首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
To discriminate possible anthropogenic and lithogenic sources of Pb in Lower Silesia (SW Poland), the Pb isotope composition was investigated in a spectrum of rocks and anthropogenic materials as well as within 10 soil profiles. Silicate rocks in Lower Silesia have 206Pb/207Pb ratios that vary from 1.17 for serpentinites to 1.38 for gneisses, and this variability is reflected in the isotope composition of the mineral soil horizons. The Pb isotope composition of coals, ores and anthropogenic materials (slags and fly ashes) is rather uniform, with 206Pb/207Pb ratios ranging from 1.17 to 1.18. Similar ratios were observed in ore and coal samples from Upper Silesia. The O soil horizons also have uniform 206Pb/207Pb ratios of 1.17–1.18 and the heterogeneity of the 206Pb/207Pb ratios increases with depth in the soil profiles. Five soils, with varying Pb concentrations, analysed far from contamination centres, show consistent, approximately 2-fold enrichment in Pb concentration from the C to A horizons, which is consistent with natural re-distribution of Pb within the profiles. The increase in the Pb concentration is accompanied by a decrease in 206Pb/207Pb ratios, also attributed to natural Pb isotope fractionation. Four soil profiles from industrial areas show variable enrichments in Pb concentrations and these are attributed to anthropogenic input from air-borne pollutants or even slag particles at smelting sites. The implication is that a lithogenic Pb source can deviate from the basement rock composition, and detailed isotope characteristics of the geological background and natural enrichments in soils are often needed to determine the lithogenic/anthropogenic proportions of Pb in soils.  相似文献   

2.
Systematic variations in the Cd and Pb isotope ratios in polluted topsoils surrounding the Jinding Pb–Zn mine in China were measured so that the sources of the metals could be traced. The average δ114/110Cd value and 206Pb/207Pb isotope ratio in background soils from the region were +0.41‰ and 1.1902, respectively, whereas the contaminated soil samples had different values, with the δ114/110Cd values varying between −0.59‰ and +0.33‰ and the 206Pb/207Pb isotope ratios varying between 1.1764 and 1.1896. We also measured the Cd and Pb isotopic compositions in oxide ores, sulfide ores, and slags, and found that binary mixing between ores and background soils could explain almost all of the variations in the Cd and Pb isotope ratios in the contaminated soils. This suggests that Cd and Pb pollution in the soils was mainly caused by the deposition of dust emitted during anthropogenic activities (mining and refining). The Pb and Cd isotope ratios clearly showed that contamination in soils in the northeastern part of the area was caused by surface mines and zinc smelters and their slagheaps, while contamination in soils in the southwestern part of the area also came from tailing ponds and underground mines. The main area of soil polluted by dust from Pb–Zn mining processes roughly extended for up to 5 km from the mine itself.  相似文献   

3.
The Pb contents and 206Pb/207Pb and 208Pb/206Pb isotopic ratios were studied in the soils and wines (2004 harvest) of three vineyard areas of the Czech Republic. The areas differ in their geological basements and anthropogenic loading. The isotopic compositions of wine in areas with intensive industry (Most, North Bohemia 206Pb/207Pbwine = 1.178 ± 0.004) and the agricultural areas of Central Bohemia (Roudnice nad Labem 206Pb/207Pbwine = 1.176 ± 0.007) are similar to the Pb isotopic composition of airborne particulate material typical of polluted and industrial environments (206Pb/207Pb = 1.17–1.19). The isotopic composition of wine from Prague (206Pb/207Pbwine = 1.174 ± 0.003) is different from that of the soil, which was severely contaminated in the past by vehicular Pb (206Pb/207Pbsoil = 1.147–1.168). This fact shows that interception of airborne Pb by plants is greater than its uptake by the root system.  相似文献   

4.
Soil O and C horizon samples (N = 752) were collected at a sample density of 1 site/36 km2 in Nord-Trøndelag and parts of Sør-Trøndelag (c. 25,000 km2), and analysed for Pb and three of the four naturally occurring Pb isotopes (206Pb, 207Pb and 208Pb) in a HNO3/HCl extraction. Soil O and C horizons are decoupled in terms of both Pb concentrations and Pb isotope ratios. In the soil C horizon the Grong-Olden Culmination, a continuous exposure of the Precambrian crystalline basement across the general grain of the Caledonian orogen, is marked by a distinct 206Pb/207Pb isotope ratio anomaly. No clear regional or even local patterns are detected when mapping the Pb isotope ratios in the soil O horizon samples. Variation in the isotope ratios declines significantly from the soil C to the O horizon. On average, Pb concentrations in the O horizon are four times higher and the 206Pb/207Pb isotope ratio is shifted towards a median of 1.15 in comparison to 1.27 in the C horizon. It is demonstrated that natural processes like weathering in combination with plant uptake need to be taken into account in order to distinguish anthropogenic input from natural influences on Pb concentration and the 206Pb/207Pb isotope ratio in the soil O horizon.  相似文献   

5.
Knowledge of the cause and source of Pb pollution is important to abate environmental Pb pollution by taking source-related actions. Lead isotope analysis is a potentially powerful tool to identify anthropogenic Pb and its sources in the environment. Spatial information on the variation of anthropogenic Pb content and anthropogenic Pb sources in rural topsoils is remarkably limited. This study presents results of a survey of approximately 350 topsoil samples from rural locations covering the entire Netherlands, for which the bulk geochemical and Pb isotope compositions were determined. The specific aim of this study is to determine the anthropogenic Pb sources in the topsoils from rural areas in The Netherlands. The spatial distribution of anthropogenic Pb in soils in The Netherlands will be explained in terms of land use and pollution sources.Nearly all studied topsoils display Pb contents that exceed the amount expected based on the soil lithology. The range in Pb isotope ratios of the additional Pb fraction in rural Dutch topsoils is established at 1.056–1.199, 2.336–2.486 and 0.452–0.490 for 206Pb/207Pb, 207Pb/208Pb and 206Pb/208Pb, respectively. Five land use types are distinguished (forest, open nature, moor, arable land and grassland) with distinct isotopic compositions for added Pb. Additional Pb in soils of natural areas (forest, open nature and moor) has on average lower 206Pb/207Pb, 208Pb/207Pb and 206Pb/208Pb ratios than the agricultural soils (arable land and grassland). Additional Pb in both natural area soils and agricultural soils is interpreted to be of anthropogenic origin: most likely a mixture of coal/galena, incinerator ashes and gasoline Pb. The dominant sources of additional Pb in the topsoil of open nature areas are most likely incinerator ash and gasoline Pb. In contrast, the on average higher 206Pb/207Pb, 208Pb/207Pb and 206Pb/208Pb ratios of additional Pb in agricultural soils are most likely caused by the presence of animal manure and N–P fertilizers.Several areas are observed with notably high additional Pb contents (26–211 mg/kg on an organic matter-free basis) in the topsoil. The largest area is the Randstad area, which has the highest population and traffic density, and hosts a considerable fraction of the Dutch chemical industry. Two other areas with high additional Pb contents in the topsoil are located near the Dutch borders and are most likely influenced by German and Belgian chemical industries. The topsoils in the coastal dunes and southern, central and northern forests are characterized by relatively low additional Pb contents (<10 mg/kg on an organic matter-free basis). The population, traffic and chemical industry density is low in these areas and no fertilizers are applied.  相似文献   

6.
Mineral soil horizons (Ae, Bhf1, Bhf2, Bf, BC and C) were carefully collected from two podzolic soil profiles in the Lake Clair watershed (Québec) in order to assess anthropogenic trace metal accumulation. Petrographic and selective analyses were performed to establish the soil mineralogy and properties. Furthermore, a complete sequential extraction procedure has been applied to help understanding the complex chemical speciation of Pb in forest soils. Chemical speciation of Pb showed a strong vertical gradient: 85% of this metal is mainly partitioned in refractory minerals in the C-horizon whereas in the upper Bhf1 and Ae-horizons, less than 50% of Pb is associated with this fraction. In the Ae-horizon, for example, 35%, 30% and 12% of total Pb, respectively, is associated with the exchangeable, labile organic matter and amorphous Fe-Mn oxides fractions. The distribution of Pb and Cr in the studied forest soils mainly reflects progressive contamination of the watershed by anthropogenic atmospheric sources. The anthropogenic source is indicated by elevated Cr and Pb concentrations in the topsoil (Bhf and Ae) horizons and by strong negative correlation between 206Pb/207Pb ratios and total Pb concentrations. According to these isotopic values, penetration of anthropogenic Pb does not exceed 10 cm in both soil profiles. Below this depth, both Pb concentrations and isotopic ratios remain nearly constant and similar to values observed in pre-anthropogenic sediments from Lake Clair. These values are interpreted as the natural geochemical backgrounds of the watershed. Based on that behaviour, calculated anthropogenic Pb net inputs amounted to between 1.24 and 1.8 g/m2.  相似文献   

7.
杭州市土壤铅污染的铅同位素示踪研究   总被引:27,自引:0,他引:27       下载免费PDF全文
根据杭州市40个土壤全铅和38个可溶相铅的统计分析,土壤中全铅平均含量为49.6×10-6,可溶相铅平均为21.4×10-6,城区表土的全铅高达76.1×10-6,显著高于全国土壤平均值。分析结果还显示,从农村→远郊→近郊→公路旁,土壤可溶相铅含量逐渐增加,且土壤的可溶相铅含量与深度具明显的负相关关系。表明杭州市土壤受到了不同程度的铅污染,污染程度由农村→远郊→近郊→公路旁→城区有明显的增高趋势。通过对茶园土壤中可溶相铅、残渣态铅及城区表土全铅的同位素组成对比分析发现,从土壤残渣态(代表土壤背景)→土壤可溶相→城区表层土壤全铅206Pb/207Pb比值有明显的降低。208Pb/(206Pb+207Pb)也有类似的变化趋势。将土壤与杭州市的汽车尾气、大气等环境样品进行对比发现,随着土壤受污染程度的增加,铅同位素组成逐渐向汽车尾气铅漂移,表明汽车尾气排放的铅为其主要污染源。  相似文献   

8.
若尔盖高原牧场处于中国偏远洁净高海拔地区,大气沉降是污染物主要来源途径之一。由于季风的影响,污染源的辨析较为困难。本文通过多点大气气溶胶不同季节同时采样方式,利用热电离固体同位素质谱仪可有效校正质谱分析中同位素分馏效应的优点,对若尔盖地区土壤和大气气溶胶的铅同位素比值进行精确分析,并结合季风特征对该地区污染物的来源进行解析。结果表明:土壤的208Pb/204Pb比值变化范围为38.79059±0.00194~38.94461±0.00135,206Pb/207Pb为1.18551±0.00002~1.19362±0.00002;大气气溶胶的208Pb/204Pb比值变化范围为37.49571±0.00117~38.48980±0.00105,206Pb/207Pb为1.12894±0.00001~1.16734±0.00001。该地区土壤铅同位素的特征是放射成因铅高,来自于自身天然存在的岩石矿物,与大气污染关系不大;大气气溶胶的铅同位素组成与土壤差异较大,显示为多元混合模式,受到了天然物质和人类活动来源的混合影响,机动车尾气及来自北部(兰州)和西北部(青海、新疆、哈萨克斯坦、俄罗斯)的大气远程运移是若尔盖大气气溶胶及污染物质的主要来源。  相似文献   

9.
On 25 April 1998 the tailings dam of the Aznalcóllar mine burst, a great quantity of pyrite waste sludge and acid water was spilled reaching the vicinity of the Doñana National Park. In surface and ground water samples taken a week after dam breaking, metals, trace elements and Pb isotopic ratios (206Pb/207Pb and 208Pb/206Pb) were analysed. In September 1998 a second sampling survey was carried out. The surface waters have a similar isotopic composition as the lead contained in the pyrite from the Aznalcóllar mine. The polluted groundwater of the Guadiamar aquifer also shows the influence of the mining origin of the lead. Lead isotope ratios (206Pb/207Pb and 208Pb/206Pb) in the groundwater of the Almonte-Marismas are very low and they differ clearly from the rest of groundwater samples. A further group of wells has a lead isotope composition intermediate between the Aznalcóllar mine and the atmospheric aerosols of the Iberian Peninsula.  相似文献   

10.
High lead (Pb) concentration has been measured in the incoming water to the water supply for a small Swedish village since the 1990s. There are several sources of the contamination and the objective of this study was to identify these by analysis of Pb isotopes. Lead has four stable isotopes in nature (204Pb, 206Pb, 207Pb, 208Pb) and the relative proportions of these vary according to their geological source. The study showed that two anthropogenic sources of Pb, a glassworks deposit and a highway, had similar Pb isotope ratios and thus it was not possible to separate them. However, the very high Pb concentration in the glassworks deposit suggested that this is the main source of the very high concentrations observed occasionally in low flow conditions. The soil in the recharge area of the most important well for the water supply had elevated Pb concentrations compared with background values in soils. Moreover, the Pb ratios in this soil differed from those in the anthropogenic sources. Several sites of mineralisation or natural enrichment have been identified in outcrops about 14?km northwest of the site and several anomalies in Pb exist in the glacial till. The conclusion was that Pb originating from the soil in the recharge area generally dominates and leads to Pb concentrations in water of 1?C2???g?L?1. However, at higher concentrations, e.g. around 10???g?L?1, water transported in cracks and fissure from the glassworks deposit becomes more important.  相似文献   

11.
《Applied Geochemistry》1997,12(5):607-623
The aim of this study is to characterize the processes and phases which control migration and retention of rare earth elements (REE) in a heavy metal contaminated soil. In addition to concentration data, we used Pb, Sr and Nd isotopic compositions in order to distinguish between natural and anthropogenic trace metals and to characterize the phases leached away during the sequential extraction procedure.The samples were sequentially extracted in 3 steps with 1 N acetic acid (HAc), 1 N HCl and 1 N HNO3. The Pb isotope data showed that anthropogenic Pb had mainly been retained in the uppermost 10 cm by the organic matter of the topsoil. The87Sr/86Sr ratios of the HAc extracts are almost constant and indicate that soil carbonate is derived from regionally outcropping carbonate-rich sediments. Most HCl and HNO3 extracts have more radiogenic Sr isotopic compositions, but it is unclear whether this reflects a growing influence of anthropogenic or silicate-derived Sr.The depth distribution of the REE is mainly controlled by two different parameters: soil pH for the HAc extractable REE and FeMn oxides for the REE in the HCl and HNO3 extracts. A part of the HNO3 extractable REE was also bound to the organic matter of the topsoil. The REE concentrations in the HAc extractable phase increase with depth and increasing soil pH, which indicates that they are derived from the surface and hence are of anthropogenic origin. This is confirmed by143Nd/144Nd isotope ratios which show a mixing between a natural end-member at the top and an anthropogenic end-member at the base of the profile. We assume that the anthropogenic REE were transported in dissolved form as carbonate complexes and then precipitated during downward migration as soil pH increased.  相似文献   

12.
黄勇  高博  王健康  李强  郭太君 《岩矿测试》2013,32(4):632-637
城市道路尘土中重金属污染已成为当前重大的环境问题之一.本文对我国西部石河子市城区道路尘土的重金属污染进行评价,利用电感耦合等离子体质谱法测定铅的含量及铅同位素组成,采用地积累指数法评价铅的污染程度.结果显示,石河子市城区道路尘土中重金属铅的含量范围为19.36 ~ 84.63 mg/kg,平均含量为37.85 mg/kg,高于当地土壤背景值,但明显低于我国其他大中型城市,表明当前石河子市的环境质量已经受到人为活动的干扰;尘土中铅的地积累指数在-0.59~1.54之间,平均值为0.30,属于轻度污染水平.利用铅同位素示踪法识别铅污染的来源,206pb/207Pb比值的范围是1.159 ~ 1.182,208 pb/207 Pb比值的范围是2.391 ~2.457,均接近于煤炭和建筑材料的铅同位素比值,初步判断石河子道路尘土的铅污染主要受到煤炭燃烧和城市建设的影响.  相似文献   

13.
The Pb-isotope composition of soils and sediments has been measured from both highly contaminated and non-contaminated regions of Bayou Trepagnier, a bayou in southern Louisiana that has had oil refinery effluent discharged into it over the past 66 years. Spoil banks created by the dredging of the bayou bottom approximately 50 years ago are the main source of contamination within the ecosystem. The 206Pb/207Pb isotope composition of the contaminant is relatively constant averaging 1.275 ±0.008. A literature search reveals that such radiogenic values are typical of ores from southeastern Missouri. When surficial soil 206Pb/208Pb and 206Pb/207Pb isotope ratios are plotted against each other, a straight line is defined (r2=0.99). The linear correlation suggests mixing between Pb from the spoil banks and Pb from a natural source. The latter source may consist of Pb in soil that has been leached of its natural radiogenic component during weathering processes. Mixing calculations indicate that transport of contaminant Pb is widespread and occurs several hundred meters from the spoil banks. Despite the low Pb concentrations of some of the soils, the isotope data demonstrate that a significant amount of the Pb is derived from the pollutant source. Received: 12 July 1999 · Accepted: 14 September 1999  相似文献   

14.
The depth-distribution of lead and its stable isotope ratios were determined in a dated sediment core from a Canadian Shield lake receiving anthropogenic Pb inputs exclusively from atmospheric deposition. The results demonstrate that anthropogenic Pb deposited to the sediments of this lake since the preindustrial period can be modeled successfully using as little as two isotopically distinct Pb types. The first, whose flux was not detectable before 1850, reached a maximum value around 1950, and then decreased significantly thereafter; it was characterized by 206Pb/207Pb and 206Pb/208Pb ratios of 1.222 and 0.495, respectively, and was derived mainly from coal combustion. The second, whose flux was not detectable before 1880, increased sharply to exceed that of the Pb type derived from coal combustion around 1930, and reached a maximum in the mid 1970s; it is characterized by 206Pb/207Pb and 206Pb/208Pb ratios of 1.179 and 0.482, respectively, and was derived mainly from leaded gasoline combustion and industrial sources. The chronology of deposition of these two anthropogenic lead types agrees well with the historical records of fossil fuel uses in Canada and the USA, and also with the history of sediment-deposited polycyclic aromatic hydrocarbons (PAHs) originating from coal combustion. The inventory of Pb derived from coal combustion (0.09 μmol cm−2) is ∼30% of that derived mainly, but not exclusively, from leaded gasoline (0.31 μmol cm−2). Apportionment among source regions of lead deposited to the sediments during the period when leaded gasoline dominated Pb atmospheric emissions indicates that ∼50% of this lead originated in the USA.  相似文献   

15.
Todos os Santos (all Saints) Bay area on Brazil’s east coast is known for one of the most significant cases of lead contamination in the country owing to the past activities of a Pb-smelter plant. This work was carried out to assess the concentration and sources of Pb based on Pb isotopes and enrichment factor of soil profiles surrounding Todos os Santos Bay in order to understand the expansion of contamination and to help the establishment of Pb regulatory standards for the region. Forty-four samples were collected from soil genetic horizons of six pedons that represent the range of dominant soil properties and geologic materials in the region. Concentrations of Pb and the isotopes 204Pb, 206Pb, 207Pb, and 208Pb were determined on an inductively coupled plasma (quadrupole) mass spectrometry. The soil enrichment factor was calculated using Al and Fe as conservative index elements. Average Pb concentration (15.87 mg kg?1) in uppermost horizons (from all six pedons) is slightly higher than soil background concentrations commonly reported in Brazil. Samples feature a wide range of Pb isotope ratios, ranging from 36.71 to 47.38 for 208Pb/204Pb, 15.00 to 15.65 for 207Pb/204Pb, 16.86 to 20.59 for 206Pb/204Pb, and 1.10 to 1.31 for 206Pb/207Pb. For the enrichment factor calculations, only Fe demonstrated a good agreement with Pb isotopic ratios. Both Pb isotopic composition and enrichment factor were useful tools to distinguishing natural and anthropogenic influence on the Pb soil concentrations.  相似文献   

16.
Anthropogenic Pb affects the environment worldwide. To understand its effect on forest ecosystem, Pb isotope ratios were determined in precipitation, various components of vegetation, the forest floor, soil and parent material in a Japanese cedar (Cryptomeria japonica D. Don) forest stand. The average 206Pb/207Pb ratio in bulk precipitation was 1.14 ± 0.01 (mean ± SD), whereas that in the subsoil (20–130 cm) was 1.18 ± 0.01. Intermediate ratios ranging from 1.15 to 1.16 were observed in the vegetation, the forest floor, and the surface soil (0–10 cm). Using the 206Pb/207Pb ratios, the contribution of anthropogenic sources to Pb accumulated in the forest were estimated by the simple binary mixing model. Sixty-two percent of the Pb in the forest floor, 71% in the vegetation, and 55% in the surface soil (0–10 cm) originated from anthropogenic sources, but only 16% in the sub-surface soil (10–20 cm) was anthropogenic. These results suggest that internal Pb cycling occurs mainly between surface soil and vegetation in a Japanese cedar ecosystem, and that anthropogenic Pb strongly influences Pb cycling. Although the Japanese cedar ecosystem has a shallow forest floor, very little atmospherically derived Pb migrated downward over 10 cm in depth.  相似文献   

17.
This study was conducted to assess the anthropogenic impact on metal concentrations in the bottom sediments of the Juam reservoir, Korea, and in stream sediments in its catchment, and to estimate the potential mobility of selected metals (Fe, Mn, Cu, Ni, Pb and Zn) using sequential extraction. A comparison of the metal concentrations in the stream sediments with mean background values in sediments collected from first- or second-order creeks shows that Pb, Cu and Ni are the most affected by anthropogenic inputs. The 206Pb/207Pb ratios of the bottom and core sediments (means: 1.2320 ± 0.0502 and 1.2212 ± 0.0040, respectively) suggest that Pb contamination is mainly due to the waste discharge of abandoned coal and metal mines rather than industrial and airborne sources. Considering the proportion of metals bound to the exchangeable, carbonate and reducible fractions, the comparative mobility of metals is suggested to decrease in the order Mn > Pb > Zn > Ni > Fe  Cu.  相似文献   

18.
Stable Pb-isotope ratios are widely used as tracers for Pb-sources in the environment. Recently, a few publications have challenged the predominating view of environmental applications of Pb-isotopes. Present applications of Pb-isotopic tracers in soils largely represent the northern hemisphere. This study focuses on tropical soils from Paraíba, north-eastern Brazil. Lead concentrations and Pb-isotopic signatures (both 7N HNO3) were determined at 30 sites along a 327 km E–W-transect, from the Atlantic coast at João Pessoa to some kilometers west of Patos, to identify possible processes for the observed (and anticipated) distribution pattern. Thirty samples each of litter (ORG) and top mineral soil (TOP) were taken on pasture land at suitable distance from roads or other potential contamination sources. Lead-content was determined by inductively-coupled plasma atomic emission spectrometry (ICP-AES) and the ratios of 206Pb/207Pb, 206Pb/208Pb, and 208Pb/207Pb by ICP-sector field mass spectrometry (ICP-SFMS). Both sample materials show similarly low Pb-concentrations with a lower median in the ORG samples (ORG 3.4 mg kg−1 versus TOP 6.9 mg kg−1). The 206Pb/207Pb ratios revealed a large spread along the transect with median 206Pb/207Pb ratios of 1.160 (ORG) and 1.175 (TOP). The 206Pb/207Pb ratios differ noticeably between sample sites located in the Atlantic Forest biome along the coast and sample sites in the inland Caatinga biome. The “forest” sites were characterised by a significant lower median and a lower spread in the 206Pb/207Pb and 206Pb/208Pb ratios compared to the Caatinga sites. Results indicate a very restricted influence of anthropogenic activities (individual sites only). The main process influencing the spatial variability of Pb-isotope ratios is supposed to be precipitation-dependent bioproductivity and weathering.  相似文献   

19.
《Applied Geochemistry》1997,12(1):75-81
The extent of vertical migration of anthropogenic Pb beneath a medieval smelting site in Derbyshire, U.K. has been estimated using the determination of total Pb concentrations and 206Pb/207Pb isotope ratio from samples taken down 6 m of drill core. Preliminary studies of total Pb concentrations established that the surface slag derived from the smelting contained up to 16% Pb and that the normal background levels in uncontaminated sandstone were 10±2 ppm. Sample analyses beneath the site revealed elevated Pb concentrations in fracture infill clays (270 ppm Pb) and sandstone (76–83 ppm Pb). Both are well above the background Pb concentration.Lead isotope analysis of the slag wastes, the underlying contaminated sandstone and fracture infill has shown that all 3 contain very similar isotope ratios for 206Pb/207Pb (1.1802–1.1820). However, matched control sandstone samples show that the background 206Pb/207Pb isotope ratio (1.1670 ± 0.003) is distinctly different. This would indicate that both the sandstone and fracture infill underlying the historical smelting site contain a substantial proportion of Pb that has been derived from the overlying contamination.The application of total Pb concentrations along the core and isotope analysis suggest that anthropogenically derived Pb from the smelting site (that was operated between 665 and 445 a BP) has migrated to a depth of 4.50 m. Assuming a uniform migration rate and a mean time of migration of 555 a, then the mean migration rate is estimated to be 8 ± 2 mm/a.The proportion of natural versus anthropogenic Pb in the samples has been estimated from small variations in the 206Pb/207Pb isotope ratio. If the slag is considered to contain 100% anthropogenic Pb and the uncontaminated sandstone considered to contain 100% natural Pb, the linear interpolation can be applied between the 2 end members of the isotope ratio. The use of this approach to the 206Pb/207Pb ratio measurements has shown that 88% of the Pb in the contaminated sandstone (i.e. 69 ppm from a mean total Pb concentration of 78.5 ppm) has been derived from the anthropogenic Pb at the surface. For the fracture infill sample taken at a depth of 4.50 m, and with a total Pb concentration of 270 ppm, the % of Pb that has been derived from the slag wastes is approximately 98% (equivalent to 265 ppm Pb). The remaining Pb in both these samples (9.4 and 5 ppm, respectively) is deduced to have originated from the natural background concentration of Pb in the sandstone.The closeness of these estimates to the measured background concentration, suggests that a simple two-source model of Pb contamination is valid for this site.  相似文献   

20.
《Applied Geochemistry》2000,15(9):1291-1305
Lead concentrations and isotopic compositions were determined on both bulk sediments deposited in the Thau lake in southern France during the last 200 years, and leachates derived from a series of sequential leachings of the sediments, making it possible to identify the sources, natural (i.e. indigenous lithologic) or anthropogenic, and to quantify the different inputs of Pb.Two distinct inputs of Pb could be distinguished. One of these corresponds to the terrigenous material entering the basin, representative of the local natural Pb ‘background’. Its supply remained steady most of the time with 206Pb/207Pb ratios of 1.200±0.003, except at the time of heavy storms producing voluminous and sudden depositions, such as that of September 1875. This Pb supply is mainly hosted by the detrital silicate fraction of the sediments. The second Pb input is a direct consequence of anthropogenic activities of various industrial and domestic emissions in the region, particularly due to the city of Sète and, to a lesser extent, to the villages in the watershed. The 206Pb/207Pb ratios of this input are of 1.142–1.162. The Pb added to gasoline could also be identified in the uppermost sediments, because of its specific 206Pb/207Pb ratios of 1.069–1.094. The leaching experiments also showed that the anthropogenic Pb is mainly hosted by the oxi-hydroxides of the sediments and to a lesser extent by the carbonates. It may also be adsorbed on particle surfaces, while only limited amounts are bound to organic matter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号