首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Isotopic evidence for the source of lead in the North Pacific abyssal water   总被引:1,自引:0,他引:1  
The absence of accurate measurements of lead (Pb) isotopic composition in the North Pacific abyssal water has made it difficult to assess the relative importance of what are believed to be the two major Pb sources: the natural Pb introduced during preindustrial time and recent anthropogenic Pb resulting from leaded gasoline combustion and high temperature industrial activities. Here we report a vertical profile of seawater 206Pb/207Pb ratio and a meridional section of Pb concentration in the North Pacific Ocean. We observe 2-3-fold increases in Pb concentration along the deep-water flow path and a deep-water 206Pb/207Pb ratio (∼1.188) substantially lower than the pre-industrial value (∼1.210). These data suggest that anthropogenic Pb has invaded the North Pacific abyssal water and become the predominant Pb source there. A simple model calculation based on these data indicates that the anthropogenic Pb is transported to the deep ocean by sinking particles and that this Pb vertical flux has a 206Pb/207Pb ratio that decreased during the past two centuries.  相似文献   

2.
A survey was performed to trace the main source of anthropogenic Pb pollution in Mexico City through Pb isotopic signatures (208Pb/204Pb, 206Pb/204Pb, 206Pb/207Pb, and 208Pb/207Pb) from 103 urban topsoil (0–5 cm) samples. Those were collected in the metropolitan area of Mexico City and compared with isotopic compositions of leaded gasoline (LG), domestic Pb ores (DLO) and parent rock (PR). The isotope ratios (IRs) of Pb were determined by inductively coupled plasma quadrupole mass spectrometry (ICP-QMS) and total Pb concentration analyzed by wavelength dispersive X-ray fluorescence (WDXRF). The range of Pb concentrations levels in urban topsoil samples was 15–473 mg/kg. The IR values obtained for these samples were 37.965–39.718 (208Pb/204Pb), 18.375–19.204 (206Pb/204Pb), 1.177–1.218 (206Pb/207Pb) and 2.443–2.496 (208Pb/207Pb). Analyzed topsoil samples with low Pb content (<50 mg/kg) displayed high dispersion in 208Pb/204Pb values, which are determined by different natural sources. Samples with 51–200 mg/kg Pb content, shown low dispersion that revealed the mixing between the natural Pb and anthropogenic Pb. The assessment of the IR values shown that, as Pb concentration increases, a trend toward gasoline IR data has been observed. The results obtained by this research suggest that although the use of leaded petrol had been banned in Mexico since 1997, the Pb pollution in the urban topsoils due to the historical use of Pb in petrol is still significant.  相似文献   

3.
A peat core from an ombrotrophic bog documents the isotopic evolution of atmospheric Pb in central Ontario since AD 1804 ± 53 (210Pb dating). Despite the introduction of unleaded gasoline in the mid-1970’s, the ratio 206Pb/207Pb in atmospheric deposition has not increased as expected, but rather continues to decline. In fact, snowpack sampling (2005 and 2009) and rainwater samples (2008) show that the isotopic composition of atmospheric Pb today is often far less radiogenic than the gasoline lead that had been used in Canada in the past. The peat, snow, and rainwater data presented here are consistent with the Pb isotope data for aerosols collected in Dorset in 1984 and 1986 which were traced by Sturges and Barrie (1989) to emissions from the Noranda smelter in northern Quèbec, Canada’s largest single source of atmospheric Pb. Understanding atmospheric Pb deposition in central Ontario, therefore, requires not only consideration of natural sources and past contributions from leaded gasoline, but also emissions from metal smelting and refining.Lead in the streams which enter Kawagama Lake today (206Pb/207Pb = 1.16 − 1.19) represents a mixture between the natural values (1.191 − 1.201 estimated using pre-industrial lake sediments) and the values found in the humus layer of the surrounding forest soils (206Pb/207Pb = 1.15 − 1.19). In the lake itself, however, Pb is much less radiogenic (206Pb/207Pb as low as 1.09) than in the streams, with the dissolved fraction less radiogenic than particulate material. The evolution of Pb isotope ratios within the watershed apparently reflects preferential removal by sedimentation of comparatively dense, radiogenic, terrestrial particles (derived from the mineral fraction of soils) from the humus particles with lower ratios of 206Pb/207Pb (because of atmospheric Pb contamination). Despite the contemporary enrichments of Pb in rain and snow, concentrations of dissolved Pb in the lake are extremely low (sometimes below 10 ng/l), with Pb concentrations and Pb/Sc ratios approaching “natural” values because of efficient binding to particles, and their subsequent removal in the watershed.  相似文献   

4.
Knowledge of the cause and source of Pb pollution is important to abate environmental Pb pollution by taking source-related actions. Lead isotope analysis is a potentially powerful tool to identify anthropogenic Pb and its sources in the environment. Spatial information on the variation of anthropogenic Pb content and anthropogenic Pb sources in rural topsoils is remarkably limited. This study presents results of a survey of approximately 350 topsoil samples from rural locations covering the entire Netherlands, for which the bulk geochemical and Pb isotope compositions were determined. The specific aim of this study is to determine the anthropogenic Pb sources in the topsoils from rural areas in The Netherlands. The spatial distribution of anthropogenic Pb in soils in The Netherlands will be explained in terms of land use and pollution sources.Nearly all studied topsoils display Pb contents that exceed the amount expected based on the soil lithology. The range in Pb isotope ratios of the additional Pb fraction in rural Dutch topsoils is established at 1.056–1.199, 2.336–2.486 and 0.452–0.490 for 206Pb/207Pb, 207Pb/208Pb and 206Pb/208Pb, respectively. Five land use types are distinguished (forest, open nature, moor, arable land and grassland) with distinct isotopic compositions for added Pb. Additional Pb in soils of natural areas (forest, open nature and moor) has on average lower 206Pb/207Pb, 208Pb/207Pb and 206Pb/208Pb ratios than the agricultural soils (arable land and grassland). Additional Pb in both natural area soils and agricultural soils is interpreted to be of anthropogenic origin: most likely a mixture of coal/galena, incinerator ashes and gasoline Pb. The dominant sources of additional Pb in the topsoil of open nature areas are most likely incinerator ash and gasoline Pb. In contrast, the on average higher 206Pb/207Pb, 208Pb/207Pb and 206Pb/208Pb ratios of additional Pb in agricultural soils are most likely caused by the presence of animal manure and N–P fertilizers.Several areas are observed with notably high additional Pb contents (26–211 mg/kg on an organic matter-free basis) in the topsoil. The largest area is the Randstad area, which has the highest population and traffic density, and hosts a considerable fraction of the Dutch chemical industry. Two other areas with high additional Pb contents in the topsoil are located near the Dutch borders and are most likely influenced by German and Belgian chemical industries. The topsoils in the coastal dunes and southern, central and northern forests are characterized by relatively low additional Pb contents (<10 mg/kg on an organic matter-free basis). The population, traffic and chemical industry density is low in these areas and no fertilizers are applied.  相似文献   

5.
The history records of polycyclic aromatic hydrocarbons (PAHs), lead and its stable isotope ratios were determined in a sediment core to receive anthropogenic impacts on the Shilianghe Reservoir in eastern China. The historical changes of PAHs concentrations, PAHs fluxes, Pb/Al and Pb isotope ratios showed a synchronous trend throughout the core, suggesting changes in energy usage and correlating closely with the experience of a rapid economic and industrial development of the catchment, Linyi City in eastern China. PAHs isomer ratios results reveal PAHs in sediments are dominantly anthropogenic pyrogenic source, dominated by the combustion of coal and biomass. Furthermore, the Pb isotopic composition also clearly indicates that coal combustion dust mainly contributed to the Pb burden in the reservoir sediments. Based on mix end member model of Pb isotope ratios, coal combustion dust dominated anthropogenic Pb sources over fifty years contributing from 31% to 62% of total Pb in sediment. And the contribution of leaded gasoline was low than average 25%. In addition, a stable increase of coal combustion source was found in sediment core, while the contribution of leaded gasoline had declined in recent decades, with the phase-out of leaded gasoline in China.  相似文献   

6.
《Applied Geochemistry》2000,15(9):1291-1305
Lead concentrations and isotopic compositions were determined on both bulk sediments deposited in the Thau lake in southern France during the last 200 years, and leachates derived from a series of sequential leachings of the sediments, making it possible to identify the sources, natural (i.e. indigenous lithologic) or anthropogenic, and to quantify the different inputs of Pb.Two distinct inputs of Pb could be distinguished. One of these corresponds to the terrigenous material entering the basin, representative of the local natural Pb ‘background’. Its supply remained steady most of the time with 206Pb/207Pb ratios of 1.200±0.003, except at the time of heavy storms producing voluminous and sudden depositions, such as that of September 1875. This Pb supply is mainly hosted by the detrital silicate fraction of the sediments. The second Pb input is a direct consequence of anthropogenic activities of various industrial and domestic emissions in the region, particularly due to the city of Sète and, to a lesser extent, to the villages in the watershed. The 206Pb/207Pb ratios of this input are of 1.142–1.162. The Pb added to gasoline could also be identified in the uppermost sediments, because of its specific 206Pb/207Pb ratios of 1.069–1.094. The leaching experiments also showed that the anthropogenic Pb is mainly hosted by the oxi-hydroxides of the sediments and to a lesser extent by the carbonates. It may also be adsorbed on particle surfaces, while only limited amounts are bound to organic matter.  相似文献   

7.
Economic reform in China since 1978 has accelerated economic development nationwide hugely, but has also brought about some environmental pollution. In order to identify the primary Pb source to the atmosphere in the central Guizhou region, Pb isotopic ratios in the acid soluble fraction of sediment from Hongfeng Lake were investigated. Lead isotopes in the lake sediments record the history of regional atmospheric Pb pollution. Before the economic reform in 1978, the 208Pb/206Pb and 206Pb/207Pb ratios in the leachates of lake sediments were constant, with a range of 2.0060 to 2.0117 and of 1.2314 to 1.2355, respectively. In the early period of economic reform (1978 to 1988), with the rapid industrial growth in Guizhou province, the acid soluble Pb isotope ratios in the lake sediments changed sharply: the 208Pb/206Pb ratios increased from 2.0212 to about 2.05, while the 206Pb/207Pb ratios decreased from 1.2251 to 1.2060. Emissions from Pb-ore-related industries are suggested to be the major pollution source of Pb in this period. Due to output from a local power plant since 1988, the isotope ratios of the acid soluble Pb in sediments in 1990s are characterized by a little higher radiogenic Pb (208Pb/206Pb = 2.0340–2.0400; 206Pb/207Pb = 1.2122–1.2158) than for the 1980s.  相似文献   

8.
As a consequence of deposition of atmospheric pollution, the lead concentration in the mor layer (the organic horizon) of remote boreal forest soils in Sweden is raised far above natural levels. How the mor will respond to decreased atmospheric pollution is not well known and is dependent on future deposition rates, downward migration losses and upward fluxes in the soil profile. Plants may contribute to the upward flux of lead by ‘pumping’ lead back to the mor surface through root uptake and subsequent litter fall. We use lead concentration and stable isotope (206Pb, 207Pb and 208Pb) measurements of forest vegetation to quantify plant uptake rates from the soil and direct from the atmosphere at two sites in northern Sweden; an undisturbed mature forest and a disturbed site with Scots pine (Pinus sylvestris) growing on a recently exposed mineral soil (C-horizon) containing a minimum of atmospherically derived pollution lead. Analyses of forest mosses from a herbarium collection (spanning the last ∼100 yr) and soil matrix samples suggest that the atmospheric lead deposited on plants and soil has an average 206Pb/207Pb ratio of 1.15, while lead derived from local soil minerals has an average ratio of ∼1.47. Since the biomass of trees and field layer shrubs has an average 206Pb/207Pb ratio of ∼1.25, this indicates that 70% ± 10% of the inventory of 1 ± 0.8 mg Pb m−2 stored in plants in the mature forest originates from pollution. Needles, bark and apical stemwood of the pine growing on the disturbed soil, show lower 206Pb/207Pb ratios (as low as 1.21) than the roots and basal stemwood (having ratios > 1.36), which indicate that plants are able to incorporate lead directly from the atmosphere (∼50% of the total tree uptake). By partitioning the total uptake of lead into uptake from the atmosphere and different soil layers using an isotopic mixing model, we estimate that ∼0.03 ± 0.01, 0.02 ± 0.01 and 0.05 ± 0.01 mg Pb m−2 yr−1 (mean ± SD), is taken up from the mor layer, the mineral soil and the atmosphere, respectively, by plants in the undisturbed mature forest. These small fluxes, which are at least a magnitude lower than reported downward migration losses, suggest that plant uptake will not strongly prolong the self-cleaning rate of the mor layer.  相似文献   

9.
Three soil profiles taken from the Hartwood Research Station in Central Scotland have been analyzed using chemical digestion and extraction techniques to investigate the chemical association of heavy metals deposited from the atmosphere. Total digestion, EDTA extraction and the BCR (Bureau Communitaire de Reference) sequential extraction procedure were used. In addition, lead isotope ratios in the whole soils and in the fractions from the sequential extraction procedure were measured using thermal ionisation mass spectrometry. All the digestion and extraction procedures gave clear indication of enhanced concentrations of heavy metals in surface soils, in particular for lead and zinc. Whereas total digestion gave a good indication of the heavy metal status of the soils, the extraction procedures were necessary to provide information on chemical association of the metals with soil components, information needed to understand the soil processes involved in mobilization of metals. Lead isotope analysis of the whole soils revealed a consistent picture of lower 206Pb/207Pb ratios in surface soils (1.140-1.147) than in soils at 20-30 cm depth (1.182-1.190). The steady progression from the lower to higher ratios down the profile was clear indication that anthropogenic lead had penetrated to some degree into the deeper soils. The combination of sequential extraction and lead isotope analysis proved to be a powerful approach to studying this effect in more detail and showed that the fractions extractable from 20 to 30 cm soils contained lead with much lower 206Pb/207Pb ratios (1.174-1.178) than the residual fraction (1.196-1.200). As the extractable fractions contained ≥85% of the lead in the soil, a substantial portion of lead at 20-30 cm depth was of anthropogenic origin. The 206Pb/207Pb ratios of 1.174-1.178 found in the extractable fractions suggested that the mobile component of the anthropogenic lead was that deposited before the introduction of leaded petrol.  相似文献   

10.
Lead concentrations and stable lead isotopes (204Pb, 206Pb, 207Pb, 208Pb) were measured in forest moss samples (Pleurozium schreberi or Scleropodium purum) collected at 273 sites across the Czech Republic during 2010. Continuously decreasing median Pb concentrations in moss were documented over the last two decades: 1995: 11 mg/kg, 2000: 5.66 mg/kg, 2005: 4.94 mg/kg and 2010: 2.85 mg/kg. Several local anomalies have decreased in scale, the overall regional distribution patterns remained, however, the same. The regional Pb isotope ratio distributions show that the ratios show little variation for a large central part of the country and provide the large-scale background isotope ratios for the Czech Republic of about 204Pb/206Pb = 0.0550, 206Pb/207Pb = 1.167, 206Pb/208Pb = 0.478 and 207Pb/208Pb = 0.409 for 2010. This background Pb isotope ratio signal in moss has been locally (900–7500 km2) modified by specific Pb isotopic ratio signals caused by deposition of Pb emissions from known local anthropogenic Pb emission sources, such as industrial combustion of local coal, and a variety of industrial enterprises (metallurgical, engineering and glass works). At some sites where mining of uranium and polymetallic ores took place the moss samples show also a locally specific Pb isotope signal. The in terms of area affected largest deviations in the Pb-isotope ratios, e.g., in the Bohemian Massif, may be due to the input of geogenic dust.  相似文献   

11.
To discriminate possible anthropogenic and lithogenic sources of Pb in Lower Silesia (SW Poland), the Pb isotope composition was investigated in a spectrum of rocks and anthropogenic materials as well as within 10 soil profiles. Silicate rocks in Lower Silesia have 206Pb/207Pb ratios that vary from 1.17 for serpentinites to 1.38 for gneisses, and this variability is reflected in the isotope composition of the mineral soil horizons. The Pb isotope composition of coals, ores and anthropogenic materials (slags and fly ashes) is rather uniform, with 206Pb/207Pb ratios ranging from 1.17 to 1.18. Similar ratios were observed in ore and coal samples from Upper Silesia. The O soil horizons also have uniform 206Pb/207Pb ratios of 1.17–1.18 and the heterogeneity of the 206Pb/207Pb ratios increases with depth in the soil profiles. Five soils, with varying Pb concentrations, analysed far from contamination centres, show consistent, approximately 2-fold enrichment in Pb concentration from the C to A horizons, which is consistent with natural re-distribution of Pb within the profiles. The increase in the Pb concentration is accompanied by a decrease in 206Pb/207Pb ratios, also attributed to natural Pb isotope fractionation. Four soil profiles from industrial areas show variable enrichments in Pb concentrations and these are attributed to anthropogenic input from air-borne pollutants or even slag particles at smelting sites. The implication is that a lithogenic Pb source can deviate from the basement rock composition, and detailed isotope characteristics of the geological background and natural enrichments in soils are often needed to determine the lithogenic/anthropogenic proportions of Pb in soils.  相似文献   

12.
Concentrations of total lead as high as 1,600 g/L were detected in gasoline-contaminated and uncontaminated groundwater at three gasoline-release sites in South Carolina. Total lead concentrations were highest in turbid groundwater samples from gasoline-contaminated and uncontaminated wells, whereas lower turbidity groundwater samples (collected using low-flow methods) had lower total lead concentrations. Dissolved lead concentrations in all wells sampled, however, were less than 15 g total lead/L, the current United States Environmental Protection Agency (US EPA) maximum contaminant level (MCL). Because many total lead concentrations exceeded the MCL, the source of lead to the groundwater system at two of the three sites was investigated using a stable lead isotope ratio approach. Plots of the stable isotope ratios of lead (Pb) in groundwater as 207Pb/206Pb versus 208Pb/206Pb, and 208Pb/204Pb versus 206Pb/204Pb were similar to ratios characteristic of lead-based minerals in local rocks of the southeastern US, and were not similar to the stable lead isotopes ratios characteristic of distant lead ore deposits such as Broken Hill, Australia, used to produce tetraethyl lead in gasoline products prior to its phase-out and ban in the United States. Moreover, the isotopic composition of dissolved lead was equivalent to the isotopic composition of total lead in turbid samples collected from the same well, suggesting that the majority of the lead detected in the groundwater samples was associated with sediment particulates of indigenous aquifer material, rather than lead associated with spilled leaded gasoline. The results of this investigation indicate that (1) lead detected at some gasoline-release sites may be derived from the local aquifer material, rather than the gasoline release, and consequently may affect site-specific remediation goals; (2) non-low flow groundwater sampling methods, such as a disposable bailer, may result in turbid groundwater samples and high total lead concentrations, and; (3) stable lead isotopes can be used to clarify the source of lead detected above permissible levels in gasoline-contaminated groundwater systems.  相似文献   

13.
The magnitude and sources of lead (Pb) pollution in the Gulf of California Ecoregion (GCE) in northwest Mexico were evaluated using various samples collected from urban and rural areas around two typical subtropical coastal ecosystems. Lead concentrations and isotopic compositions (206Pb/207Pb, 208Pb/207Pb, 206Pb/204Pb and 208Pb/204Pb) were measured using high resolution inductively-coupled plasma mass spectrometry (HR-ICP-MS) and thermal ionization mass spectrometry (TIMS). Urban street dust (157 ± 10.1 μg g− 1) was heavily enriched with Pb, compared to the Pb enrichment of agricultural soils (29.0 ± 16.0 μg g− 1) and surface estuary sediments (35.6 ± 15.4 μg g− 1), all of which contained higher Pb concentrations than found in the natural bedrock (16.0 ± 5.0 μg g− 1). Pb concentrations in SPM (> 95% of total Pb) were significantly higher in sewage effluent (132 ± 49.9 μg g− 1) than in agricultural effluents (29.3 ± 5.9 μg g− 1), and river runoff (7.3 ± 4.2 μg g− 1). SPM in estuary water column averaged 68.3 ± 48.0 μg g−1. The isotopic composition of Pb (206Pb/207Pb, 208Pb/207Pb) in rural samples of aerosols (1.181 ± 0.001, 2.444 ± 0.003) and soil runoff (1.181 ± 0.003, 2.441 ± 0.004) was comparable to that of natural Pb-bearing bedrock (1.188 ± 0.005, 2.455 ± 0.008); while urban samples of aerosols, street dust, and sewage (1.190–1.207, 2.452–2.467) showed a significant contribution from automotive emissions from past leaded gasoline combustion (1.201 ± 0.006, 2.475 ± 0.005). The absence of lead from fertilizer (1.387 ± 0.008, 2.892 ± 0.005) suggests that this mixture is not representative of the GCE. A mixing model revealed that the Pb content in the environmental samples is predominantly derived from natural weathering and the past leaded gasoline combustion with the later influence of inputs from a more radiogenic source related with anthropogenic lead of North American origin (1.21 ± 0.02; 2.455 ± 0.02).  相似文献   

14.
A high-resolution record of Pb deposition in Rhode Island over the past 250 yr was constructed using a sediment core from the anoxic Pettaquamscutt River basin. The sedimentary Pb concentration record shows the well-described maximum associated with leaded gasoline usage in the United States. Diminished Pb variability during recorded periods of local industrial activity (1735 to 1847) supports the greater importance of regional atmospheric lead transport vs. local inputs. The Pb isotopic composition at this site shows a clear maximum in anthropogenic 206Pb/207Pb in the mid-1800s. Similar peaks have also been observed in sediments from Chesapeake Bay and the Great Lakes, suggesting a common source. Possible causes for this event include mining and smelting of Pb ores in the Upper Mississippi Valley district, which accounted for almost all Pb production in the United States in that period. The timing of this event can provide an important stratigraphic marker for sediments deposited in the past 200 yr in the Northeastern United States. The downcore profile of anthropogenic 206Pb/207Pb provides a classic example of how changes in the mixture of ores for production of tetraethyl lead caused a regional-scale shift in the sedimentary record, and suggests that coal could have played a secondary role in Pb emissions after 1920.  相似文献   

15.
Moss, O and C horizons of podzols, mainly forming complementary sample triplets, as well as filter residues of molten snow from northern Norway, northern Finland and NW Russia have been analyzed by TIMS for their Pb isotopic composition in order to study the impacts of local geogenic/anthropogenic sources and long range atmospheric transport on the Pb balance in the European Arctic. Samples were taken along two N-S transects covering an area of ∼188.000 km2, including both pristine environments in the W and certain regions towards the E severely contaminated by heavy metal emissions originating from large nickel smelters and processing plants in NW Russia.The lead in moss and O horizon samples clearly reflects atmospheric deposition, as it displays overall uniform isotope ratios and is decoupled from the geogenic background, i.e. the underlying mineral soils in the C horizon. Moss and O horizon samples from the eastern N-S transect are isotopically indistinguishable from those taken along the western transect but their Pb concentrations tend to be ∼2 times higher. This points to considerable contamination originating from the nearby Russian industrial and urban centers. However, isotopic signals of emissions from individual industrial point sources cannot be unambiguously identified because they lack characteristic isotope signatures. Pb derived from gasoline additives is swamped by Pb from other sources and can also be excluded as a major contributor to the environmental Pb in the European Arctic.Overall, the Pb isotopic signatures of moss and O horizon overlap values recorded in atmospheric lead all over central and southern Europe, more than 2000 km south of the study area. This may be taken as indicating continent-wide mixing of Pb derived from similar sources in the atmosphere or as reflecting economic globalization, or both. O horizon samples, which accumulate lead over 20-30 yr, conform to a distinct Pb isotope reference line in 207Pb/206Pb vs. 208Pb/206Pb space (“European Standard Pollution,” ESP) defined by atmospheric Pb considered to be representative for the technical civilization in Europe. Conversely, the Arctic moss samples with a lifetime of <3 yr display a deviating linear trend reflecting a recent change of atmospheric input towards significantly more radiogenic Pb derived from Mississippi Valley-type ores in the U.S., fully compatible with signatures found in epiphytic lichens from Canada, but also in Pb from urban waste incinerators in central Europe. Considering the elevated Pb concentrations in moss collected along the eastern N-S transect, this congruence indicates that the Pb in moss of the European Arctic most probably originates from the nearby Russian centers of urbanization and not from transatlantic transport. We therefore suspect imported industrial goods and their subsequent attrition to be a more plausible explanation for the appearance of MVT lead in Europe.  相似文献   

16.
Stable Pb-isotope ratios are widely used as tracers for Pb-sources in the environment. Recently, a few publications have challenged the predominating view of environmental applications of Pb-isotopes. Present applications of Pb-isotopic tracers in soils largely represent the northern hemisphere. This study focuses on tropical soils from Paraíba, north-eastern Brazil. Lead concentrations and Pb-isotopic signatures (both 7N HNO3) were determined at 30 sites along a 327 km E–W-transect, from the Atlantic coast at João Pessoa to some kilometers west of Patos, to identify possible processes for the observed (and anticipated) distribution pattern. Thirty samples each of litter (ORG) and top mineral soil (TOP) were taken on pasture land at suitable distance from roads or other potential contamination sources. Lead-content was determined by inductively-coupled plasma atomic emission spectrometry (ICP-AES) and the ratios of 206Pb/207Pb, 206Pb/208Pb, and 208Pb/207Pb by ICP-sector field mass spectrometry (ICP-SFMS). Both sample materials show similarly low Pb-concentrations with a lower median in the ORG samples (ORG 3.4 mg kg−1 versus TOP 6.9 mg kg−1). The 206Pb/207Pb ratios revealed a large spread along the transect with median 206Pb/207Pb ratios of 1.160 (ORG) and 1.175 (TOP). The 206Pb/207Pb ratios differ noticeably between sample sites located in the Atlantic Forest biome along the coast and sample sites in the inland Caatinga biome. The “forest” sites were characterised by a significant lower median and a lower spread in the 206Pb/207Pb and 206Pb/208Pb ratios compared to the Caatinga sites. Results indicate a very restricted influence of anthropogenic activities (individual sites only). The main process influencing the spatial variability of Pb-isotope ratios is supposed to be precipitation-dependent bioproductivity and weathering.  相似文献   

17.
黄勇  高博  王健康  李强  郭太君 《岩矿测试》2013,32(4):632-637
城市道路尘土中重金属污染已成为当前重大的环境问题之一.本文对我国西部石河子市城区道路尘土的重金属污染进行评价,利用电感耦合等离子体质谱法测定铅的含量及铅同位素组成,采用地积累指数法评价铅的污染程度.结果显示,石河子市城区道路尘土中重金属铅的含量范围为19.36 ~ 84.63 mg/kg,平均含量为37.85 mg/kg,高于当地土壤背景值,但明显低于我国其他大中型城市,表明当前石河子市的环境质量已经受到人为活动的干扰;尘土中铅的地积累指数在-0.59~1.54之间,平均值为0.30,属于轻度污染水平.利用铅同位素示踪法识别铅污染的来源,206pb/207Pb比值的范围是1.159 ~ 1.182,208 pb/207 Pb比值的范围是2.391 ~2.457,均接近于煤炭和建筑材料的铅同位素比值,初步判断石河子道路尘土的铅污染主要受到煤炭燃烧和城市建设的影响.  相似文献   

18.
The organic horizon (the mor layer) of podzolized boreal forest soils has accumulated atmospheric fallout of mercury and lead over centuries, resulting in current concentrations close to levels where negative effects on soil biota are thought to occur. To what extent the pollution history is preserved in the stratigraphy of this horizon is not well known. In this study we asses whether the chronology of a large historic pulse of atmospheric pollution emitted from the Rönnskär smelter in northern Sweden, particularly between 1950 and 1980, is preserved within the stratigraphy of the mor layer, which is typically 5-cm thick. Vertical sub-sampling (?5 mm) of five mor profiles sampled along a 100-km pollution gradient away from the smelter are analyzed for mercury and lead concentrations, spheroidal carbonaceous particles from fossil fuel combustion (SCPs) and stable lead isotopes (206Pb/207Pb and 208Pb/207Pb). Their vertical distribution is compared with the temporal variations in atmospheric inputs reconstructed for the last ∼100 years from analyses of an ombrotrophic peat core and a varved lake sediment core sampled within a distance of 50 km of the smelter. The mor profiles situated ?12 km from the smelter record the pollution history of the smelter. There is a 20 to 40-times enrichment of Hg, Pb and SCP at the transition in the O-horizon from the F- to H-layer compared to the basal part and a distinct peak in the 206Pb/207Pb ratio (∼1.22) in the F-layer. The mor profiles situated outside the historical contamination range of the smelter (80 and 100 km away) record no obvious influence from the Rönnskär smelter, instead their vertical 206Pb/207Pb profiles follow the general regional pollution history in northern Sweden. We conclude that the mor layer preserves a record of atmospheric Hg, Pb and SCP inputs and due to low leaching rates this organic horizon serves as a semi-archive of atmospheric Hg and Pb pollution. We stress the need of including this property in the existing ‘black-box’ models predicting the fate of Hg and Pb within contaminated boreal forest soils.  相似文献   

19.
《Applied Geochemistry》1998,13(3):403-413
Lead concentration and isotopic composition of prehistoric (middle and latest Jomon era, 2000–4500 BP, n=6), historic (Edo era, 130–400 BP, n=10), and contemporary (died in 1987–88, n=15) Japanese bones, and deciduous teeth from contemporary Japanese children born during 1985–88 (n=17) were analyzed by inductively coupled plasma mass spectrometry. Lead concentration was lowest in Jomon bones and was higher in rural Edo, contemporary, and urban Edo, in that order. Elevated Pb concentration in historic Edo people, as reported previously, was reconfirmed. The average isotopic ratios (207Pb/206Pb and 208Pb/206Pb) in excavated (prehistoric and historic) bones, contemporary bones, and deciduous teeth were different from each other. The contemporary bones had the least radiogenic composition (mean 207Pb/206Pb: 0.879; mean 208Pb/206Pb: 2.126) while the excavated bones the most (0.848; 2.098), and teeth intermediate (0.866; 2.111). The comparison with the literature data of isotopic compositions of environmental samples showed that the isotopic composition of the excavated bones was within the range of Japanese ores, rocks and soils, indicating the absence of foreign Pb sources in preindustrialized Japan. That of the contemporary bones was closer to the average gasoline Pb, the use of which had been banned in the late 1970s, than to the Pb in airborne particulate matter or refuse incineration ash of 1980s. The average Pb isotopic ratios in the deciduous teeth was close to the isotopic ratios of Pb in airborne particulate matter and refuse incineration ash. These data indicated that the contemporary Japanese population was exposed to foreign Pb which had different isotopic composition from domestic Pb. Exposure to Pb of foreign origin was particularly evidently recorded in people born before the leaded gasoline ban. The history of human Pb contamination in Japan is discussed based on the present results and other previously published data.  相似文献   

20.
Lead (Pb) isotopic compositions and concentrations, and barium (Ba) and indium (In) concentrations have been determined at monthly resolution in five Law Dome (coastal Eastern Antarctica) ice core sections dated from ∼1757 AD to ∼1898 AD. ‘Natural’ background Pb concentrations in ∼1757 AD average ∼0.2 pg g−1 and can be attributed to mineral dust and volcanic emissions, with 206Pb/207Pb ratios reaching up to 1.266 ± 0.002. From ∼1887 AD to ∼1898 AD, Pb concentrations reached ∼5 pg g−1 and 206Pb/207Pb ratios decreased to 1.058 ± 0.001 as a result of additional inputs of Pb from anthropogenic sources. Seasonal variability in the late 1880s has been investigated by decoupling volcanic Pb from the total measured Pb concentrations, revealing spring and autumn maxima, and consistent winter minima, in anthropogenic Pb and mineral dust (Ba) concentrations. We link this variability to the annual cycle in the position and strength of the Antarctic Circumpolar Trough and, the Southern Ocean westerly winds to the north of the trough region. During the autumn and spring seasons, these systems increase in strength, transporting more impurity laden air from the Southern Hemisphere continental regions to Eastern Antarctica and Law Dome. As this Pb is isotopically identical to that emitted from south-eastern Australia (Broken Hill, Port Pirie) this implies a relatively direct air trajectory pathway from southern Australia to Law Dome (Eastern Antarctica).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号