首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
We combined synchrotron-based X-ray absorption near edge structure (XANES) spectroscopy, extended X-ray absorption fine structure (EXAFS) spectroscopy and binding affinity studies to determine the coordination, geometry, and strength of methyl mercury, CH3Hg (II), bonding in soil and stream organic matter. Samples of organic soil (OS), potentially soluble organic substances (PSOS) from the soil, and organic substances from a stream (SOS) draining the soil were taken along a short “hydrological transect.” We determined the sum of concentrations of highly reduced organic S groups (designated Org-SRED), such as thiol (RSH), disulfane (RSSH), sulfide (RSR), and disulfide (RSSR), using sulfur K-edge XANES. Org-SRED varied between 27% and 64% of total S in our samples. Hg LIII-edge EXAFS analysis were determined on samples added CH3Hg (II) to yield CH3Hg (II)/Org-SRED ratios in the range 0.01-1.62. At low ratios, Hg was associated to one C atom (the methyl group) at an average distance of 2.03 ± 0.02 Å and to one S atom at an average distance of 2.34 ± 0.03 Å, in the first coordination shell. At calculated CH3Hg(II)/Org-SRED ratios above 0.37 in OS, 0.32 in PSOS, and 0.24 in SOS, the organic S sites were saturated by CH3Hg+, and O (and/or N) atoms were found in the first coordination shell of Hg at an average distance of 2.09 ± 0.01 Å. Based on the assumption that RSH (and possibly RSSH) groups take part in the complexation of CH3Hg+, whereas RSSR and RSR groups do not, approximately 17% of total organic S consisted of RSH (+ RSSH) functionalities in the organic soil. Corresponding figures for samples PSOS and SOS were 14% and 9%, respectively. Competitive complexation of CH3Hg+ by halide ions was used to determine the average binding strength of native concentrations of CH3Hg (II) in the OS sample. Using data for Org-SRED, calculated surface complexation constants were in the range from 1016.3 to 1016.7 for a model RSH site having an acidity constant of mercaptoacetic acid. These values compare favorably with identically defined stability constants (log K1) for the binding of methyl mercury to thiol groups in well-defined organic compounds.  相似文献   

2.
Considerable fractions of the Hg content of lake and river systems in Scandinavia are discharged from the soil of the catchments. An important soil type in Scandinavia is the iron–humus podzol. The sorption characteristics of this soil type for inorganic Hg(II) and monomethyl mercury were investigated by batch experiments. The solubility of Hg2+ and CH3Hg+ in the soil horizons containing organic matter increases with increasing pH of the soil solution by favoring the formation of solute organic matter–mercury complexes. While the solubility of Hg2+ is strongly dependent on complexation to dissolved organic matter, the solubility of CH3Hg+ is more dependent on ion exchange. The concentration of solute inorganic Hg(II) increased with increasing temperature probably because of an increase in the concentration of dissolved organic carbon. There was no effect of temperature on the concentration of solute CH3Hg+. At pH values where inorganic mercury–hydroxo complexes are formed, inorganic Hg(II) is efficiently sorbed to the metal oxides of the mineral soil. The soil–water distributions of inorganic Hg(II) in the different soil horizons were described by Freundlich isotherms or linear isotherms for common and contaminated mercury contents in the soils.  相似文献   

3.
Carboxyl groups are abundant in natural organic molecules (NOM) and play a major role in their reactivity. The structural environments of carboxyl groups in IHSS soil and river humic samples were investigated using 2D NMR (heteronuclear and homonuclear correlation) spectroscopy. Based on the 1H-13C heteronuclear multiple-bond correlation (HMBC) spectroscopy results, the carboxyl environments in NOM were categorized as Type I (unsubstituted and alkyl-substituted aliphatic/alicyclic), Type II (functionalized carbon substituted), Type IIIa, b (heteroatom and olefin substituted), and Type IVa, b (5-membered heterocyclic aromatic and 6-membered aromatic). The most intense signal in the HMBC spectra comes from the Type I carboxyl groups, including the 2JCH and 3JCH couplings of unsubstituted aliphatic and alicyclic acids, though this spectral region also includes the 3JCH couplings of Type II and III structures. Type II and III carboxyls have small but detectable 2JCH correlations in all NOM samples except for the Suwannee River humic acid. Signals from carboxyls bonded to 5-membered aromatic heterocyclic fragments (Type IVa) are observed in the soil HA and Suwannee River FA, while correlations to 6-membered aromatics (Type IVb) are only observed in Suwannee River HA. In general, aromatic carboxylic acids may be present at concentrations lower than previously imagined in these samples. Vibrational spectroscopy results for these NOM samples, described in an accompanying paper [Hay M. B. and Myneni S. C. B. (2007) Structural environments of carboxyl groups in natural organic molecules from terrestrial systems. Part 1: Infrared spectroscopy. Geochim. Cosmochim. Acta (in press)], suggest that Type II and Type III carboxylic acids with α substituents (e.g., -OH, -OR, or -CO2H) constitute the majority of carboxyl structures in all humic substances examined. Furoic and salicylic acid structures (Type IV) are also feasible fragments, albeit as minor constituents. The vibrational spectroscopy results also suggest that much of the “Type I” signal observed in the HMBC spectrum is due to carboxylic acid esters and possibly α-substituted alicyclic acids.  相似文献   

4.
The stability and structure of aqueous complexes formed by trivalent antimony (SbIII) with carboxylic acids (acetic, adipic, malonic, lactic, oxalic, tartaric, and citric acid), phenols (catechol), and amino acids (glycine) having O- and N-functional groups (carboxyl, alcoholic hydroxyl, phenolic hydroxyl and amine) typical of natural organic matter, were determined at 20 and 60 °C from solubility and X-ray absorption fine structure (XAFS) spectroscopy measurements. In organic-free aqueous solutions and in the presence of acetic, adipic, malonic acids and glycine, both spectroscopic and solubility data are consistent with the dominant formation of SbIII hydroxide species, , at strongly acid, acid-to-neutral and basic pH, respectively, demonstrating negligible complexing with mono-functional organic ligands (acetic) or those having non adjacent carboxylic groups (adipic, malonic). In contrast, in the presence of poly-functional carboxylic and hydroxy-carboxylic acids and catechol, SbIII forms stable 1:1 and 1:2 complexes with the studied organic ligands over a wide pH range typical of natural waters (3 < pH < 9). XAFS spectroscopy measurements show that in these species the central SbIII atom has a distorted pseudo-trigonal pyramidal geometry composed of the lone pair of 5s2 electrons of Sb and four oxygen atoms from two adjacent functional groups of the ligand (OC-OH and/or COH), forming a five-membered bidendate chelate cycle. Stability constants for these species, generated from Sb2O3 (rhomb.) solubility experiments, were used to model Sb complexing with natural humic acids possessing the same functional groups as those investigated in this study. Our predictions show that in an aqueous solution of pH between 2 and 10, containing 1 μg/L of Sb and 5 mg/L of dissolved organic carbon (DOC), up to 35% of total dissolved Sb binds to aqueous organic matter via carboxylic and hydroxy-carboxylic groups. This amount of complexed Sb for typical natural DOC concentrations is in agreement with that estimated from dialysis experiments performed with commercial humic acid in our work and those available in the literature for a range of standardized IHSS humic acids. Our results imply that a significant part of Sb is likely to be bound with humic acids via hydroxy-carboxylic moieties, in the form of bidendate complexes. However, following the strong chemical affinity of SbIII for reduced sulfur, some undefined fraction of SbIII might also be bound to the minor thiol-bearing moieties of humic acids; further studies are required to check this hypothesis.  相似文献   

5.
Mercury accumulation in the food chain, as a consequence of gold recovery in Brazil, has been an issue of concern. Reactions of Hg in the environment are quite complex, and can involve various Hg chemical species. Laboratory experiments were carried out on Hg0 solubility, Hg complexation and sorption on river sediments from a gold mining region in Brazil. The reactivity and the mobility of Hg species were considered. Results indicate that methyl mercury is more mobile than ionic mercury, and that the presence of humic acid enhances drastically the solubility of Hg0. The soluble complex formed has a relatively lower interaction at the sediment/water interface and is more prone to spread through the aquatic environment.  相似文献   

6.
In 2002, metallic Hg was found buried in a rural area of Descoberto city, Brazil. The origin of the Hg was a gold mining explotation plant established nearly one century ago. Although a number of studies have been conducted in order to assess the contamination of the area, none of them investigated the presence of methylated Hg in the hydric system. In this work methylmercury (CH3Hg+) was determined using gas chromatography-pyrolysis-atomic fluorescence detection (CG-pyro-AFS) in material from rain sedimentation boxes and stream sediments near the contaminated area. Total Hg concentration (HgT) along with the chemical speciation by thermo-desorption were performed. HgT in material from the sedimentation boxes was found to be very high, up to 41,580 μg kg−1, even in the rainy season, when in general HgT were much lower than in dry season. The samples from the Grama and Rico streams show a range of HgT from 5.8 to 266 μg kg−1. The thermo-desorption analysis showed predominance of Hg2+, possibly linked to organic sulfur, suggested by a good positive correlation between Hg2+, HgT, organic mater (OM) and total S. The CH3Hg+ concentration in stream sediment samples ranged from <0.07 to 1.87 μg kg−1 and in the samples of sedimentation boxes the concentrations were 1.33 and 8.0 μg kg−1 during dry season. The sample with the highest percentage of HgT as Hg2+ (98%) presented also the highest percentage of CH3Hg+ (0.7%). These are high values, showing that care should be taken to avoid the transport of this material to the hydrological system. Further studies on the transfer through the food chain would be very important.  相似文献   

7.
The acid-base properties of 14 standard and reference materials from the International Humic Substances Society (IHSS) were investigated by potentiometric titration. Titrations were conducted in 0.1 M NaCl under a nitrogen atmosphere, averaging 30 min from start to finish. Concentrations of carboxyl groups and phenolic groups were estimated directly from titration curves. Titration data were also fit to a modified Henderson-Hasselbalch model for two classes of proton-binding sites to obtain “best fit” parameters that describe proton-binding curves for the samples. The model was chosen for its simplicity, its ease of implementation in computer spreadsheets, and its excellent ability to describe the shapes of the titration curves. The carboxyl contents of the IHSS samples are in the general order: terrestrial fulvic acids > aquatic fulvic acids > Suwannee River natural organic matter (NOM) > aquatic humic acids > terrestrial humic acids. Overall, fulvic acids and humic acids have similar phenolic contents; however, all of the aquatically derived samples have higher phenolic contents than the terrestrially derived samples. The acid-base properties of reference Suwannee River NOM are surprisingly similar to those of standard Suwannee River humic acid. Results from titrations in this study were compared with other published results from both direct and indirect titrations. Typically, carboxyl contents for the IHSS samples were in agreement with the results from both methods of titration. Phenolic contents for the IHSS samples were comparable to those determined by direct titrations, but were significantly less than estimates of phenolic content that were based on indirect titrations with Ba(OH)2 and Ca(OAc)2. The average phenolic-to-carboxylic ratio of the IHSS samples is approximately 1:4. Models that assume a 1:2 ratio of phenolic-to-carboxylic groups may overestimate the relative contribution of phenolic groups to the acid-base chemistry of humic substances.  相似文献   

8.
Quantifying mercury (Hg) emissions from active volcanoes is of particular interest for better constraining the global cycle and environmental impact of this highly toxic element. Here we report on the abundance of total gaseous (TGM = Hg0(g) + HgII(g)) and particulate (Hg(p)) mercury in the summit gas emissions of La Soufrière andesitic volcano (Guadeloupe island, Lesser Antilles), where enhanced degassing of mixed hydrothermal-magmatic volatiles has been occurring since 1992 from the Southern summit crater. We demonstrate that Hg in volcanic plume occurs predominantly as gaseous mercury, with a mean TGM/Hg(p) mass ratio of ~ 63. Combining the mean TGM/H2S mass ratio of the volcanic plume (~ 3.2 × 10− 6), measured close to the source vent, with the H2S plume flux (~ 0.7 t d− 1), determined simultaneously, allows us to estimate a gaseous mercury emission rate of 0.8 kg yr− 1 from La Soufrière summit dome. Somewhat lower TGM/Stot mass ratio in fumarolic gases from the source vent (4.4 × 10− 7) suggests that plume chemical composition is not well represented by the emission source (fumaroles) due to chemical processes prior to (or upon) discharge. Current mercury emission from La Soufrìere volcano represents a very small contribution to the estimated global volcanic budget for this element.  相似文献   

9.
Mercury (Hg) and methylmercury (CH3Hg+) concentrations in streambed sediment and water were determined at 27 locations throughout the Sacramento River Basin, CA. Mercury in sediment was elevated at locations downstream of either Hg mining or Au mining activities where Hg was used in the recovery of Au. Methylmercury in sediment was highest (2.84 ng/g) at a location with the greatest wetland land cover, in spite of lower total Hg at that site relative to other river sites. Mercury in unfiltered water was measured at 4 locations on the Sacramento River and at tributaries draining the mining regions, as well as agricultural regions. The highest levels of Hg in unfiltered water (2248 ng/l) were measured at a site downstream of a historic Hg mining area, and the highest levels at all sites were measured in samples collected during high streamflow when the levels of suspended sediment were also elevated. Mercury in unfiltered water exceeded the current federal and state recommended criterion for protection of aquatic life (50 ng/l as total Hg in unfiltered water) only during high streamflow conditions. The highest loading of Hg to the San Francisco Bay system was attributed to sources within the Cache Creek watershed, which are downstream of historic Hg mines, and to an unknown source or sources to the mainstem of the Sacramento River upstream of historic Au mining regions. That unknown source is possibly associated with a volcanic deposit. Methylmercury concentrations also were dependent on season and hydrologic conditions. The highest levels (1.98 ng/l) in the Sacramento River, during the period of study, were measured during a major flood event. The reactivity of Hg in unfiltered water was assessed by measuring the amount available for reaction by a strong reducing agent. Although most Hg was found to be nonreactive, the highest reactivity (7.8% of the total Hg in water) was measured in the sample collected from the same site with high CH3Hg+ in sediment, and during the time of year when that site was under continual flooded conditions. Although Hg concentrations in water downstream of the Hg mining operations were measured as high as 2248 ng/l during stormwater runoff events, the transported Hg was found to have a low potential for geochemical transformations, as indicated by the low reactivity to the reducing agent (0.0001% of the total), probably because most of the Hg in the unfiltered water sample was in the mercury sulfide form.  相似文献   

10.
Humic Ion-Binding Model V, which focuses on metal complexation with humic and fulvic acids, was modified to assess the role of dissolved natural organic matter in the speciation of rare earth elements (REEs) in natural terrestrial waters. Intrinsic equilibrium constants for cation-proton exchange with humic substances (i.e., pKMHA for type A sites, consisting mainly of carboxylic acids), required by the model for each REE, were initially estimated using linear free-energy relationships between the first hydrolysis constants and stability constants for REE metal complexation with lactic and acetic acid. pKMHA values were further refined by comparison of calculated Model V “fits” to published data sets describing complexation of Eu, Tb, and Dy with humic substances. A subroutine that allows for the simultaneous evaluation of REE complexation with inorganic ligands (e.g., Cl, F, OH, SO42−, CO32−, PO43−), incorporating recently determined stability constants for REE complexes with these ligands, was also linked to Model V. Humic Ion-Binding Model V’s ability to predict REE speciation with natural organic matter in natural waters was evaluated by comparing model results to “speciation” data determined previously with ultrafiltration techniques (i.e., organic acid-rich waters of the Nsimi-Zoetele catchment, Cameroon; dilute, circumneutral-pH waters of the Tamagawa River, Japan, and the Kalix River, northern Sweden). The model predictions compare well with the ultrafiltration studies, especially for the heavy REEs in circumneutral-pH river waters. Subsequent application of the model to world average river water predicts that organic matter complexes are the dominant form of dissolved REEs in bulk river waters draining the continents. Holding major solute, minor solute, and REE concentrations of world average river water constant while varying pH, the model suggests that organic matter complexes would dominate La, Eu, and Lu speciation within the pH ranges of 5.4 to 7.9, 4.8 to 7.3, and 4.9 to 6.9, respectively. For acidic waters, the model predicts that the free metal ion (Ln3+) and sulfate complexes (LnSO4+) dominate, whereas in alkaline waters, carbonate complexes (LnCO3+ + Ln[CO3]2) are predicted to out-compete humic substances for dissolved REEs. Application of the modified Model V to a “model” groundwater suggests that natural organic matter complexes of REEs are insignificant. However, groundwaters with higher dissolved organic carbon concentrations than the “model” groundwater (i.e., >0.7 mg/L) would exhibit greater fractions of each REE complexed with organic matter. Sensitively analysis indicates that increasing ionic strength can weaken humate-REE interactions, and increasing the concentration of competitive cations such as Fe(III) and Al can lead to a decrease in the amount of REEs bound to dissolved organic matter.  相似文献   

11.
《Organic Geochemistry》1987,11(3):123-137
13C NMR spectroscopy is used to examine the hydroxyl group functionality of a series of humic and fulvic acids from different aquatic environments. Samples first are methylated with13C-labeled diazomethane. The NMR spectra of the diazomethylated samples allow one to distinguish between methyl esters of car☐ylic acids, methyl ethers of phenolic hydroxyls, and methyl ethers of phenolic hydroxyls adjacent to two substituents. Samples are then permethylated with13C-labeled methyl iodide/NaH.13C NMR spectra of permethylated samples show that a significant fraction of the hydroxyl groups is not methylated with diazomethane alone. In these spectra methyl ethers of carbohydrate and aliphatic hydroxyls overlap with methyl ethers of phenolic hydroxyls. Side reactions of the methyltion procedure including carbon methylation in the CH3I/NaH procedure, are also examined. Humic and fulvic acids from bog, swamp, groundwater, and lake waters showssome differences in their distribution of hydroxyl groups, mainly in the concentrations of phenolic hydroxyls, which may be attributed to their different biogeochemical origins.  相似文献   

12.
Mass independent fractionation (MIF) of stable isotopes associated with terrestrial geochemical processes was first observed in the 1980s for oxygen and in the 1990s for sulfur isotopes. Recently mercury (Hg) was added to this shortlist when positive odd Hg isotope anomalies were observed in biological tissues. Experimental work identified photoreduction of aquatic inorganic divalent HgII and photodegradation of monomethylmercury species as plausible MIF inducing reactions. Observations of continental receptors of atmospheric Hg deposition such as peat, lichens, soils and, indirectly, coal have shown predominantly negative MIF. This has led to the suggestion that atmospheric Hg has negative MIF signatures and that these are the compliment of positive Hg MIF in the aquatic environment. Recent observations on atmospheric vapor phase Hg0 and HgII in wet precipitation reveal zero and positive Hg MIF respectively and are in contradiction with a simple aquatic HgII photoreduction scenario as the origin for global Hg MIF observations.This study presents a synthesis of all terrestrial Hg MIF observations, and these are integrated in a one-dimensional coupled continent-ocean-atmosphere model of the global Hg cycle. The model illustrates how Hg MIF signatures propagate through the various Earth surface reservoirs. The scenario in which marine photoreduction is the main MIF inducing process results in negative atmospheric Δ199Hg and positive ocean Δ199Hg of −0.5‰ and +0.25‰, yet does not explain atmospheric Hg0 and HgII wet precipitation observations. Alternative model scenarios that presume in-cloud aerosol HgII photoreduction and continental HgII photoreduction at soil, snow and vegetation surfaces to display MIF are necessary to explain the ensemble of natural observations. The model based approach is a first step in understanding Hg MIF at a global scale and the eventual incorporation of Hg stable isotope information in detailed global mercury chemistry and transport models.  相似文献   

13.
The solubility metallic mercury in water and its dominating forms were studied. The prevalence of the Hgaq0 form in the high-temperature range was confirmed and the reaction constant Hgliq0 ai Hgaq0 (logK = logm = −8.01) at 25°C with the predominance of oxidized forms of mercury for the 20–80°C area of low temperatures was found.  相似文献   

14.
13C and 1H NMR spectra were obtained for humic acids isolated from marine sediments. NMR shows great promise in identifying structural components of humic acids as some new and interesting structural features are identified. Aliphatic structures were found to constitute a much larger fraction of humic acids than previously thought, and they appeared to be highly branched. Although the aromatic content of terrestrial humic acid was found to be lower than expected, the aromaticity appears to be a specific discriminator of terrestrial/aquatic source types. A humic acid isolated from an anoxic algal sapropel was found to be composed predominantly of polyuronic acids and different than other aquatic sedimentary humic substances.  相似文献   

15.
1H NMR spectra of humic (HA) and fulvic (FA) acids and their oxidative degradation products are reported. The HA shows the presence of -(CH2)n - CH3 (n > 6) chemical fragments belonging to n-alkanes and/or n-fatty acids physically adsorbed onto the macromolecule structure. These fragments are absent in the FA fraction. Both humic fractions reveal the presence of similar amounts of aromatic protons which partly undergo exchange phenomena. The importance of this experimental observation is discussed. Oxidative degradation seems to cause partial cleavage of aromatic rings, more pronounced in the FA than in the HA. The degraded FA shows a higher total acidity and a higher phenolic OH content than the degraded HA. Both degraded fractions display some sharp singlet signals at 1.9 and 3.9 ppm arising from protons belonging to repetitive chemical fragments probably formed during the oxidation reaction. Tentative assignments of these signals are given. A general analysis of the HA and FA degraded spectra seems to indicate that the chemical fragments which undergo peracetic oxidation are substantially similar. The extent of oxidation of the two humic fractions is different. The HA degradation products reveal the presence of oligomeric structures, whereas the degraded FA appears less resistant to the oxidizing agent.  相似文献   

16.
Pristine water bodies in the Negro River basin, Brazilian Amazon, show relatively high concentrations of mercury. These waters are characterized by acidic pH, low concentrations of suspended solids, and high amounts of dissolved organic matter and are exposed to intense solar radiation throughout the year. This unique environment creates a very dynamic redox chemistry affecting the mobility of mercury due to the formation of the dissolved elemental species (Hg0). It has been shown that in this so-called black water, labile organic matter from flooded forest is the major scavenger of photogenerated H2O2. In the absence of hydrogen peroxide, these black waters lose their ability to oxidize Hg0 to Hg2+, thus increasing Hg0 evasion across the water/atmosphere interface, with average night time values of 3.80 pmol m?2 h?1. When the dry period starts, labile organic matter inputs gradually diminish, allowing the increasing concentration of H2O2 to re-establish oxidative water conditions, inhibiting the metal flux across the water/atmosphere interface and contributing to mercury accumulation in the water column.  相似文献   

17.
Five hundred years of mercury (Hg) mining activity in Idrija, Slovenia caused widespread Hg contamination. Besides Hg emissions from the ore smelter, tailings have been found to be the major source of river sediment contamination. In the present study, solid phase binding forms and the aqueous mobility of Hg have been investigated in tailings of the Idrija Hg mine by means of a pyrolysis technique and aqueous Hg speciation. Results show that Hg binding forms differ with the age of the tailings due to the processing of different ores with different roasting techniques. In older tailings, the predominant Hg species is cinnabar (HgS), due to incomplete roasting, whereas in tailings of the 20th century the amount of cinnabar in the material decreased due to a higher efficiency of the roasting process and the increasing use of ores bearing native Hg. In younger tailings, metallic Hg (Hg0) sorbed to mineral matrix components such as dolomite and Fe-oxyhydroxides became the predominant Hg binding form in addition to unbound Hg0 and traces of HgO. Leaching tests show that in younger tailings high amounts of soluble Hg exist in reactive form. In older tailings most of the soluble Hg occurs bound to soluble complexes. It might be assumed that in the long term, matrix-bound Hg0 could be bound to humic acids derived from soils covering the tailings. This means that, despite the lower total Hg concentrations found in the younger tailings, the long-term risk potential of its mobile matrix-bound Hg0 is higher than that of older tailings bearing mostly immobile cinnabar.  相似文献   

18.
The naturally abundant nitrogen in soil and aquatic NOM samples from the International Humic Substances Society has been characterized by solid state CP/MAS 15N NMR. Soil samples include humic and fulvic acids from the Elliot soil, Minnesota Waskish peat and Florida Pahokee peat, as well as the Summit Hill soil humic acid and the Leonardite humic acid. Aquatic samples include Suwannee River humic, fulvic and reverse osmosis isolates, Nordic humic and fulvic acids and Pony Lake fulvic acid. Additionally, Nordic and Suwannee River XAD-4 acids and Suwannee River hydrophobic neutral fractions were analyzed. Similar to literature reports, amide/aminoquinone nitrogens comprised the major peaks in the solid state spectra of the soil humic and fulvic acids, along with heterocyclic and amino sugar/terminal amino acid nitrogens. Spectra of aquatic samples, including the XAD-4 acids, contain resolved heterocyclic nitrogen peaks in addition to the amide nitrogens. The spectrum of the nitrogen enriched, microbially derived Pony Lake, Antarctica fulvic acid, appeared to contain resonances in the region of pyrazine, imine and/or pyridine nitrogens, which have not been observed previously in soil or aquatic humic substances by 15N NMR. Liquid state 15N NMR experiments were also recorded on the Elliot soil humic acid and Pony Lake fulvic acid, both to examine the feasibility of the techniques, and to determine whether improvements in resolution over the solid state could be realized. For both samples, polarization transfer (DEPT) and indirect detection (1H–15N gHSQC) spectra revealed greater resolution among nitrogens directly bonded to protons. The amide/aminoquinone nitrogens could also be observed by direct detection experiments.  相似文献   

19.
Aqueous production and water-air exchange of elemental mercury (Hg0) are important features of the environmental cycling of Hg. We investigated Hg0 cycling in ten Arctic Alaskan lakes that spanned a wide range in physicochemical characteristics. Dissolved gaseous Hg (DGM, dominated by Hg0) varied from 40 to 430 fM and averaged 200 fM. All surface waters were supersaturated relative to the atmosphere. DGM averaged 3 ± 2% of dissolved (i.e., filter passing) dissolved total mercury (DTM) and 15 ± 6% of dissolved labile Hg (DLM). In-lake DGM profiles generally followed the vertical distribution of light, indicating photoreduction of Hg(II) complexes as a source of Hg0. Additionally, DGM correlated linearly with DLM (r2 = 0.82, p < 0.0001) in the lake surface, signifying that Hg complexes (mostly organic Hg associations) in dissolved phase are photoreducible and contribute to production of DGM. Further, a positive relation between DGM/DTM and both Ka (light attenuation coefficient; r2 = 0.73, p < 0.02) and DOC (r2 = 0.60, p = 0.02) suggests that solar radiation and dissolved organic matter control DGM production and its cycling. An average rate of DGM formation (0.6 ± 0.2% of DTM d−1; range, 0.20.8) was estimated by assuming steady state with the evasional rate. In-lake DGM formation occurs at lower rates in waters with greater suspended particulate matter and dissolved organic carbon (DOC), pointing to the significant role of organic matter plays in controlling DGM formation in these aquatic systems. Estimated evasional fluxes of Hg0 (average, 140 ± 50 pmol m−2 d−1; range, 60-200) were comparable to those of temperate lakes (e.g., Wisconsin, Michigan). In arctic lakes, the rate of evasion during ice-free periods (7 ± 3 nmol m−2 yr−1) is similar to the atmospheric input of Hg (wet + dry) to the lakes based on levels in summertime precipitation but not including additional sources, e.g., springtime depletion.  相似文献   

20.
Calorimetric and potentiometric titrations have been used to evaluate direct and indirect methods of analysis for the carboxyl content of aquatic humic substances. The effects of cation binding, base strength, and removal of humic reaction products on carboxyl content values have been examined. The results suggest that the most appropriate analytical method for determination of an operationally defined carboxyl content would utilize a weak base that does not contain a polyvalent cation in an indirect titration on a reaction mixture from which all humic reaction products have been removed prior to titration. Titration data have been analyzed in terms of a formation function (δnOH) and in terms of operationally defined ‘mass action quotients’ (K?). The dependence of K? on pH is more readily and realistically described if no artificial differentiation of carboxyl groups into two or more sub-groups is imposed upon the data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号