首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
高岭石表面酸碱反应的电位滴定实验研究   总被引:2,自引:0,他引:2       下载免费PDF全文
采用表面酸碱电位滴定法探讨高岭石表面酸碱性质,基于多位模式(即假定高岭石表面存在3种基团Al2 OH 、AlOH 和SiOH ) ,根据实验所得数据对高岭石表面的质子化和去质子化过程的相关参数进行拟合,讨论各个位点所发生的反应,并探讨了支持电解质浓度、高岭石溶解过程对表面酸碱电位滴定结果的影响。高岭石的表面零净质子电荷点(pHPZNPC,5 .2 )不等同于零电荷点,当pH <5 .2时,高岭石表面荷正电荷,主要由于表面富硅贫铝层的形成和Al位的质子化所致;当pH >5 .2时,高岭石表面荷负电荷,以Si位和Al的去质子化反应为主。  相似文献   

3.
Changes in surface charge of soil particles that accompany mineral transformations during soil formation were measured for a humid tropical chronosequence in Hawaiian basalt ranging in lava flow age from 0.3 to 4100 kiloyears (ky). Parent mineralogy is dominated by glass, olivine, pyroxene, and feldspar, whereas poorly crystalline (PC) weathering products (allophane, microcrystalline gibbsite, ferrihydrite) accumulate in early to intermediate weathering stages (through 400 ky), and crystalline secondary minerals (kaolinite, gibbsite, goethite) are dominant in the oldest (1400 and 4100 ky) soils. Detailed characterization of the solid phase was accomplished with chemical extractions, X-ray diffraction analysis, and molecular spectroscopy (FTIR and 13C MAS NMR). Simultaneous proton titration and background ion adsorption measurements were made on LiCl saturated soils over a range in pH (2-9) and ionic strength (0.001 and 0.01 M LiCl). Dependence of variable surface charge on solution composition reflects the changing nature of mineral-organic interactions over the course of pedogenesis. Points of zero net proton charge (PZNPC) ranged from 3.4 to 6.2 and 2.0 to 5.8 at 0.001 and 0.01 M ionic strength (I), respectively. Intermediate-aged soils containing the highest mass concentration of humified soil organic matter (SOM) and its complexes with PC minerals gave rise to the steepest charging curves (largest pH dependence) and highest PZNPC values. Surface charge properties of these soils most closely reflected their weakly acidic Al and Fe hydroxide constituents, which is consistent with metal hydroxide saturation of organic functional groups, rather than organic coating of mineral surfaces. Charging curves were less steep and PZNPC values were lower for the older soils, consistent with SOM coating of more crystalline goethite, kaolinite, and gibbsite surfaces in a soil system less impacted by labile Al and Fe.  相似文献   

4.
The Fe(II)/Fe(III) redox couple plays an important role in both the subsurface fate and transport of groundwater pollutants and the global cycling of carbon and nitrogen in iron-limited marine environments. Iron oxide particles involved in these redox processes exhibit broad size distributions, and the recent demonstrations of dramatic nanoscale size-effects with various metal oxides has compelled us, as well as many others, to consider whether the rate and extent of Fe(II)/Fe(III) cycling depends upon oxide particle size in natural systems. Here, we investigated the reaction of Fe(II) with three different goethite particle sizes in pH 7.5 suspensions. Acicular goethite rods with primary particle dimensions ranging from 7 by 80 nm to 25 by 670 nm were studied. Similar behavior with respect to Fe(II) sorption, electron transfer and nitrobenzene reduction was observed on a mass-normalized basis despite almost a threefold difference in goethite specific surface areas. Scanning electron microscopy (SEM) images, dynamic light scattering (DLS) and sedimentation measurements all indicated that, at pH 7.5, significant aggregation occurred with all three sizes of goethite particles. SEM images further revealed that nanoscale particles formed dense aggregates on the order of several microns in diameter. The clear formation of particle aggregates in solution raises questions regarding the use of primary particle surface area as a basis for assessing nanoscale size-effects in iron oxide suspensions at circum-neutral pH values. In our case, normalizing the Fe(II) sorption densities and rate constants for nitrobenzene reduction by BET surface area implies that goethite nanoparticles are less reactive than larger particles. We suspect, however, that aggregation is responsible for this observed size-dependence, and argue that BET values should not be used to assess differences in surface site density or intrinsic surface reactivity in aggregated particle suspensions. In order to realistically assess nanoscale size-effects in environmentally relevant systems that are likely to aggregate, new methods are needed to quantify the amount of surface area accessible for sorption and reaction in wet nanoparticle suspensions, rather than assuming that this value is equivalent to the surface area determined from the characterization of dry nanoparticles.  相似文献   

5.
Despite the fact that the bulk compositions of most low temperature natural surface waters, groundwaters, and porewaters are heavily influenced by alkaline earths, an understanding of the development of proton surface charge in the presence of alkaline earth adsorption on the surfaces of minerals is lacking. In particular, models of speciation at the mineral-water interface in systems involving alkaline earths need to be established for a range of different minerals. In the present study, X-ray standing wave results for Sr2+ adsorption on rutile as a tetranuclear complex [Fenter, P., Cheng, L., Rihs, S., Machesky, M., Bedyzk, M.D., Sturchio, N.C., 2000. Electrical double-layer structure at the rutile-water interface as observed in situ with small-period X-ray standing waves. J. Colloid Interface Sci.225, 154-165] are used as constraints for all the alkaline earths in surface complexation simulations of proton surface charge, metal adsorption, and electrokinetic experiments referring to wide ranges of pH, ionic strength, surface coverage, and type of oxide. The tetranuclear reaction
4>SOH+M2++H2O=(>SOH)2(>SO-)2_M(OH)++3H+  相似文献   

6.
The fluidization technique has been in use for particulate material processing operations for many years. It has been widely believed that the ratio of size and density of the particulate components controls the separation efficiency. In this paper, it is demonstrated that fluid velocity during fluidization could assume an overriding significance when an improvement in separation efficiency is required. This was at first experimentally established by analyzing simpler particulate systems, and later a simulation scheme was adopted to study a wider range of particulate systems. The numerical scheme known as the discrete element method (DEM), that incorporates both the solid- and hydro-dynamic components of the interactive forces, served as an important tool in understanding the separation behavior of binary particulate systems in fluidized beds. It has been established that mere fluidization does not necessarily guarantee an optimal separation, especially when the particles differ widely in density and size.  相似文献   

7.
Data are presented on suspended particles and colloids in groundwaters from the Osamu Utsumi mine and the Morro do Ferro analogue study sites. Cross-flow ultrafiltration with membranes of different pore sizes (450 nm to 1.5 nm) was used to prepare colloid concentrates and ultrafiltrates for analyses of major and trace elements and U- and Th-isotopic compositions. Additional characterization of colloidal and particulate material was performed by ESCA, SEM and X-ray diffraction. The results indicate the presence of low concentrations of colloids in these waters (typically < 500 μg/l), composed mainly of iron/organic species. Minor portions of uranium and other trace elements, but significant fractions of the total concentrations of Th and REE in prefiltered waters (< 450 nm) were associated with these colloids.Suspended particles (> 450 nm), also composed mainly of hydrous ferric oxides and humic-like compounds, show the same trend as the colloids with respect to U, Th and REE associations, but elemental concentrations were typically higher by a factor of 1,000 or more. In waters of low pH and with high sulphate content, these associations are considerably lower. Due to the low concentrations of suspended particles in groundwaters from the Osamu Utsumi uranium mine (typically <0.5 mg/l), these particles carry only a minor fraction of U and the REE (<10% of the total concentrations in unfiltered groundwaters), but a significant, usually predominant fraction of Th (30–70%). The suspended particle load in groundwaters from the Morro do Ferro environment is typically higher than in those from the mine by a factor of 5 to 10. This suggests that U, Th and the REE could be transported predominantly by particulate matter. However, these particles and colloids seem to have a low capacity for migration.  相似文献   

8.
Concentrations and fluxes of particulate U were measured throughout the water column at several locations in the Atlantic and Pacific Oceans with in situ filtration systems and sediment traps. The results indicate that dissolved U is fixed to particles in surface seawater. Organic matter appears to be the carrier phase. Formation of particulate authigenic U below the surface waters could not be detected. Authigenic U is remineralized within the bathypelagic layers at the open ocean sites studied. In the Panama Basin, an upwelling area with high biological productivity, remineralization of authigenic U in the deep water column was not observed. The rate of remineralization of authigenic U in the deep sea is insufficient to produce a measurable concentration gradient between surface and deep waters within the mixing time of the oceans. Formation of authigenic U in the water column in areas such as the Panama Basin is not a significant sink for U on an ocean wide basis.  相似文献   

9.
Silica was ground in an oscillating mill at various grinding period to study the mechanochemical effect in fine grinding process. The ground particles exhibited massive size reduction where the volume moment diameter of 5.56 μm was reached within 600 s. Aggregation of fine particles was very pronounced when it was ground for 600 s due to high surface energy. Aggregation of fine particles caused the ground particles to exhibit poly-modal particle size distribution. Line broadening and reduction of diffractogram peak intensity were observed. Amorphization rate up to 16.9% was exhibited by the particle ground for 600 s. Preferential breakage of plane was observed where (101) and (111) was easily distorted compared to (110) and (200). Rapid reduction of crystallite size was observed at early stage of grinding until it reached a plateau at 5 nm at 600 s whilst the change in lattice strain was 0.5%.  相似文献   

10.
《Geochimica et cosmochimica acta》1999,63(19-20):2971-2987
Many sediment and soil systems have become significantly contaminated with cadmium, and earth scientists are now required to make increasingly accurate predictions of the risks that this contamination poses. This necessitates an improved understanding of the processes that control the mobility and bioavailability of cadmium in the environment. With this in mind, we have studied the composition and structure of aqueous cadmium sorption complexes on the iron oxyhydroxide minerals goethite (α-FeOOH), lepidocrocite (γ-FeOOH), akaganeite (β-FeOOH), and schwertmannite (Fe8O8(OH)6SO4) using extended X-ray adsorption fine structure spectroscopy. The results show that adsorption to all of the studied minerals occurs via inner sphere adsorption over a wide range of pH and cadmium concentrations. The bonding mechanism varies between minerals and appears to be governed by the availability of different types of adsorption site at the mineral surface. The geometry and relative stability of cadmium adsorption complexes on the goethite surface was predicted with ab initio quantum mechanical modelling. The modelling results, used in combination with the extended X-ray adsorption fine structure data, allow an unambiguous determination of the mechanism by which cadmium bonds to goethite.Cadmium adsorbs to goethite by the formation of bidentate surface complexes at corner sharing sites on the predominant (110) crystallographic surface. There is no evidence for significant cadmium adsorption to goethite at the supposedly more reactive edge sharing sites. This is probably because the edge sharing sites are only available on the (021) crystallographic surface, which comprises just ∼2% of the total mineral surface area. Conversely, cadmium adsorption on lepidocrocite occurs predominately by the formation of surface complexes at bi- and/or tridentate edge sharing sites. We explain the difference in extended X-ray adsorption fine structure results for cadmium adsorption on goethite and lepidocrocite by the greater availability of reactive edge sharing sites on lepidocrocite than on goethite. The structures of cadmium adsorption complexes on goethite and lepidocrocite appear to be unaffected by changes in pH and surface loading. There is no support for cadmium sorption to any of the studied minerals via the formation of an ordered precipitate, even at high pH and high cadmium concentration. Cadmium adsorption on akaganeite and schwertmannite also occurs via inner sphere bonding, but the mechanism(s) by which this occurs remains ambiguous.  相似文献   

11.
《Applied Geochemistry》1993,8(6):605-616
The Cigar Lake U deposit is located in northern Saskatchewan in the eastern part of the Athabasca Sandstone Basin, and consists of a high-grade ore body (up to 55% U) located at a depth of ∼430 m. As part of a study to evaluate the analog features of this deposit with respect to a disposal vault for waste nuclear fuel, colloids (1–450 nm) and suspended particles (450nm) in groundwater have been investigated to evaluate their effect on element transport through the U deposit. Tangential-flow ultrafiltration was used to concentrate particles from 501 groundwater samples in order to characterize the size distribution, concentration, composition and natural radionuclide content of particles in representative parts of the U deposit. Although Cigar Lake groundwaters contain particles in all sizes ranging from 10 nm to slightly larger than 20 μm, most samples contained a relatively high concentration of colloids in the 100–400 nm size range. Particle compositions are similar to the composition of minerals in the sandstones and ore body, suggesting that particles in groundwater are generated by the erosion of fracture-lining minerals. As a result, particle concentrations in groundwater are affected by the integrity of the host rock. In some piezometers the high initial concentrations of suspended particles, which may have been drilling artifacts, decreased during the collection of the first 350 1. Although colloid concentrations fluctuated during sampling, there are no indications that these concentrations will be permanently reduced by continued groundwater pumping. The observed colloid and suspended particle concentrations in the deep groundwaters are too low to have a significant impact on radionuclide migration, provided that radionuclide sorption is reversible. If radionuclides are irreversibly sorbed to particles they cannot sorb to the host rock and their migration can only be evaluated with an understanding of particle mobility. The data for dissolved and particulate U, Th and Ra were used to calculate field-derived distribution ratios (Rd) between particles and groundwater. The wide range of observed Rd values indicates that these radionuclides in particulate form are not in equilibrium with groundwater. U-series isotope data indicated that most of the U and Ra on particles was derived from groundwater. Some particles could have retained their U for as long as 8000 a. The U and Ra contents of particles in the ore and surrounding clay zones are significantly higher than in particles from sandstone, suggesting that the clay has been an effective barrier to particle migration.  相似文献   

12.
Reactivity of biogenic silica: Surface versus bulk charge density   总被引:2,自引:0,他引:2  
Acid-base titrations were carried out at three different ionic strengths (0.01, 0.1 and 0.7 M NaCl) on a range of marine and continental biosiliceous materials. The large variability in electrical charging behavior of the various materials is consistent with the existence of two pools of ionizable groups, one on the outer surface of and the other within the silica particles. The relative amounts of internal and external silanols were estimated by fitting a two-site complexation model to excess proton versus pH curves obtained at the different ionic strengths. For fresh diatom frustules and phytoliths, as well as recently deposited biosiliceous sediments, the abundance of internal silanols was of the same order of magnitude as, or exceeded, that of silanols on the external surface. Older biosiliceous materials exhibited lower proportions of internal groups, while a decrease in the relative amount of internal silanols was also observed for diatom frustules artificially aged in seawater. The existence of internal ionizable functional groups explains measured charge densities of biogenic silicas that largely exceed the theoretical site density of silica surfaces. Variations in the relative abundance of internal versus surface silanols further explain the non-uniform dependence of electrical charging on ionic strength, the lack of correlation between total charge density and dissolution kinetics, and the variable 950 cm−1 peak intensity in the infrared spectra of biogenic silicas. Dissolution rates correlate positively with the external charge, rather than the total charge build-up, as expected if dissolution only involves the removal of silicate units from the external surfaces of the particles. The progressive reduction with time of the internal to external silanol concentration ratio represents one of the mechanisms altering the material properties that affect the recycling and preservation of biogenic silica in earth surface environments.  相似文献   

13.
Macroscopic sorption edges for Cu2+ were measured on hematite nanoparticles with average diameters of 7 nm, 25 nm, and 88 nm in 0.1 M NaNO3. The pH edges for the 7 nm hematite were shifted approximately 0.6 pH units lower than that for the 25 nm and 88 nm samples, demonstrating an affinity sequence of 7 nm > 25 nm = 88 nm. Although, zeta potential data suggest increased proton accumulation at the 7 nm hematite surfaces, changes in surface structure are most likely responsible for the preference of Cu2+ for the smallest particles. As Cu2+ preferentially binds to sites which accommodate the Jahn-Teller distortion of its coordination to oxygen, this indicates the relative importance of distorted binding environments on the 7 nm hematite relative to the 25 nm and 88 nm particles. This work highlights the uniqueness of surface reactivity for crystalline iron oxide particles with decreasing nanoparticle diameter.  相似文献   

14.
Density of proton active surface sites at mineral surfaces is a property of fundamental importance in equilibrium modeling of surface complexation reactions. In this article, methods for an experimental determination of these sites at the surface of α-FeOOH (goethite) are explored. It is shown that previously obtained saturation data of goethite with respect to protons do not yield a site density that can be considered as an intrinsic sorbent property: the results are below crystallographically expected values and values for different ionic media in terms of composition and concentration yield different numbers—for example, chloride would yield higher values than nitrate at the same concentration, and higher electrolyte concentration would favor higher apparent maxima. Although site saturation might be explained by electrostatic repulsion, which is more efficient at high electrolyte concentration or for certain ions, further independent experimental results show that no saturation occurs on goethite down to ph ≡ −log[H+] = 2.2 and possibly to ph = 1.0 in 0.6 M NaCl. For those very low pH values, the experimental charging curve was obtained by coulometric back titration (using the Gran plot) or titrations with tris (hydroxymethyl)-aminomethane of the supernatant of acidified goethite suspension. These experimental data are to our knowledge the first high quality data at such low pHs. However, small errors in the determination of proton concentrations (1%) are shown to strongly affect the shape of the charging curve for ph < 2. Furthermore, goethite dissolution (proton consumption and iron reduction in coulometric titrations) and liquid junction effects interfere at low ph, hampering the straightforward application of coulometric Gran titrations over the whole pH range. From these experiments, it can nonetheless be ascertained that a minimum of 2.5 protons/nm2 can be adsorbed at the goethite surface from the point of zero charge (ph 9.4) to pH 0.9. Although these studies are restricted to goethite, those studies in which titrations with excess acid and base have been used for the determination of proton active site concentrations of sorbents should be reconsidered.  相似文献   

15.
基于接触价键的颗粒材料微观临界状态   总被引:1,自引:0,他引:1  
张洪武  秦建敏 《岩土力学》2008,29(4):865-870
用颗粒离散元法,分别对二维圆形、椭圆形颗粒体进行了双轴压缩数值模拟。微观尺度的变形是基于孔隙胞元和其中的变形来计算的,而单个孔隙胞元的变形通过周围颗粒的相对运动来计算。针对该方法提出了以接触价键(每个孔隙胞元的边数)来表征颗粒材料微观临界状态的理论。为了定义临界接触价键的极限值,分别讨论了摩擦系数较大、较小时的两种情况。文中给出了微观几何织构(包括接触价键、孔隙胞元的形状、孔隙比)随压缩变形的演变过程,比较了不同颗粒形状、颗粒间摩擦系数以及颗粒体的固结压力对颗粒体的微观力学性能的影响。计算结果表明,颗粒材料的微观临界状态并不是可以唯一表征的,而是受围压、摩擦系数,颗粒形状等参数的共同影响。  相似文献   

16.
The speciation and partition of mercury in a macrotidal estuary (Seine estuary, France) was studied in order to explore the role of the high turbidity zone (HTZ) in mercury transfer to the adjacent coastal waters. Water and particles were analyzed to determine the concentrations of various mercury species, including monomethylmercury and the inorganic fraction. The exchangeable particulate mercury, which varies with salinity, and the mercury fraction associated with the amorphous oxyhydroxides were evaluated. The distribution of dissolved mercury species during early mixing suggests non-conservative behavior of organically bound mercury at the head of the estuary. Mercury in the particles covaried positively with suspended particulate matter concentrations up to a threshold, which constitutes the typical mercury load of particles and deposited sediments of the HTZ. This distribution pattern is well explained by a dilution model: a slowly settling, low metal population of particle, characterized by relatively invariant turbidity, becomes admixed with a variable amount of higher metal content particles derived from the resuspension in the HTZ. In addition, in the HTZ, which acts as a degradation reactor for particulate organic matter, particulate mercury concentrations increase with increasing C:N ratios and amorphous oxyhydroxides particles. Mercury reaches the estuarine HTZ mainly associated with the riverine and marine particles, including organic matter and oxyhydroxides, which are temporarily trapped in the HTZ and mixed with autochthonous HTZ particles. The largest particles periodically settle and undergo diagenetic reactions and resuspensions, which lead to their mercury enrichment. Depending upon hydrodynamic conditions, mercury escapes seaward as fine particulate within the plume, partially associated with the oxyhydroxides. A surface complexation model reproduces most of the partitioning observed. In the dissolved phase the model simulation suggests that a very strong ligand must be present to explain the field observations.  相似文献   

17.
Multifactor regression analysis was used to test for relationships between chemical, physical and optical properties of the water column in the organically rich, highly turbid waters of Florida's Fort Pierce Inlet. Optical measurements were made at three visible light wavelengths (445 nm, 542 nm and 630 nm). Scattering by suspended particulate material was found to be the primary optical mechanism controlling downwelling irradiance at all three wavelengths. Larger particles showed constant scattering efficiencies of 2 when their diameters exceeded 3 to 5 microns, depending upon the wavelength used for observation. Selective absorption had a definite effect on the transmission of radiant energy in the 445 nm wavelength range. High correlation between extinction at 445 nm and the cross-sectional area of the suspended particulate material indicates particulate, rather than dissolved materials, are the major water column constituents that selectively absorb short wavelength radiant energy in this inlet. Spectral distribution of the downwelling radiant energy field was found to shift dramatically over a period of several months. These shifts in downwelling spectral irradiance were attributed to seasonal and/or event related shifts in concentrations of selectively absorbing compounds within the water column.  相似文献   

18.
矿物颗粒是大气颗粒物的重要组成部分,其物相组成和微观形貌等特征既对人体危害的机理研究具有重要意义,同时蕴藏着颗粒物来源及变化等有用信息。自上个世纪80年代至今,大气颗粒物中矿物颗粒物相组成及微观形貌的研究大致经历了3个阶段,主要体现在研究方法和手段的不断探索与进步,研究对象由总悬浮颗粒向PM2.5甚至更细颗粒物以及由全颗粒分析向单颗粒分析转移,不断重视原生矿物变化及次生矿物生成机理研究。本文提出发生硫化现象的原生矿物及二次成因硫酸盐颗粒是未来研究的重要方向之一。  相似文献   

19.
靳潇  杨文  孟宪红  雷乐乐 《岩土力学》2019,40(4):1449-1456
根据冻土中未冻水成因的本质——带负电黏土颗粒表面的扩散层中阳离子溶液特殊分布,依据基于静电场泊松方程与静电荷玻尔兹曼分布的双电层理论,推演出了未冻水含量理论公式,比较分析未冻水含量观测值拟合的经验公式,发现两者形式非常一致,经验公式实质为理论公式的简化。依据此理论,清晰地描述了冻土颗粒表面未冻水的结构特征及成因,定量分析了土壤类型、含盐度、温度对未冻水含量的影响;得出当土壤盐溶液浓度小于某一阈值时,盐渍度变化对未冻水含量的影响可以忽略,即不同类型常规(低含盐度)冻土,双电层结构几近相同,指数形式公式适用于所有常规冻土的未冻水含量;土壤类型通过比表面积影响着未冻水含量,在同等温度下,土壤中黏土颗粒越多,比表面积越大,未冻水含量越多;结合实测资料给出适用于不同类型冻土未冻水含量理论计算的参数值,随后通过两种已有的经验公式对计算结果进行了验证,证实了该理论公式的可行性。  相似文献   

20.
The empirical rate laws formulated to describe the dissolution rates of oxide minerals include the surface charge concentration that results from the protonation and deprotonation of surface functional groups. Previous experiments on quartz and silica have shown that dissolution rates vary as a function of different background electrolyte solutions, however, such experiments are often conducted at elevated temperatures where it is difficult to estimate surface charge along with the dissolution rates. In the present study we measuresurface charge concentrations for silica in different electrolyte solutions at 298 K in order to quantify the extent to which the different counterions could affect the dissolution rates through their influence on the surface charge concentrations. The experimental solutions in the electrolyte series: LiCl, NaCl, KCl, RbCl, CaCl2, SrCl2 and BaCl2 were prepared to maintain a constant metal concentration of 1.0 M. For the alkali-metal chlorides, the surface charge concentrations correlate with the size of the hydrated alkali metal, consistent with the idea that these counterions affect charge via outer-sphere coordination that shield proton surface complexes from one another. The reactivity trend for alkaline-earth cations is less clear, but the data demonstrate distinct differences in the acid-base propertiesof the silica surface in these different electrolytes. We then discuss how these trends are manifested in the rate equations used to interpret dissolution experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号