首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The δD values of over 40 amino acids and two pyridine carboxylic acids of the Murchison and Murray meteorites have been obtained by compound-specific isotopic analyses. For compounds with no known terrestrial distribution, these values range from approximately +330 (for cyclic leucine) to +3600 (for 2-amino-2,3-dimethylbutyric acid). The latter value is the highest ever recorded for a soluble organic compound in meteorites and nears deuterium to hydrogen ratios observed remotely in interstellar molecules. Deuterium content varies significantly between molecular species and is markedly higher for amino acids having a branched alkyl chain. The δD value of Murray l-isovaline, with an enantiomeric excess of ∼ 6% in the meteorite, was within experimental error of that determined for the combined dl-isovaline enantiomers. Overall, the hydrogen isotope composition of meteoritic amino acids is relatively simple and their δD values appear to vary more with the structure of their carbon chains than with the number and relative distribution of their functionalities or 13C content. The magnitude and extent of deuterium enrichment shared by many and varied amino acids in meteorites indicate that cosmic regimes such as those found in the interstellar medium were capable of producing, if not all the amino acids directly, at least a suite of their direct precursors that was abundant, varied, and considerably saturated.  相似文献   

2.
Concentrations and isotopic compositions were determined for H2, N2 and C extracted by stepwise pyrolysis from powdered meteorites, from residues of meteorites partially dissolved with aqueous HF, and from residues of meteorites reacted with HF-HCl solutions. The meteorites treated were the carbonaceous chondrites, Orgueil, Murray, Murchison, Renazzo and Cold Bokkeveld. Data determined for whole rock samples are in approximate agreement with previously published data. Acidification of the meteorites removed the inorganic sources of H2, so that H2 in the HF-HCl acid residues came primarily from insoluble organic matter, which makes up 70–80% fraction of the total carbon in carbonaceous meteorites. The δD in the organic matter differs markedly from previously determined values in organic matter in meteorites. The δD values of organic matter from acid residues of C1 and C2 carbonaceous chondrites range from +650 to + 1150%. The acid residues of the Renazzo meteorite, whose total H2 has a δD of +930‰, gave a δD value of +2500‰. Oxidation of the HF-HCl residue with H2O2 solution removes the high δD and the low δ15N components. The δ13C values range between ?10 and ?21 and δ15N values range between +40 and ?11. The δ15N of Renazzo is unusual; its values range between +150 and ?190.There is good correlation between δD and the concentration of H2 in the acid residues, but no correlation exists between δD, δ13C and δ15N in them. A simple model is proposed to explain the high δD values, and the relationships between δD values and the concentration of H2. This model depends on the irradiation of gaseous molecules facilitating reaction between ionic molecules, and indicates that an increase in the rate of polymerization and accumulation of organic matter on grains would produce an increase in the deuterium concentration in organic matter.  相似文献   

3.
The hydroxy acid suites extracted from the Murchison (MN), GRA 95229 (GRA) and LAP 02342 (LAP) meteorites have been investigated for their molecular, chiral and isotopic composition. Substantial amounts of the compounds have been detected in all three meteorites, with a total abundance that is lower than that of the amino acids in the same stones. Overall, their molecular distributions mirror closely that of the corresponding amino acids and most evidently so for the LAP meteorite. A surprising l-lactic acid enantiomeric excess was found present in all three stones, which cannot be easily accounted by terrestrial contamination; all other compounds of the three hydroxy acid suites were found racemic. The branched-chain five carbon and the diastereomer six-carbon hydroxy acids were also studied vis-a-vis the corresponding amino acids and calculated ab initio thermodynamic data, with the comparison allowing the suggestion that meteoritic hydroxyacid at these chain lengths formed under thermodynamic control and, possibly, at a later stage than the corresponding amino acids. 13C and D isotopic enrichments were detected for many of the meteoritic hydroxy acids and found to vary between molecular species with trends that also appear to correlate to those of amino acids; the highest δD value (+3450‰) was displayed by GRA 2-OH-2-methylbutyric acid. The data suggest that, while the amino- and hydroxy acids likely relate to common presolar precursor, their final distribution in meteorites was determined to large extent by the overall composition of the environments that saw their formation, with ammonia being the determining factor in their final abundance ratios.  相似文献   

4.
Nitrogen concentrations and isotopic compositions were measured by ion microprobe scanning imaging in two interplanetary dust particles L2021 K1 and L2036 E22, in which imaging of D/H and C/H ratios has previously evidenced the presence of D-rich macromolecular organic components. High nitrogen concentrations of 10-20 wt% and δ15N values up to +400‰ are observed in these D-rich macromolecular components. The previous study of D/H and C/H ratios has revealed three different D-rich macromolecular phases. The one previously ascribed to macromolecular organic matter akin the insoluble organic matter (IOM) from carbonaceous chondrites is enriched in nitrogen by one order of magnitude compared to the carbonaceous chondrite IOM, although its isotopic composition is still similar to what is known from Renazzo (δ15N = +208‰).The correlation observed in macromolecular organic material between the D- and 15N-excesses suggests that the latter originate probably from chemical reactions typical of the cold interstellar medium. These interstellar materials preserved to some extent in IDPs are therefore macromolecular organic components with various aliphaticity and aromaticity. They are heavily N-heterosubstituted as shown by their high nitrogen concentrations >10 wt%. They have high D/H ratios >10−3 and δ15N values ≥ +400‰. In L2021 K1 a mixture is observed at the micron scale between interstellar and chondritic-like organic phases. This indicates that some IDPs contain organic materials processed at various heliocentric distances in a turbulent nebula. Comparison with observation in comets suggests that these molecules may be cometary macromolecules. A correlation is observed between the D/H ratios and δ15N values of macromolecular organic matter from IDPs, meteorites, the Earth and of major nebular reservoirs. This suggests that most macromolecular organic matter in the inner solar system was probably issued from interstellar precursors and further processed in the protosolar nebula.  相似文献   

5.
We have conducted the first systematic analyses of molecular distribution and δD values of individual compounds in pyrolysates of insoluble organic matter (IOM) from different carbonaceous chondrite groups, using flash pyrolysis coupled to gas chromatography-mass spectrometry and compound-specific D/H analysis. IOM samples from six meteorites of different classifications, Elephant Moraine (EET) 92042 (CR2), Orgueil (CI1), Allan Hills (ALH) 83100 (CM1/2), Murchison (CM2), ALH 85013 (CM2), and Tagish Lake (C2) were isolated and studied. Except for the pyrolysate of Tagish Lake IOM, pyrolysates of all five meteorite IOM samples were dominated by an extensive series of aromatic (C1 to C7 alkyl-substituted benzenes, C0 to C2 alkyl-substituted naphthalenes), with aliphatic (straight chain and branched C10 to C15 alkanes) hydrocarbons and several S- and O- containing compounds (C1 to C2 alkylthiophenes, benzothiophene, benzaldehyde) being also present. The strong similarity in the pyrolysates of different carbonaceous chondrites suggests certain common characteristics in the formation mechanisms of IOM from different meteorites. The Tagish Lake IOM sample is unique in that its pyrolysate lacks most of the alkyl-substituted aromatic hydrocarbons detected in other meteorite IOM samples, suggesting distinctively different formation processes. Both bulk δD values of meteorite IOMs and weighted-average δD values of individual compounds in pyrolysates show a decreasing trend: CR2 > CI1 > CM2 > C2 (Tagish Lake), with the EET 92042 (CR2) IOM having the highest δD values (∼2000‰ higher than other samples). We attribute the high D contents in the IOM to primitive interstellar organic sources.  相似文献   

6.
Solvent extractions were done on the carbonaceous chondrites Murray, Murchison, Orgueil and Renazzo, using CCl4 and CH3OH. Between 2 and 10% of the total carbon in these meteorites is extractable by ordinary techniques, most of it in CH3OH. After demineralization with HF, perhaps as much as 30% of the total carbon in Murray may be extractable with CH3OH. The extracts from Renazzo have isotopic ratios which suggest that they are mainly terrestrial organic matter, with lesser contributions from indigenous organics. The CH3OH-soluble organic matter from Murchison and both untreated and HF-treated Murray has δ13C values of about +5 to + 10%. and δ15N values of about +90 to +100%., both of which are significantly higher than the bulk meteorite values. The Orgueil CH3OH-extract also has a δ15N value well above the value in residual organic matter. Values for δD of +300 to +500%. are found for the CH3OH-soluble organic matter. The combined data for C, H and N isotopes makes it highly unlikely that the CH3OH-soluble components are derivable from, or simply related to, the insoluble organic polymer found in the same meteorites. A relationship is suggested between the event that formed hydrous minerals in CI1 and CM2 meteorites and the introduction of water-soluble (methanol-soluble) organic compounds. Organic matter soluble in CCl4 has essentially no nitrogen, and δ3C and δD values are lower than for CH3OH-soluble phases. Either there are large isotopic fractionations for carbon and hydrogen between different soluble organic phases, or the less polar components are partially of terrestrial origin.  相似文献   

7.
Nanoglobules are a form of organic matter found in interplanetary dust particles and primitive meteorites and are commonly associated with 15N and D isotopic anomalies that are suggestive of interstellar processes. We report the discovery of two isotopically-anomalous organic globules from the Stardust collection of particles from Comet 81P/Wild 2 and compare them with nanoglobules from the Murchison CM2 meteorite. One globule from Stardust Cometary Track 80 contains highly aromatic organic matter and a large 15N anomaly (δ15N = 1120‰). Associated, non-globular, organic matter from this track is less enriched in 15N and contains a mixture of aromatic and oxidized carbon similar to bulk insoluble organic material (IOM) from primitive meteorites. The second globule, from Cometary Track 2, contains non-aromatic organic matter with abundant nitrile (CN) and carboxyl (COOH) functional groups. It is significantly enriched in D (δD = 1000‰) but has a terrestrial 15N/14N ratio. Experiments indicate that similar D enrichments, unaccompanied by 15N fractionation, can be reproduced in the laboratory by electron irradiation of epoxy or cyanoacrylate. Thus, a terrestrial origin for this globule cannot be ruled out, and, conversely, exposure to high-energy electron irradiation in space may be an important factor in producing D anomalies in organic materials. For comparison, we report two Murchison globules: one with a large 15N enrichment and highly aromatic chemistry analogous to the Track 80 globule and the other only moderately enriched in 15N with IOM-like chemistry. The observation of organic globules in Comet 81P/Wild 2 indicates that comets likely sampled the same reservoirs of organic matter as did the chondrite parent bodies. The observed isotopic anomalies in the globules are most likely preserved signatures of low temperature (<10 K) chemistry in the interstellar medium or perhaps the outer regions of the solar nebula. In other extraterrestrial samples, D isotopic anomalies, but not those of 15N, may be explained in part by exposure to ionizing electron radiation.  相似文献   

8.
Stable carbon (δ13C) and hydrogen (δD) isotopic compositions of n-alkanes, anteiso-alkanes, n-alkanoic acids, n-alkanols, phytol and sterols in raw leaves of Acer argutum and Acer carpinifolium, their fallen leaves, mold and soils from a natural Acer forest were measured in order to: (1) understand isotopic variation of the plant biomarkers in a plant-soil system and (2) evaluate which biomarker is the most effective recorder of soil vegetation. Long-chain (> C24) n-alkanes, n-alkanoic acids and n-alkanols are gradually enriched in 13C up to 12.9‰ (average of 4.3‰) and depleted in D up to 94‰ (average of 55‰) from raw leaves to soils. However, anteiso-alkanes, phytol and sterols show little variation in both δ13C (< ± 1‰) and δD (< ± 2‰) from raw leaves to soils. These isotope signatures in a plant-soil system indicate that isoprenoid plant biomarkers such as sterols in soils faithfully preserve the isotopic compositions of dominant higher plants growing on the soils without a diagenetic effect upon the isotopic compositions. In contrast, long-chain n-alkyl molecules in soils undergo specific isotopic modification during biodegradation associated with early diagenesis and/or a significant contribution from heterotrophic reworking.  相似文献   

9.
The δ13C values of thirty-four individual amino acids and two pyridine carboxylic acids have been obtained fromthe Murchison meteorite. They were found to range from +4.9 to +52.8‰, with statistically significant differences observed both within and between amino acid subgroups. The 13C content of α-amino acids declines with increasing chain length, a trend similar to the ones previously observed for carboxylic acids and alkanes. Also 2-methyl-2-amino acids were found to be heavier in 13C than the corresponding 2-H homologues. The3-, 4-, and 5-amino acids do not show a comparable declining trend in δ13C values and neither do the amino dicarboxylic acids. This variability in δ 13C values can be interpreted as to indicate that the synthetic histories of soluble organics in meteorites may have been diverse even within groups of compounds with very similar functional group composition.  相似文献   

10.
Monocarboxylic acids (MCAs) are important astrobiologically because they are often the most abundant soluble compounds in carbonaceous chondrites (CCs) and are potential synthetic end products for many biologically important compounds. However, there has been no systematic study on the effect of parent body alteration on molecular and isotopic variability of MCAs. Since MCAs in meteorites are dominated by low molecular weight (C1-C8), highly volatile compounds, their distributions are likely to be particularly sensitive to secondary alteration processes. In contrast, the aliphatic side chains of insoluble organic matter (IOM) in CCs, whose composition has been shown to be closely related to the MCAs, may be far more resistant to secondary alteration. In the present study, we determined the distributions and isotopic ratios of free and IOM-derived MCAs in six carbonaceous chondrites with a range of classifications: Murchison (CM2), EET 87770 (CR2), ALH 83034 (CM1), ALH 83033 (CM2), MET 00430 (CV3) and WIS 91600 (C2). We compare mineralogical and petrological characteristics to the MCAs distributions to better define the processes leading to the synthesis and alteration of meteoritic MCAs. Our results show that aqueous and especially thermal alteration in the parent bodies led to major loss of free MCAs and depletion of straight relative to branched chain compounds. However, the MCAs derived from aliphatic side chains of IOM are well preserved despite of secondary alterations. The molecular and isotopic similarities of IOM-derived MCAs in different chondrite samples indicate very similar synthetic histories for organic matter in different meteorites.  相似文献   

11.
We measured molecular distributions and compound-specific hydrogen (δD) and stable carbon isotopic ratios (δ13C) of mid- and long-chain n-alkanes in forest soils, wetland peats and lake sediments within the Dorokawa watershed, Hokkaido, Japan, to better understand sources and processes associate with delivery of terrestrial organic matter into the lake sediments. δ13C values of odd carbon numbered C23-C33n-alkanes ranged from −37.2‰ to −31.5‰, while δD values of these alkanes showed a large degree of variability that ranged from −244‰ to −180‰. Molecular distributions in combination with stable carbon isotopic compositions indicate a large contribution of C3 trees as the main source of n-alkanes in forested soils whereas n-alkanes in wetland soil are exclusively derived from marsh grass and/or moss. We found that the n-alkane δD values are much higher in forest soils than wetland peat. The higher δD values in forest samples could be explained by the enrichment of deuterium in leaf and soil waters due to increased evapotranspiration in the forest or differences in physiology of source plants between wetland and forest. A δ13C vs. δD diagram of n-alkanes among forest, wetland and lake samples showed that C25-C31n-alkanes deposited in lake sediments are mainly derived from tree leaves due to the preferential transport of the forest soil organic matter over the wetland or an increased contribution of atmospheric input of tree leaf wax in the offshore sites. This study demonstrates that compound-specific δD analysis provides a useful approach for better understanding source and transport of terrestrial biomarkers in a C3 plant-dominated catchment.  相似文献   

12.
Deuterium-enriched amino acids occur in the Murchison carbonaceous chondrite. Synthesis from D-enriched interstellar precursors by Strecker reactions during aqueous alteration of the parent body has been proposed. To test this hypothesis, we have measured the retention of deuterium in amino acids produced from HCN, NH3, and formaldehyde-D2, acetaldehyde-D4, and acetone-D6 in H2O. The isotopic label is 50% to 98% retained, with variations in retentivity depending on the amino acid and the reaction conditions. If amino acids, once formed on the parent body by the Strecker synthesis, lose no deuterium by subsequent exchange with water or H-bearing minerals, then the observed deuterium isotopic composition of Murchison amino acids represents as much as 50% or more of the enrichments inherited from their interstellar precursors. Imino diacids are prominent side products of the Strecker synthesis which have not been reported in carbonaceous chondrites. Under the conditions of the Strecker reaction using deuterium labeled aldehydes and ketones, unlabeled amino acids are also formed by an HCN polymerization route indicating multiple pathways for the synthesis of amino acids in meteorites.  相似文献   

13.
The isotopic compositions of titanium in eight grains of hibonite (CaAI12O19) from the carbonaceous chondrite Murchison have been determined by high precision secondary ion mass spectrometry using an ion microprobe. The titanium in the hibonites varies greatly in 50Ti, from about ?42 to +8 permil (relative to terrestrial) with smaller (up to 4 permil), but clearly resolvable, effects in 46Ti and 48Ti. These results complement ion probe measurements by Faheyet al. (1985) of a 100 permil excess of 50Ti in a hibonite grain from the carbonaceous chondrite Murray, and confirm the presence of widespread negative anomalies suggested by the results of Hutcheonet al. (1983) on hibonites from Murchison. The magnitude of these variations seems explicable only in terms of nucleogenic processes which produced extremely variable titanium isotopic abundances in the hibonite source materials. The hibonites evidently did not participate to the same extent as most material in the mixing and homogenisation processes that accompanied the formation and later evolution of the solar system. Thus, significant source materials of the hibonites may be the supernova condensates of Clayton (1978) and may support the concept of “chemical memory” (Clayton, 1978; Niemeyer and Lugmair, 1984).  相似文献   

14.
Formation of iron sulfide nodules during anaerobic oxidation of methane   总被引:1,自引:0,他引:1  
The biomarker compositions of iron sulfide nodules (ISNs; upper Pliocene Valle Ricca section near Rome, Italy) that contain the ferrimagnetic mineral greigite (Fe3S4) were examined. In addition to the presence of specific terrestrial and marine biomarkers, consistent with formation in coastal marine sediments, these ISNs contain compounds thought to originate from sulfate reducing bacteria (SRB). These compounds include a variety of low-molecular-weight and branched alkanols and several non-isoprenoidal dialkyl glycerol diethers (DGDs). In addition, archaeal biomarkers, including archaeol, macrocyclic isoprenoidal DGDs and isoprenoidal glycerol dialkyl glycerol tetraethers are also present. Both SRB and archaeal lipid δ13C values are depleted in 13C (δ13C values are typically less than −50‰), which suggests that the SRB and archaea consumed 13C depleted methane. These biomarker and isotopic signatures are similar to those found in cold seeps and marine sediments where anaerobic oxidation of methane (AOM) occurs with sulfate serving as the terminal electron acceptor. Association of AOM with formation of greigite-containing ISNs could provide an explanation for documented remagnetization of the Valle Ricca sediments. Upward migration of methane, subsequent AOM and associated authigenic greigite formation are widespread processes in the geological record that have considerable potential to compromise paleomagnetic records.  相似文献   

15.
Bulk chemical compositions and oxygen isotopic compositions were analyzed for 48 stony cosmic spherules (melted micrometeorites) collected from the Antarctic ice sheet using electron- and ion-microprobes. No clear correlation was found between their isotopic compositions and textures. The oxygen isotopic compositions showed an extremely wide range from −28‰ to +93‰ in δ18O and from −21‰ to +13‰ in Δ17O. In δ18O-δ17O space, most samples (38 out of 48) plot close to the terrestrial fractionation line, but 7 samples plot along the carbonaceous chondrite anhydrous mineral (CCAM) line. Three samples plot well above the terrestrial fractionation line. One of these has a Δ17O of +13‰, the largest value ever found in solar system materials. One possible precursor for this spherule could be 16O-poor planetary material that is still unknown as a meteorite. The majority of the remaining spherules are thought to be related to carbonaceous chondrites.  相似文献   

16.
Organic materials in lacustrine sediments are from multiple terrestrial and aquatic sources. In this study, carbon (δ13C) and hydrogen isotopic compositions (δD) of phytol, various sterols, and major n-fatty acids in sediments at Lake Haruna, Japan, were determined in their solvent-extractable (free) and saponification-released forms (bound). The δ13C-δD distributions of these lipid molecules in sediments are compared with those of terrestrial C3 and C4 plants, aquatic C3 plants, and plankton to evaluate their relative contributions. δ13C-δD of free phytol in sediments is very close to that of phytol in plankton samples, whereas δ13C-δD of bound phytol in sediments is on a mixing line between terrestrial C3 plant and plankton material. Unlike phytol, no significant δ13C-δD difference between free and bound forms was found in sterols and n-fatty acids. δ13C-δD values of algal sterols such as 24-methylcholesta-5,22-dien-3β-ol in sediments are close to those of plankton, whereas δ13C-δD of multiple-source sterols such as 24-ethylcholest-5-en-3β-ol and of major n-fatty acids such as n-hexadecanoic acid in sediments are between those of terrestrial C3 plants and plankton samples. Thus, δ13C-δD distributions clearly indicate the specific source contributions of biomarkers preserved in a lacustrine environment. Free phytol and algal sterols can be attributed to phytoplankton, and bound phytol, multiple source sterols, and major n-fatty acids are contributed by both terrestrial C3 plants and phytoplankton.  相似文献   

17.
Ion-microprobe was used to measure Li abundances and isotopic compositions in pyroxenes from three Martian meteorites belonging to the nakhlite family. The profiles performed across augite crystals from Northwest Africa 817 show a large isotopic zoning from crystal cores (δ7Li ∼ 0‰) to rims (δ7Li ∼ +20‰) while Li abundances are almost constant (∼9.2 μg/g). Unlike NWA 817, the pyroxene studied in the Miller Range 03346 nakhlite shows a zoning in Li abundance, with concentrations increasing from ∼2.5 μg/g in the core to ∼9 μg/g in the rim. The augite rim (δ7Li = +7‰) is slightly enriched in 7Li with regard to the core (δ7Li = +4‰), but most of the isotopic variations observed occur at an intermediate position along the profile, where δ7Li falls down to ∼−11‰. In the case of Nakhla, Li concentrations in augite increase from cores (∼3.5 μg/g) to rims (∼6.5 μg/g), while the δ7Li variation is restricted (i.e., between δ7Li = +6.0 and +12.6‰). For the three meteorites the Li abundances were also measured in the groundmass, which was found to be enriched in lithium (∼10 μg/g). Conventional magmatic and post-magmatic processes such as alteration and fractional crystallization, fail to explain the dataset obtained on nakhlites. Degassing processes, which were previously proposed to explain the Li distribution in shergottite crystals, cannot result in the strong decoupling between Li abundances and isotopic composition observed in nakhlites. We suggest that the original magmatic Li distributions (concentrations and isotopic compositions) in nakhlites have been modified by diffusion of Li from the Li-rich groundmass towards the pyroxene crystals during sub-solidus cooling. Diffusion appears to have been efficient for NWA 817 and MIL 03346 but, apparently, did not produce a significant migration of Li in Nakhla, possibly because of the lower abundance of groundmass in the latter. Diffusion induced Li redistributions may also affect terrestrial porphyric rocks but very specific cooling rates are required to quench the diffusion profiles as observed in two of the present nakhlites.  相似文献   

18.
The metal-rich carbonaceous chondrites (CB and CH) have the highest whole-rock 15N-enrichments (δ15N up to 1500‰) among planetary materials. They are also characterized by the absence of interchondrule fine-grained matrix. The only fine-grained material is present as lithic clasts, which experienced extensive aqueous alteration in contrast to the surrounding high-temperature components (chondrules, refractory inclusions, metal grains). Hence, the clasts are foreign objects that were incorporated at a late stage into the final parent body of Isheyevo. Their origin is poorly constrained. Based on mineralogy, petrography, and thermal processing of the aromatic carbonaceous component, different types of clasts have been previously identified in the CB/CH-like chondrite Isheyevo. Here, we focus on the rare lithic clasts characterized by the presence of anhydrous silicates (chondrules, chondrule fragments, and CAIs). Their mineralogy and oxygen isotopic compositions reveal them to be micro-chondrules, fragments of chondrules, and refractory inclusions related to those in the Isheyevo host, suggesting accretion in the same region. In contrast to previously studied IDPs or primitive chondritic matrices, the fine-grained material in the clasts we studied is highly and rather uniformly enriched in heavy nitrogen, with bulk δ15N values ranging between 1000‰ and 1300‰. It is also characterized by the presence of numerous 15N hotspots (δ15N ranging from 1400‰ to 4000‰). No bulk (δD <-240‰) or localized deuterium enrichments were observed. These clasts have the highest bulk enrichment in heavy nitrogen measured to date in a fine-grained material. They represent a unique material, of asteroidal or cometary origin, in our collection of cosmomaterials. We show that they were 15N-enriched before their incorporation in the final parent body of Isheyevo. They experienced an extensive aqueous alteration that most likely played a role in redistributing 15N over the whole fine-grained material and may have significantly modified its initial hydrogen isotopic composition. Based on a review of isotopic fractionation models, we conclude that the nitrogen isotopic fractionation process, its timing, and its location are still poorly constrained. The 15N-rich clasts may represent the surviving original carrier of the 15N anomaly in Isheyevo whole-rock.  相似文献   

19.
The carbon isotopic composition of the total carbon in the enstatite chondrites Indarch, Abee, St. Marks, Pillistfer, Hvittis and Daniel's Kuil and the enstatite achondrite Cumberland Falls has been measured. The empirical relationhip between carbon isotopic composition and total carbon content is distinct from that of carbonaceous and ordinary chondrites. Within the enstatite chondrite group the average 13C content increases with petrographic type: E4 < E5 < E6. Daniel's Kuil shows the largest 13C enrichment in the bulk carbon of any meteorite. The carbon isotopic composition is most clearly correlated with the abundance of the elements Zn, Cd and In. Insofar as these elements may hold the key to the understanding of enstatite chondrites, more detailed combined carbon isotope and trace element studies of these meteorites will play an important role in the deciphering of their history.  相似文献   

20.
The isotopic compositions of S (δ34S) and C (δ13C) were determined for the coal utilized by a power plant and for the fly ash produced as a by-product of the coal combustion in a 220-MW utility boiler. The coal samples analyzed represent different lithologies within a single mine, the coal supplied to the power plant, the pulverized feed coal, and the coal rejected by the pulverizer. The ash was collected at various stages of the ash-collection system in the plant. There is a notable enrichment in 34S from the base to the top of the coal seam in the mine, with much of the variation due to an upwards enrichment in the δ34S values of the pyrite. Variations in δ34S and in the amount of pyritic S in the coal delivered to the plant show that there was a change of source of coal supplied to the plant, between week one and week two of monitoring, supporting a previous study based on metal and sulfide geochemistry for the same plant. The fly ash has a more enriched δ34S than the pulverized coal and, in general, the δ34S is more enriched in fly ashes collected at cooler points in the ash-collection system. This pattern of δ34S suggests an increased isotopic fractionation due to temperature, with the fly ash becoming progressively depleted in 34S and the flue gas S-containing components becoming progressively enriched in 34S with increasing temperatures. Substantially less variation is seen in the C isotopes compared to S isotopes. There is little vertical variation in δ13C in the coal bed, with δ13C becoming slightly heavier towards the top of the coal seam. An 83–93% loss of solid phase C occurs during coal combustion in the transition from coal to ash owing to loss of CO2. Despite the significant difference in total C content only a small enrichment of 0.44–0.67‰ in 13C in the ash relative to the coal is observed, demonstrating that redistribution of C isotopes in the boiler and convective passes prior to the arrival of the fly ash in the ash-collections system is minor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号