondrites may also have experienced melting in planetesimals and slow cooling in larger bodies.  相似文献   

12.
We review the crystallization of the iron meteorite chemical groups, the thermal history of the irons as revealed by the metallographic cooling rates, the ages of the iron meteorites and their relationships with other meteorite types, and the formation of the iron meteorite parent bodies. Within most iron meteorite groups, chemical trends are broadly consistent with fractional crystallization, implying that each group formed from a single molten metallic pool or core. However, these pools or cores differed considerably in their S concentrations, which affect partition coefficients and crystallization conditions significantly. The silicate-bearing iron meteorite groups, IAB and IIE, have textures and poorly defined elemental trends suggesting that impacts mixed molten metal and silicates and that neither group formed from a single isolated metallic melt. Advances in the understanding of the generation of the Widmanstätten pattern, and especially the importance of P during the nucleation and growth of kamacite, have led to improved measurements of the cooling rates of iron meteorites. Typical cooling rates from fractionally crystallized iron meteorite groups at 500–700 °C are about 100–10,000 °C/Myr, with total cooling times of 10 Myr or less. The measured cooling rates vary from 60 to 300 °C/Myr for the IIIAB group and 100–6600 °C/Myr for the IVA group. The wide range of cooling rates for IVA irons and their inverse correlation with bulk Ni concentration show that they crystallized and cooled not in a mantled core but in a large metallic body of radius 150±50 km with scarcely any silicate insulation. This body may have formed in a grazing protoplanetary impact. The fractionally crystallized groups, according to Hf–W isotopic systematics, are derived originally from bodies that accreted and melted to form cores early in the history of the solar system, <1 Myr after CAI formation. The ungrouped irons likely come from at least 50 distinct parent bodies that formed in analogous ways to the fractionally crystallized groups. Contrary to traditional views about their origin, iron meteorites may have been derived originally from bodies as large as 1000 km or more in size. Most iron meteorites come directly or indirectly from bodies that accreted before the chondrites, possibly at 1–2 AU rather than in the asteroid belt. Many of these bodies may have been disrupted by impacts soon after they formed and their fragments were scattered into the asteroid belt by protoplanets.  相似文献   

13.
Whereas most radiometric chronometers give formation ages of individual meteorites >4.5 Ga ago, the K–Ar chronometer rarely gives times of meteorite formation. Instead, K–Ar ages obtained by the 39Ar–40Ar technique span the entire age of the solar system and typically measure the diverse thermal histories of meteorites or their parent objects, as produced by internal parent body metamorphism or impact heating. This paper briefly explains the Ar–Ar dating technique. It then reviews Ar–Ar ages of several different types of meteorites, representing at least 16 different parent bodies, and discusses the likely thermal histories these ages represent. Ar–Ar ages of ordinary (H, L, and LL) chondrites, R chondrites, and enstatite meteorites yield cooling times following internal parent body metamorphism extending over ∼200 Ma after parent body formation, consistent with parent bodies of ∼100 km diameter. For a suite of H-chondrites, Ar–Ar and U–Pb ages anti-correlate with the degree of metamorphism, consistent with increasing metamorphic temperatures and longer cooling times at greater depths within the parent body. In contrast, acapulcoites–lodranites, although metamorphosed to higher temperatures than chondrites, give Ar–Ar ages which cluster tightly at ∼4.51 Ga. Ar–Ar ages of silicate from IAB iron meteorites give a continual distribution across ∼4.53–4.32 Ga, whereas silicate from IIE iron meteorites give Ar–Ar ages of either ∼4.5 Ga or ∼3.7 Ga. Both of these parent bodies suffered early, intense collisional heating and mixing. Comparison of Ar–Ar and I–Xe ages for silicate from three other iron meteorites also suggests very early collisional heating and mixing. Most mesosiderites show Ar–Ar ages of ∼3.9 Ga, and their significantly sloped age spectra and Ar diffusion properties, as well as Ni diffusion profiles in metal, indicate very deep burial after collisional mixing and cooling at a very slow rate of ∼0.2 °C/Ma. Ar–Ar ages of a large number of brecciated eucrites range over ∼3.4–4.1 Ga, similar to ages of many lunar highland rocks. These ages on both bodies were reset by large impact heating events, possibly initiated by movements of the giant planets. Many impact-heated chondrites show impact-reset Ar–Ar ages of either >3.5 Ga or <1.0 Ga, and generally only chondrites show these younger ages. The younger ages may represent orbital evolution times in the asteroid belt prior to ejection into Earth-crossing orbits. Among martian meteorites, Ar–Ar ages of nakhlites are similar to ages obtained from other radiometric chronometers, but apparent Ar–Ar ages of younger shergottites are almost always older than igneous crystallization ages, because of the presence of excess (parentless) 40Ar. This excess 40Ar derives from shock-implanted martian atmosphere or from radiogenic 40Ar inherited from the melt. Differences between meteorite ages obtained from other chronometers (e.g., I–Xe and U–Pb) and the oldest measured Ar–Ar ages are consistent with previous suggestions that the 40K decay parameters in common use are incorrect and that the K–Ar age of a 4500 Ma meteorite should be possibly increased, but by no more than ∼20 Ma.  相似文献   

14.
The abundant, diverse ureilite meteorites are peridotitic asteroidal mantle restites that have remarkably high bulk carbon contents (average 3 wt%) and have long been linked to the so-called carbonaceous chondrites (although this term is potentially misleading, because the high petrologic type “carbonaceous” chondrites are, if anything, C-poor compared to ordinary chondrites). Ureilite oxygen isotopic compositions, i.e., diversely negative (CCAM-like) Δ17O, viewed in isolation, have long been viewed as confirming the carbonaceous-chondritic derivation hypothesis. However, a very different picture emerges through analysis of a compilation of recently published high-precision isotopic data for chromium, titanium and nickel for ureilites and various other planetary materials. Ureilites have lower ε62Ni and far lower ε50Ti and ε54Cr than any known variety of carbonaceous chondrite. On a plot of ε50Ti vs. ε54Cr, and similarly Δ17O vs. ε54Cr, ureilite compositions cluster far from and in a direction approximately orthogonal to a trend internal to the carbonaceous chondrites, and the carbonaceous chondrites are separated by a wide margin from all other planetary materials. I conclude that notwithstanding the impressive resemblance to carbonaceous chondrites in terms of diversely negative Δ17O, the ureilite precursors accreted from preponderantly noncarbonaceous (sensu stricto) materials. Despite total depletion of basaltic matter, the ureilites retain moderate pyroxene/olivine ratios; which is an expected outcome from simple partial melting of moderate-SiO2/(FeO + MgO) noncarbonaceous chondritic material, but would imply an additional process of major reduction of FeO if the precursor material were carbonaceous-chondritic. The striking bimodality of planetary materials on the ε50Ti vs. ε54Cr and Δ17O vs. ε54Cr diagrams may be an extreme manifestation of the effects of episodic accretion of early solids in the protoplanetary nebula. However, an alternative, admittedly speculative, explanation is that the bimodality corresponds to a division between materials that originally accreted in the outer solar system (carbonaceous) and materials that accreted in the inner solar system (noncarbonaceous, including the ureilites).  相似文献   

15.
王道德  戴诚达 《地球化学》1995,24(2):110-120
类地行星挥发性元素普遍亏损很可能是由于太阳星云早期剧烈的太阳活动引起的。当气体、尘粒、挥发性元素和水被驱赶出内太阳系时,只有米级到公里级的物质保存下来并堆积成星子,最终吸积星子形成类地行星。我们认为类地行星的初始物质主要是已分异的星子和一些未分异的球粒陨石质星子或不同类型的陨石母体,最靠近太阳形成的星子具有最低的FeO/(FeO+MgO)值,水星是在靠近太阳的高度还原条件下吸积成分类似EH球粒陨石的星子形成的。地球的初始物质为分异的铁陨石及H群球粒陨石。随着距太阳距离增大及温度降低,陨石形成的部位大致为:EH、EL-IAB-SNC(辉玻无球粒陨石、辉橄无球粒陨石、纯橄无球粒陨石)-Euc(钙长辉长无球粒陨石)-H、L、LL-CV、CM、CO-Cl-彗星。物体之间、星子之间及行星与星子之间的碰撞对太阳系的形成和演化起着重要的作用。  相似文献   

16.
Grossite (CaAl4O7) is one of the one of the first minerals predicted to condense from a gas of solar composition, and therefore could have recorded isotopic compositions of reservoirs during the earliest stages of the Solar System evolution. Grossite-bearing Ca,Al-rich inclusions (CAIs) are a relatively rare type of refractory inclusions in most carbonaceous chondrite groups, except CHs, where they are dominant. We report new and summarize the existing data on the mineralogy, petrography, oxygen and aluminum-magnesium isotope systematics of grossite-bearing CAIs from the CR, CH, CB, CM, CO, and CV carbonaceous chondrites. Grossite-bearing CAIs from unmetamorphosed (petrologic type 2―3.0) carbonaceous chondrites preserved evidence for heterogeneous distribution of 26Al in the protoplanetary disk. The inferred initial 26Al/27Al ratio [(26Al/27Al)0] in grossite-bearing CAIs is generally bimodal, ˜0 and ˜5×10−5; the intermediate values are rare. CH and CB chondrites are the only groups where vast majority of grossite-bearing CAIs lacks resolvable excess of radiogenic 26Mg. Grossite-bearing CAIs with approximately the canonical (26Al/27Al)0 of ˜5×10−5 are dominant in other chondrite groups. Most grossite-bearing CAIs in type 2–3.0 carbonaceous chondrites have uniform solar-like O-isotope compositions (Δ17O ˜ ‒24±2‰). Grossite-bearing CAIs surrounded by Wark-Lovering rims in CH chondrites are also isotopically uniform, but show a large range of Δ17O, from ˜ ‒40‰ to ˜ ‒5‰, suggesting an early generation of gaseous reservoirs with different oxygen-isotope compositions in the protoplanetary disk. Igneous grossite-bearing CAIs surrounded by igneous rims of ±melilite, Al-diopside, and Ca-rich forsterite, found only in CB and CH chondrites, have uniform 16O-depleted compositions (Δ17O ˜ ‒14‰ to ‒5‰). These CAIs appear to have experienced complete melting and incomplete O-isotope exchange with a 16O-poor (Δ17O ˜ ‒2‰) gas in the CB impact plume generated about 5 Ma after CV CAIs. Grossite-bearing CAIs in metamorphosed (petrologic type >3.0) CO and CV chondrites have heterogeneous Δ17O resulted from mineralogically-controlled isotope exchange with a 16O-poor (Δ17O ˜ ‒2 to 0‰) aqueous fluid on the CO and CV parent asteroids 3–5 Ma after CV CAIs. This exchange affected grossite, krotite, melilite, and perovskite; corundum, hibonite, spinel, diopside, forsterite, and enstatite preserved their initial O-isotope compositions. The internal 26Al-26Mg isochrons in grossite-bearing CAIs from weakly-metamorphosed CO and CV chondrites were not disturbed during this oxygen-isotope exchange.HCCJr is grateful to Klaus Keil for all his sound profession counsel and collegial friendship over the years. He has always been willing to talk and has the generous nature of listening and sharing his thoughts freely and constructively. Professor Klaus Keil has been a mentor to and played a key role in the careers of three of the authors of this paper (ANK, KN, and GRH). He has also influenced the careers of the other authors and most of the people who have worked on meteorites over the past 50+ years. We therefore dedicate this paper to Professor Keil and present it in this Special Issue of Geochemistry.  相似文献   

17.
We report here the results of an investigation of W and Nd isotopes in the SNC (Shergottite-Nakhlite-Chassignite (martian)) meteorites. We have determined that ε182W values in the nakhlites are uniform within analytical uncertainties and have an average value of ∼3. Also, while ε182W values in the shergottites have a limited range (from 0.3-0.7), their ε142Nd values vary considerably (from −0.2-0.9). There appears to be no correlation between ε182W and ε142Nd in the nakhlites and shergottites. These results shed new light on early differentiation processes on Mars, particularly on the timing and nature of fractionation in silicate reservoirs. Assuming a two-stage model, the metallic core is estimated to have formed at ∼12 Myr after the beginning of the solar system. Major silicate differentiation established the nakhlite source reservoir before ∼4542 Ma and the shergottite source reservoirs at 4525 Ma. These ages imply that, within the uncertainties afforded by the 182Hf-182W and 146Sm-142Nd chronometers, the silicate differentiation events that established the source reservoirs of the nakhlites and shergottites may have occurred contemporaneously, possibly during crystallization of a global magma ocean. The distinct 182W-142Nd isotope systematics in the nakhlites and the shergottites imply the presence of at least three isotopically distinct silicate reservoirs on Mars, two of which are depleted in incompatible lithophile elements relative to chondrites, and the third is enriched. The two depleted silicate reservoirs most likely reside in the Martian mantle, while the enriched reservoir could be either in the crust or the mantle. Therefore, the 182W-142Nd isotope systematics indicate that the nakhlites and the shergottites originated from distinct source reservoirs and cannot be petrogenetically related. A further implication is that the source reservoirs of the nakhlites and shergottites on Mars have been isolated since their establishment before ∼4.5 Ga. Therefore, there has been no giant impact or efficient global mantle convection to thoroughly homogenize the Martian mantle following the establishment of the SNC source reservoirs.  相似文献   

18.
We present high-precision Mg isotope data for most classes of basaltic meteorites including eucrites, mesosiderite silicate clasts, angrites and the ungrouped Northwest Africa (NWA) 2976 measured by pseudo-high-resolution multiple-collector inductively coupled plasma mass spectrometry and utilising improved techniques for chemical purification of Mg. With the exception of the angrites Angra dos Reis, Lewis Cliff (LEW) 86010, NWA 1296 and NWA 2999 and the diogenite Bilanga, which have either been shown to have young ages by other dating techniques or have low Al/Mg ratios, all bulk samples of basaltic meteorites have 26Mg excesses (δ26Mg=+0.0135 to +0.0392‰). The 26Mg excesses cannot be explained by analytical artefacts, cosmogenic effects or heterogeneity of initial 26Al/27Al, Al/Mg ratios or Mg isotopes in asteroidal parent bodies as compared to Earth or chondrites. The 26Mg excesses record asteroidal melting and formation of basaltic magmas with super-chondritic Al/Mg and confirm that radioactive decay of short-lived 26Al was the primary heat source that melted planetesimals. Model 26Al-26Mg ages for magmatism on the eucrite/mesosiderite, angrite and NWA 2976 parent bodies are 2.6-3.2, 3.9-4.1 and 3.5 Myr, respectively, after formation of calcium-aluminium-rich inclusions (CAIs). However, the validity of these model ages depends on whether the elevated Al/Mg ratios of basaltic meteorites result from magma ocean evolution on asteroids through fractional crystallisation or directly during partial melting. Mineral isochrons for the angrites Sahara (Sah) 99555 and D’Orbigny, and NWA 2976, yield ages of and , respectively, after CAI formation. Both isochrons have elevated initial δ26Mg values. Given the brecciated and equilibrated texture of NWA 2976 it is probable that its isochron age and elevated initial δ26Mg(+0.0175±0.0034) reflects thermal resetting during an impact event and slow cooling on its parent body. However, in the case of the angrites the marginally elevated initial δ26Mg(+0.0068±0.0058) may reflect either δ26Mg ingrowth in a magma ocean prior to eruption and crystallisation or in an older igneous protolith with super-chondritic Al/Mg prior to impact melting and crystallisation of these angrites, or partial internal re-equilibration of Mg isotopes after crystallisation. 26Al-26Mg model ages and an olivine + pyroxene + whole rock isochron for the angrites Sah 99555 and D’Orbigny are in good agreement with age constraints from 53Mn-53Cr and 182Hf-182W short-lived chronometers, suggesting that the 26Al-26Mg feldspar-controlled isochron ages for these angrites may be compromised by the partial resetting of feldspar Mg isotope systematics. Even when age constraints from the 26Al-26Mg angrite model ages or the mafic mineral + whole rock isochron are considered, the relative time difference between Sah 99555/D’Orbigny crystallisation and CAI formation cannot be reconciled with Pb-Pb ages for Sah 99555/D’Orbigny and CAIs, which are ca. 1.0 Myr too old (angrites) or too young (CAIs) for reasons that are not clear. This discrepancy might indicate that 26Al was markedly lower (ca. 40%) in the planetesimal- and planet-forming regions of the proto-planetary disc as compared to CAIs, or that CAI Pb-Pb ages may not accurately date CAI formation, which might be better dated by the 182Hf-182W and 26Al-26Mg chronometers as 4568.3±0.7 (Burkhardt et al., 2008) and (herein), respectively, when mapped onto an absolute timescale using Pb-Pb ages for angrites.  相似文献   

19.
Silicate inclusions in IAB irons and related winonaite meteorites have textures, mineralogies and mineral chemistries that indicate a complex formation history of heating, followed by brecciation and metamorphism. Using olivine-orthopyroxene-chromite assemblages in five IAB iron silicate inclusions (Caddo County, Campo del Cielo, Copiapo, Lueders, and Udei Station) and one winonaite (Winona), we calculated closure temperatures and oxygen fugacities for these meteorites. Calculated olivine-chromite Fe-Mg exchange temperatures are compared to two-pyroxene temperatures. Olivine-chromite closure temperatures range from ∼590°C to ∼700°C, while two-pyroxene temperatures range from ∼900°C to ∼1200°C. Oxygen fugacities of these meteorites, determined for the first time in this study, range from 2.3 to 3.2 log units below the Fe-FeO buffer and define a line between the Fe-FeO and Cr-Cr2O3 buffers. Highly variable temperatures were experienced by these rocks on the hand sample, and sometimes even the thin section, scale consistent with the idea that the winonaite-IAB iron parent body experienced collisional fragmentation and reassembly after peak temperatures were reached. Although modest reduction likely occurred during cooling, the oxygen fugacities and mineral compositions recorded at peak metamorphic temperatures suggest that the chondritic precursor for this parent body was initially more reduced than ordinary chondrites.  相似文献   

20.
The global composition of the early solar system is thought to be roughly chondritic in terms of refractory components, and this means that metal and silicate should be present together in early planetesimals. To fully understand the metal-silicate differentiation process within the eucrite parent body (EPB), it is important to try and identify the metal reservoir that is complementary to the silicate part. The isotope 182 of tungsten (W), a siderophile element, is partly formed from the decay of 182Hf, and W isotopes are useful for examining metal-silicate segregation. The W isotopic composition expected for the metal that is complementary to eucrites falls in the range of iron meteorites. However, mesosiderites seem to be genetically linked to eucrites based on petrologic and oxygen isotopic similarities. Therefore, we undertook the analysis of the metal phase of these stony-irons. Here we present tungsten isotopic data for mesosiderite and pallasite metal to characterize their parent body (bodies) and to assess possible relationships with eucrites.All stony-iron metals are depleted in radiogenic tungsten by −1.3 to −4.2 ε units, relative to the terrestrial standard, while chondrites, for comparison, are depleted by −1.9 ε units. In addition to W isotopic heterogeneity from one stony-iron to another, there is also W isotopic heterogeneity within individual meteorites. A formation model is tentatively proposed, where we show that mesosiderites, pallasites, and eucrites could possibly come from the same parent body. Several hypotheses are discussed to explain the isotopic heterogeneity: the production of cosmogenic tungsten, the in situ decay of hafnium present in inclusions, and tungsten diffusion processes after metal-silicate mixing during the cooling of the meteorites. The two latter hypotheses provide the best explanation of our data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号