首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Relationships between mineral/silicate melt partition coefficients and melt structure have been examined by combining Ca and Mn olivine/melt partitioning data with available melt structure information. Compositions were chosen so that melts with olivine on their liquidii range in degree of polymerization, NBO/T, from ∼0.5 to ∼2.5 under near isothermal conditions (1350-1400°C). Olivine/melt Ca-Mn exchange coefficients, Ca(olivine)/CaO(melt)/MnO(olivine)/MnO(melt) (KD Ca-Mnolivine/melt), as a function of melt NBO/T have a parabolic shape with a minimum KD Ca-Mnolivine/melt-value at NBO/T near 1. Notably, published KD Fe2+-Mgolivine/melt versus NBO/T functions are also parabolic with a maximum in KD Fe2+-Mgolivine/melt near 1 (Kushiro and Mysen, 2002).The olivine/melt partitioning data are modeled in terms of structural units (Qn-species) in the melt. The NBO/T-value corresponding to the minimum KD Ca-Mnolivine/melt is near that where the abundance ratio of Qn-species, XQ3/XQ2, has its largest value. Therefore, the activity coefficient ratio in the melt, γCa2+(melt)/γMn2+(melt), attains a minimum where the abundance ratio of XQ3/XQ2 is at maximum. It is inferred from this relationship that Ca2+ in the melts is dominantly bonded to nonbridging oxygen (Ca-NBO) in Q3-species, whereas Mn2+ is bonded to nonbridging oxygen (Mn-NBO) in less polymerized Qn-species such as Q2.  相似文献   

2.
The two most abundant network-modifying cations in magmatic liquids are Ca2+ and Mg2+. To evaluate the influence of melt structure on exchange of Ca2+ and Mg2+ with other geochemically important divalent cations (m-cations) between coexisting minerals and melts, high-temperature (1470-1650 °C), ambient-pressure (0.1 MPa) forsterite/melt partitioning experiments were carried out in the system Mg2SiO4-CaMgSi2O6-SiO2 with ?1 wt% m-cations (Mn2+, Co2+, and Ni2+) substituting for Ca2+ and Mg2+. The bulk melt NBO/Si-range (NBO/Si: nonbridging oxygen per silicon) of melt in equilibrium with forsterite was between 1.89 and 2.74. In this NBO/Si-range, the NBO/Si(Ca) (fraction of nonbridging oxygens, NBO, that form bonds with Ca2+, Ca2+-NBO) is linearly related to NBO/Si, whereas fraction of Mg2+-NBO bonds is essentially independent of NBO/Si. For individual m-cations, rate of change of KD(m−Mg) with NBO/Si(Ca) for the exchange equilibrium, mmelt + Mgolivine ? molivine + Mgmelt, is linear. KD(m−Mg) decreases as an exponential function of increasing ionic potential, Z/r2 (Z: formal electrical charge, r: ionic radius—here calculated with oxygen in sixfold coordination around the divalent cations) of the m-cation. The enthalpy change of the exchange equilibrium, ΔH, decreases linearly with increasing Z/r2H = 261(9)-81(3)·Z/r2−2)]. From existing information on (Ca,Mg)O-SiO2 melt structure at ambient pressure, these relationships are understood by considering the exchange of divalent cations that form bonds with nonbridging oxygen in individual Qn-species in the melts. The negative ∂KD(m−Mg)/∂(Z/r2) and ∂(ΔH)/∂(Z/r2) is because increasing Z/r2 is because the cations forming bonds with nonbridging oxygen in increasingly depolymerized Qn-species where steric hindrance is decreasingly important. In other words, principles of ionic size/site mismatch commonly observed for trace and minor elements in crystals, also govern their solubility behavior in silicate melts.  相似文献   

3.
The relationship between the redox ratio Fe+2/(Fe+2+Fe+3) and the K2O/(K2O + Al2O3) ratio (K2O*) were experimentally investigated in silicate melts with 78 mol% SiO2 in the system SiO2-Al2O3-K2O-FeO-Fe2O3, in air at 1,400° C. Quenched glass compositions were analyzed by electron microprobe and wet chemical microtitration techniques. Minimum values of the redox ratio were obtained at K2O*0.5. The redox ratio in peralkaline melts (K2O*>0.5) increases slightly with K2O* whereas this ratio increases dramatically in peraluminous melts (K2O*<0.5) as K2O is replaced by Al2O3. These data indicate that all Fe+3 (and Al+3) occur as tetrahedral species charge balanced with K+ in peralkaline melts. In peraluminous melts, Fe+3 (and Al+3) probably occur as both tetrahedral species using Fe+2 as a charge-balancing cation and as network-modifying cations associated with non-bridging oxygen.  相似文献   

4.
Solubility mechanisms of water in depolymerized silicate melts quenched from high temperature (1000°-1300°C) at high pressure (0.8-2.0 GPa) have been examined in peralkaline melts in the system Na2O-SiO2-H2O with Raman and NMR spectroscopy. The Na/Si ratio of the melts ranged from 0.25 to 1. Water contents were varied from ∼3 mol% and ∼40 mol% (based on O = 1). Solution of water results in melt depolymerization where the rate of depolymerization with water content, ∂(NBO/Si)/∂XH2O, decreases with increasing total water content. At low water contents, the influence of H2O on the melt structure resembles that of adding alkali oxide. In water-rich melts, alkali oxides are more efficient melt depolymerizers than water. In highly polymerized melts, Si-OH bonds are formed by water reacting with bridging oxygen in Q4-species to form Q3 and Q2 species. In less polymerized melts, Si-OH bonds are formed when bridging oxygen in Q3-species react with water to form Q2-species. In addition, the presence of Na-OH complexes is inferred. Their importance appears to increase with Na/Si. This apparent increase in importance of Na-OH complexes with increasing Na/Si (which causes increasing degree of depolymerization of the anhydrous silicate melt) suggests that water is a less efficient depolymerizer of silicate melts, the more depolymerized the melt. This conclusion is consistent with recently published 1H and 29Si MAS NMR and 1H-29Si cross polarization NMR data.  相似文献   

5.
The compositions of coexisting hornblendes and biotites from amphibolite and granulite facies gneisses from the south coast of Western Australia were controlled by host rock composition, paragenesis, metamophic grade, pressure, and oxygen fugacity. The Mg/(Mg + Fe2+) and Mn/Fe2+ ratios in both minerals and possibly the Alvi contents of the hornblendes are related to host rock compositions. Metamorphic grade appears to influence, perhaps only indirectly, the Ti, Mn, and Fe3+ contents of both minerals and possibly the hornblende Ca content. The higher Ti and lower Mn contents of the granulite facies hornblendes and biotites are attributed to their coexistence with pyroxenes, whereas their lower Fe3+/(Fe2+ + Fe3+) ratios are probably due to lower oxygen fugacity in the granulite facies environment. Grade-related colour variations in both minerals were controlled by their Ti/Fe2+ and Fe3+/(Fe2+ + Fe3+ ratios. The relatively low Alvi contents of the hornblendes suggest low- to moderate-pressure metamorphism.Variations in element distribution coefficients are related to variations in mineral compositions rather than metamorphic grade. Thus KD(Aliv ?Si) is related to the Aliv andedenite alkali contents of the hornblendes, KD(Fe2+ ?Mg) to the distributions of Aliv ?Si and Alvi + Ti + Fe3+, KD(Mn) to the Mn contents of both minerals, and KD(Alvi) to the Alvi contents of the biotites.  相似文献   

6.
Partitioning of Mg and Fe2+ between olivine and mafic melts has been determined experimentally for eight different synthetic compositions in the temperature range between 1335 and 1425°C at 0.1 MPa pressure and at fo2 ∼1 log unit below the quartz-fayalite-magnetite buffer. The partition coefficient [KD = (Fe2+/Mg)ol/(Fe2+/Mg)melt] increases from 0.25 to 0.34 with increasing depolymerization of melt (NBO/T of melt from 0.25-1.2), and then decreases with further depolymerization of melt (NBO/T from 1.2-2.8). These variations are similar to those observed in natural basalt-peridotite systems. In particular, the variation in NBO/T ranges for basaltic-picritic melts (0.4-1.5) is nearly identical to that obtained in the present experiments. Because the present experiments were carried out at constant pressure (0.1 MPa) and in a relatively small temperature range (90°C), the observed variations of Mg and Fe2+ partitioning between olivine and melt must depend primarily on the composition or structure of melt. Such variations of KD may depend on the relative proportions of four-, five-, and six-coordinated Mg2+ and Fe2+ in melt as a function of degree of NBO/T.  相似文献   

7.
Multiple regression analysis on an extended dataset has been performed to refine the relationship between temperature, pressure, composition and the Fe–Mg distribution between garnet and clinopyroxene. In addition to a significant dependence between the distribution coefficient KD and X GrtCa and X GrtMg#, as shown by the experimental data, the effect of X GrtMn has also been incorporated using data from natural Mn‐rich garnet–clinopyroxene pairs. Multiple regression of data (n=360) covering a large span in pressure, temperature and composition from 27 experimental datasets, combined with 49 natural high‐Mn granulites from Ruby Range, Montana, USA, and Karnataka, India, yields the P–T –compositional relationship (r2=0.98): where KD=(Fe2+/Mg)Grt/(Fe2+/Mg)Cpx, X GrtCa=Ca/(Ca+Mn+Fe2++Mg) in garnet, X GrtMn= Mn/(Ca+Mn+Fe2++Mg) in garnet, and X GrtMg#=Mg/(Mg+Fe2+) in garnet. The Fe2+–Mg equilibrium between garnet and clinopyroxene does not seem to be affected by variations in the sodic content of the co‐existing clinopyroxene in the range X CpxNa=0–0.51. Comparisons between the new and former calibrations of the garnet–clinopyroxene Fe2+–Mg geothermometer clearly demonstrate how the various parameters in each case affect the calculated temperatures. Application of the new expression gives reasonable results for natural garnet–clinopyroxene pairs from various rock types and settings, and should be preferred to previous formulations. Using the new calibration to the self‐consistent dataset of Pattison & Newton (Contributions to Mineralogy and Petrology, 1989, 101, 87–103) suggests a systematic deviation with regard to both temperature and composition between their dataset and the datasets used in the present calibration.  相似文献   

8.
The production of metallic iron in silicate melts by the chemical reactions, 2Ti3+(melt) + Fe2+(melt) → 2Ti4+(melt) + Fe0(crystal)2Cr2+(melt) + Fe2+(melt) → 2Cr3+(melt) + Fe0(crystal)2Eu2+(melt)+ Fe2+(melt) → 2Eu3+(melt) + Fe0(crystal) has been demonstrated under experimental conditions in a simplified basaltic liquid, Such reactions may occur in lunar basalts and other reduced systems, and, thus, may aid in the understanding of the reduced nature of lunar basalts. The reactions were studied in a glass-forming Na-Ca-Mg-Al-silicate composition at a melt temperature of 1250°C and an imposed oxygen fugacity at the C/CO buffer (1 atm total pressure). Microtitrations of individually-doped samples were used in the quantitative assessment of their redox ratios and for the calibration of visible and near-infrared spectral absorptions. These spectral absorptions were then applied to the evaluation of the mutual redox interactions in dual-doped samples.  相似文献   

9.
Garnet-biotite gneisses, some of which contain sillimanite or hornblende, are widespread within the Otter Lake terrain, a portion of the Grenville Province of the Canadian Shield. The metamorphic grade is upper amphibolite to, locally, lower granulite facies. The atomic ratio Fe2+/(Fe2++ Fe3+) in biotite ranges from 0.79 to 0.89 (ferrous iron determinations in 10 highly pure separates), with a mean of 0.86. Mg and Fe2+ atoms occupy 67–78% of the octahedral sites, the remainder are occupied by Fe3+, Ti, and Al, and some are vacant. Mg/(Mg + Fe2+), denoted X, in the analysed samples ranges from 0.32 to 0.65. Garnet contains 1–24% grossular, 1–12% spessartine and X ranges from 0.07 to 0.34. Compositional variation in biotite and garnet is examined in relation to three mineral equilibria: (I) biotite + sillimanite + quartz = garnet + K-feldspar + H2O; (II) pyrope + annite = almandine + phlogopite; (III) anorthite = grossular + sillimanite + quartz. Measurements of X (biotite) and X (garnet) are used to construct an illustrative model for equilibrium (I) which relates the observed variation in X to a temperature range of 70°C or a range in H2O activity of 0.6; the latter interpretation is preferred. In sillimanite-free gneisses, the distribution of Mg and Fe2+ between garnet (low in Ca and Mn) and biotite is adequately described by a distribution coefficient (KD) of 4.1 (equilibrium II). The observed increase in the distribution coefficient with increasing Ca in garnet is ln KD= 1.3 + 2.5 × 10?2 [Ca] where [Ca] = 100 Ca/(Mg + Fe2++ Mn + Ca). The distribution coefficient is apparently unaffected by the presence of up to 12% spessartine in garnet. In several specimens of garnet-sillimanite-plagioclase gneiss, the Ca contents of garnet and of plagioclase increase in unison, as required by equilibrium (III). The mean pressure calculated from these data (n= 17) is 5.9 kbar, and the 95% confidence limits are ±0.5 kbar.  相似文献   

10.
Solubility and solution mechanisms of H2O in depolymerized melts in the system Na2O-Al2O3-SiO2 were deduced from spectroscopic data of glasses quenched from melts at 1100 °C at 0.8-2.0 GPa. Data were obtained along a join with fixed nominal NBO/T = 0.5 of the anhydrous materials [Na2Si4O9-Na2(NaAl)4O9] with Al/(Al+Si) = 0.00-0.25. The H2O solubility was fitted to the expression, XH2O=0.20+0.0020fH2O-0.7XAl+0.9(XAl)2, where XH2O is the mole fraction of H2O (calculated with O = 1), fH2O the fugacity of H2O, and XAl = Al/(Al+Si). Partial molar volume of H2O in the melts, , calculated from the H2O-solulbility data assuming ideal mixing of melt-H2O solutions, is 12.5 cm3/mol for Al-free melts and decreases linearly to 8.9 cm3/mol for melts with Al/(Al+Si) ∼ 0.25. However, if recent suggestion that is composition-independent is applied to constrain activity-composition relations of the hydrous melts, the activity coefficient of H2O, , increases with Al/(Al+Si).Solution mechanisms of H2O were obtained by combining Raman and 29Si NMR spectroscopic data. Degree of melt depolymerization, NBO/T, increases with H2O content. The rate of NBO/T-change with H2O is negatively correlated with H2O and positively correlated with Al/(Al+Si). The main depolymerization reaction involves breakage of oxygen bridges in Q4-species to form Q2 species. Steric hindrance appears to restrict bonding of H+ with nonbridging oxygen in Q3 species. The presence of Al3+ does not affect the water solution mechanisms significantly.  相似文献   

11.
Structural interaction between dissolved fluorine and silicate glass (25°C) and melt (to 1400°C) has been examined with 19F and 29Si MAS NMR and with Raman spectroscopy in the system Na2O-Al2O3-SiO2 as a function of Al2O3 content. Approximately 3 mol.% F calculated as NaF dissolved in these glasses and melts. From 19F NMR spectroscopy, four different fluoride complexes were identified. These are (1) Na-F complexes (NF), (2) Na-Al-F complexes with Al in 4-fold coordination (NAF), (3) Na-Al-F complexes with Al in 6-fold coordination with F (CF), and (4) Al-F complexes with Al in 6-fold, and possibly also 4-fold coordination (TF). The latter three types of complexes may be linked to the aluminosilicate network via Al-O-Si bridges.The abundance of sodium fluoride complexes (NF) decreases with increasing Al/(Al + Si) of the glasses and melts. The NF complexes were not detected in meta-aluminosilicate glasses and melts. The NAF, CF, and TF complexes coexist in peralkaline and meta-aluminosilicate glasses and melts.From 29Si-NMR spectra of glasses and Raman spectra of glasses and melts, the silicate structure of Al-free and Al-poor compositions becomes polymerized by dissolution of F because NF complexes scavenge network-modifying Na from the silicate. Solution of F in Al-rich peralkaline and meta-aluminous glasses and melts results in Al-F bonding and aluminosilicate depolymerization.Temperature (above that of the glass transition) affects the Qn-speciation reaction in the melts, 2Q3 ⇔ Q4 + Q2, in a manner similar to other alkali silicate and alkali aluminosilicate melts. Dissolved F at the concentration level used in this study does not affect the temperature-dependence of this speciation reaction.  相似文献   

12.
Published experimental data including garnet and clinopyroxene as run products were used to develop a new formulation of the garnet–clinopyroxene geothermometer based on 333 garnet–clinopyroxene pairs. Only experiments with graphite capsules were selected because of difficulty in estimating the Fe3+ content of clinopyroxene. For the calibration, a published subregular‐solution model was adopted to express the non‐ideality of garnet. The magnitude of the Fe–Mg excess interaction parameter for clinopyroxene (WFeMgCpx), and differences in enthalpy and entropy of the Fe–Mg exchange reaction were regressed from the accumulated experimental data set. As a result, a markedly negative value was obtained for the Fe–Mg excess interaction parameter of clinopyroxene (WFeMgCpx = ? 3843 J mol?1). The pressure correction is simply treated as linear, and the difference in volume of the Fe–Mg exchange reaction was calculated from a published thermodynamic data set and fixed to be ?120.72 (J kbar?1 mol?1). The regressed and obtained thermometer formulation is as follows: where T = temperature, P = pressure (kbar), A = 0.5 Xgrs (Xprp ? Xalm ? Xsps), B = 0.5 Xgrs (Xprp ? Xalm + Xsps), C = 0.5 (Xgrs + Xsps) (Xprp ? Xalm), Xprp = Mg/(Fe2+ + Mn + Mg + Ca)Grt, Xalm = Fe/(Fe2+ + Mn + Mg + Ca)Grt, Xsps = Mn/(Fe2+ + Mn + Mg + Ca)Grt, Xgrs = Ca/(Fe2+ + Mn + Mg + Ca)Grt, XMgCpx = Mg/(Al + Fetotal + Mg)Cpx, XFeCpx = Fe2+/(Al + Fetotal + Mg)Cpx, KD = (Fe2+/Mg)Grt/(Fe2+/Mg)Cpx, Grt = garnet, Cpx = clinopyroxene. A test of this new formulation to the accumulated data gave results that are concordant with the experimental temperatures over the whole range of the experimental temperatures (800–1820 °C), with a standard deviation (1 sigma) of 74 °C. Previous formulations of the thermometer are inconsistent with the accumulated data set; they underestimate temperatures by about 100 °C at >1300 °C and overestimate by 100–200 °C at <1300 °C. In addition, they tend to overestimate temperatures for high‐Ca garnet (Xgrs ≈ 0.30–0.50). This new formulation has been tested against previous formulations of the thermometer by application to natural eclogites. This gave temperatures some 20–100 °C lower than previous formulations.  相似文献   

13.
The effect of CaO, Na2O, and K2O on ferric/ferrous ratio in model multicomponent silicate melts was investigated in the temperature range 1450–1550?°C at 1-atm total pressure in air. It is demonstrated that the addition of these network modifier cations results in an increase of Fe3+/Fe2+ ratio. The influence of network modifier cations on the ferric/ferrous ratio increases in the order Ca?<?Na?<?K. Some old controversial conceptions concerning the effect of potassium on Fe3+/Fe2+ ratio in simple model liquids are critically evaluated. An empirical equation is proposed to predict the ferric/ferrous ratio in SiO2–TiO2–Al2O3–FeO–Fe2O3–MgO–CaO–Na2O–K2O–P2O5 melts at air conditions.  相似文献   

14.
The structure of H2O-saturated silicate melts and of silicate-saturated aqueous solutions, as well as that of supercritical silicate-rich aqueous liquids, has been characterized in-situ while the sample was at high temperature (to 800 °C) and pressure (up to 796 MPa). Structural information was obtained with confocal microRaman and with FTIR spectroscopy. Two Al-bearing glasses compositionally along the join Na2O•4SiO2-Na2O•4(NaAl)O2-H2O (5 and 10 mol% Al2O3, denoted NA5 and NA10) were used as starting materials. Fluids and melts were examined along pressure-temperature trajectories of isochores of H2O at nominal densities (from PVT properties of pure H2O) of 0.85 g/cm3 (NA10 experiments) and 0.86 g/cm3 (NA5 experiments) with the aluminosilicate + H2O sample contained in an externally-heated, Ir-gasketed hydrothermal diamond anvil cell.Molecular H2O (H2O°) and OH groups that form bonds with cations exist in all three phases. The OH/H2O° ratio is positively correlated with temperature and pressure (and, therefore, fugacity of H2O, fH2O) with (OH/H2O°)melt > (OH/H2O°)fluid at all pressures and temperatures. Structural units of Q3, Q2, Q1, and Q0 type occur together in fluids, in melts, and, when outside the two-phase melt + fluid boundary, in single-phase liquids. The abundance of Q0 and Q1 increases and Q2 and Q3 decrease with fH2O. Therefore, the NBO/T (nonbridging oxygen per tetrahedrally coordination cations), of melt is a positive function of fH2O. The NBO/T of silicate in coexisting aqueous fluid, although greater than in melt, is less sensitive to fH2O.The melt structural data are used to describe relationships between activity of H2O and melting phase relations of silicate systems at high pressure and temperature. The data were also combined with available partial molar configurational heat capacity of Qn-species in melts to illustrate how these quantities can be employed to estimate relationships between heat capacity of melts and their H2O content.  相似文献   

15.
Mossbauer spectroscopy has been used to determine the redox equilibria of iron and structure of quenched melts on the composition join Na2Si2O5-Fe2O3 to 40 kbar pressure at 1400° C. The Fe3+/ΣFe decreases with increasing pressure. The ferric iron appears to undergo a gradual coordination transformation from a network-former at 1 bar to a network-modifier at higher (≧10 kbar) pressure. Ferrous iron is a network-modifier in all quenched melts. Reduction of Fe3+ to Fe2+ and coordination transformation of remaining Fe3+ result in depolymerization of the silicate melts (the ratio of nonbridging oxygens per tetrahedral cations, NBO/T, increases). It is suggested that this pressure-induced depolymerization of iron-bearing silicate liquids results in increasing NBO/T of the liquidus minerals. Furthermore, this depolymerization results in a more rapid pressure-induced decrease in viscosity and activation energy of viscous flow of iron-bearing silicate melts than would be expected for iron-free silicate melts with similar NBO/T.  相似文献   

16.
The chemical interaction between fluorine and highly polymerized sodium aluminosilicate melts [Al/(Al+Si)= 0.125–0.250 on the join NaAlO2-SiO2] has been studied with Raman spectroscopy. Fluorine is dissolved to form F ions that are electrically neutralized with Na+ or Al3+. There is no evidence for association of fluorine with either Si4+ or Al3+ in four-fold coordination and no evidence of fluorine in six-fold coordination with Si4+ in these melt compositions. Upon solution of fluorine nonbridging oxygens are formed and are a part of structural units with nonbridging oxygen per tetrahedral cations (NBO/T) about 2 and 1. The proportions of these two depolymerized units in the melts increase systematically with increasing F/(F+O) at constant Al/(Al+Si) and with decreasing Al/(Al+Si) at constant F/(F+O). Depolymerization (increasing NBO/T) of silicate melts results from a fraction of aluminum and alkalies (in the present study; Na+) reacting to form fluoride complexes. In this process an equivalent amount of Na+ (orginally required for Al-3+charge-balance) or Al3+ (originally required Na+ to exist in tetrahedral coordination) become network-modifiers.The structural data have been used to develop a method for calculating the viscosity of fluorine-bearing sodium aluminosilicate melts at 1 atm. Where experimental viscosity data are available, the calculated and measured values are within 5% of each other.A method is also suggested by which the liquidus phase equilibria of fluorine-bearing aluminosilicate melts may be predicted. In accord with published experimental data it is suggested, for example, that — on the basis of the determined solubility mechanism of fluorine in aluminosilicate melts — with increasing fluorine content of feldspar-quartz systems, the liquidus boundaries between aluminosilicate minerals (e.g., feldspars) and quartz shift away from silica.  相似文献   

17.
The saturation surface of pseudobrookite (Fe2TiO5) was determined for melts in the system SiO2-Al2O3-K2O-FeO-Fe2O3-TiO2 at 1400° C and 1 atm. The variation in concentrations of Fe2O3, TiO2 and Fe2TiO5 in liquids can be used to infer relative changes in activity coefficients of these components with changing K2O/(K2O+Al2O3) of the melts. Saturation concentrations of these components are low and relatively constant in the peraluminous melts and increase with increasing K2O/(K2O+Al2O3) in peralkaline liquids. The activity coefficients of Fe2O3 and TiO2 and Fe2TiO5, therefore, are higher in peraluminous liquids than in peralkaline liquids in this system. In addition, the iron redox ratio was measured as a function of K2O/(K2O+Al2O3) for liquids just below the saturation surface; was fixed so all variations in redox ratio are entirely due to changes in melt composition. The redox ratio from unsaturated liquids was applied to saturated liquids where redox analysis of the glass is impossible. The homogeneous equilibrium experiments indicate that the activity coefficient of Fe2O3 relative to that of FeO is significantly greater in peraluminous melts than peralkaline melts. Both the heterogeneous and homogeneous equilibria suggest that in peralkaline liquids K+in excess of that required to charge balance tetrahedral Al+3 is used to stabilize both Fe+3 and Ti+4. Calculations show that ferric iron and titanium compete equally effectively for charge-balancing potassium but neither can outcompete aluminum. The observed changes in solution properties of Fe2O3 and TiO2 in the synthetic melts are used to explain variations in Fe-Ti oxide stabilities in natural peraluminous and peralkaline rhyolites and granites. Since the activity coefficients of both ferric iron and titanium are significantly higher in peraluminous liquids than in peralkaline liquids, Fe-Ti oxides should occur earlier in the crystallization sequence in peraluminous rhyolites than in peralkaline rhyolites. In addition, iron will be reduced in peraluminous granites and rhyolites relative to peralkaline ones under comparable P, T, and . Finally, observed crystallization patterns for minerals containing highly charged cations other than ferric iron and titanium are evaluated in the context of this and other experimental studies.  相似文献   

18.
Calcic amphiboles coexisting with epidotegroup minerals (zoisite, clinozoisite, epidote) and/or clinopyroxene±plagioclase±quartz±garnet occur in amphibolites and calc-silicate rocks that underwent amphibolite to lower granulite-facies metamorphism in the Acadian metamorphic high of central Massachusetts, USA. Across the region, peak metamorphic conditions range from about 580° C and 6.2 kbar to 730° C and 6.3 kbar. The coexistence of most Ca-amphiboles with Fe3+-rich epidote-group minerals suggests the presence of Fe3+ in most of these amphiboles. An empirical Fe3+ estimation for the microprobe analyses is based on two constraints: the Na?Ca content of the M4 sites of Ca-saturated, gravimetrically analyzed hornblendes gives the relation: Ca(M4) c =-1.479 Na(M4) c +2 (c=corrected). The second constraint is the stoichiometric equation Ca(M4)+Na(M4)+FM=15, where FM is the sum of all cations exclusive of Ca, Na, and K. Solving the two equations simultaneously gives: 20.185=0.479 Ca(M4)+1.479 ΣFM. Starting with the uncorrected values of Ca(M4) u and ΣFM(M4) u (u = uncorrected) of the all ferrous formula, the normalization factor NF for calculating the corrected cations of the ferric formulas is: 20.185/(0.478 Ca(M4) u +1.479 ΣFM u ). From the deficient oxygen the Fe3+ content which is equal to 2(23-ΣOX) can be calculated. Determinations of Fe3+ contents of four hornblende separates by Mössbauer spectroscopy are in agreement with the calculated values. The Ca-amphiboles show systematic changes in composition with increasing grade of metamorphism within the amphibolite and lower granulite-facies zones: increasing edenite and tschermakite substitution, increasing Ti content, and increasing Fe2+/(Fe2++Mg) ratio. In addition, the coexisting clinopyroxenes are also characterized by an increase in Fe2+/(Fe2++Mg) ratio. In quartz-free rocks with coexisting Ca-amphibole and plagioclase there is an increase in the ratio X Ab/X Ed, where X Ab=Na/(Na+Ca) in plagioclase and X Ed=Na in the amphibole A-site. These chemical changes in mineral composition together with the disappearance of epidote at the transition to granulite-facies metamorphic conditions are attributed to the continuous reaction: albite+epidote+Fe-Mg hornblende→Fe?Mg clinopyroxene+anorthite+(NaAlSi-1)Hbl+H2O.  相似文献   

19.
Dissolution of water in magmas significantly affects phase relations and physical properties. To shed new light on the this issue, we have applied 1H and 29Si nuclear magnetic resonance (NMR) spectroscopic techniques to hydrous silicate glasses (quenched melts) in the CaO-MgO-SiO2 (CMS), Na2O-SiO2, Na2O-CaO-SiO2 and Li2O-SiO2 systems. We have also carried out ab initio molecular orbital calculations on representative clusters to gain insight into the experimental results.The most prominent result is the identification of a major peak at ∼1.1 to 1.7 ppm in the 1H MAS NMR spectra for all the hydrous CMS glasses. On the basis of experimental NMR data for crystalline phases and ab initio calculation results, this peak can be unambiguously attributed to (Ca,Mg)OH groups. Such OH groups, like free oxygens, are only linked to metal cations, but not part of the silicate network, and are thus referred to as free hydroxyls in the paper. This represents the first direct evidence for a substantial proportion (∼13∼29%) of the dissolved water as free hydroxyl groups in quenched hydrous silicate melts. We have found that free hydroxyls are favored by (1) more depolymerized melts and (2) network-modifying cations of higher field strength (Z/R2: Z: charge, R: cation-oxygen bond length) in the order Mg > Ca > Na. Their formation is expected to cause an increase in the melt polymerization, contrary to the effect of SiOH formation. The 29Si MAS NMR results are consistent with such an interpretation. This water dissolution mechanism could be particularly important for ultramafic and mafic magmas.The 1H MAS NMR spectra for glasses of all the studied compositions contain peaks in the 4 to 17 ppm region, attributable to SiOH of a range of strength of hydrogen bonding and molecular H2O. The relative population of SiOH with strong hydrogen bonding grows with decreasing field strength of the network-modifying cations. Ab initio calculations confirmed that this trend largely reflects hydrogen bonding with nonbridging oxygens.  相似文献   

20.
We determined total CO2 solubilities in andesite melts with a range of compositions. Melts were equilibrated with excess C-O(-H) fluid at 1 GPa and 1300°C then quenched to glasses. Samples were analyzed using an electron microprobe for major elements, ion microprobe for C-O-H volatiles, and Fourier transform infrared spectroscopy for molecular H2O, OH, molecular CO2, and CO32−. CO2 solubility was determined in hydrous andesite glasses and we found that H2O content has a strong influence on C-O speciation and total CO2 solubility. In anhydrous andesite melts with ∼60 wt.% SiO2, total CO2 solubility is ∼0.3 wt.% at 1300°C and 1 GPa and total CO2 solubility increases by about 0.06 wt.% per wt.% of total H2O. As total H2O increases from ∼0 to ∼3.4 wt.%, molecular CO2 decreases (from 0.07 ± 0.01 wt.% to ∼0.01 wt.%) and CO32− increases (from 0.24 ± 0.04 wt.% to 0.57 ± 0.09 wt.%). Molecular CO2 increases as the calculated mole fraction of CO2 in the fluid increases, showing Henrian behavior. In contrast, CO32− decreases as the calculated mole fraction of CO2 in the fluid increases, indicating that CO32− solubility is strongly dependent on the availability of reactive oxygens in the melt. These findings have implications for CO2 degassing. If substantial H2O is present, total CO2 solubility is higher and CO2 will degas at relatively shallow levels compared to a drier melt. Total CO2 solubility was also examined in andesitic glasses with additional Ca, K, or Mg and low H2O contents (<1 wt.%). We found that total CO2 solubility is negatively correlated with (Si + Al) cation mole fraction and positively correlated with cations with large Gibbs free energy of decarbonation or high charge-to-radius ratios (e.g., Ca). Combining our andesite data with data from the literature, we find that molecular CO2 is more abundant in highly polymerized melts with high ionic porosities (>∼48.3%), and low nonbridging oxygen/tetrahedral oxygen (<∼0.3). Carbonate dominates most silicate melts and is most abundant in depolymerized melts with low ionic porosities, high nonbridging oxygen/tetrahedral oxygen (>∼0.3), and abundant cations with large Gibbs free energy of decarbonation or high charge-to-radius ratio. In natural silicate melt, the oxygens in the carbonate are likely associated with tetrahedral and network-modifying cations (including Ca, H, or H-bonds) or a combinations of those cations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号