首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Chemical diffusion coefficients of La, Nd, Eu, Gd, and Yb in natural enstatite have been measured at 850-1250 °C and 1 atm. Anhydrous diffusion experiments were run in Pt capsules in air, or in sealed silica glass capsules under an iron-wüstite (IW) solid buffer. The sources of diffusant were pre-reacted mixtures of synthetic enstatite powder and microcrystalline rare-earth aluminate garnet. Rutherford Backscattering Spectrometry (RBS) was used to measure diffusion profiles. For Gd diffusion in air over the temperature range 1000-1250 °C, the following Arrhenius relation is found for diffusion normal to (210):
  相似文献   

2.
Ba diffusion in feldspar   总被引:1,自引:0,他引:1  
  相似文献   

3.
We have combined metal-silicate partitioning data from the literature with new experimental results at 1.5-8 GPa and 1480-2000 °C to parameterize the effects of pressure, temperature and composition on the partitioning of V, Cr and Nb between liquid Fe metal (with low S and C content) and silicate melt.Using information from the steelmaking literature to correct for interactions in the metal phase, we find that, for peridotitic silicate melts, metal-silicate partition coefficients are given by:
  相似文献   

4.
Potentiometric measurements of the stoichiometric constants for the dissociation of carbonic acid in NaCl solutions ( and ) have been made as a function of molality (0-6 m) and temperature (0-50 °C). The results have been fitted to the equations
  相似文献   

5.
The stability of yttrium-acetate (Y-Ac) complexes in aqueous solution was determined potentiometrically at temperatures 25-175 °C (at Ps) and pressures 1-1000 bar (at 25 and 75 °C). Measurements were performed using glass H+-selective electrodes in potentiometric cells with a liquid junction. The species YAc2+ and were found to dominate yttrium aqueous speciation in experimental solutions at 25-100 °C (log [Ac] < −1.5, pH < 5.2), whereas at 125, 150 and 175 °C introduction of into the Y-Ac speciation model was necessary. The overall stability constants βn were determined for the reaction
  相似文献   

6.
The ultraviolet spectra of dilute, aqueous arsenic (III)-containing solutions have been measured from 25 to 300 °C at the saturated vapour pressure. From these measurements, the equilibrium constant was obtained for the reaction
  相似文献   

7.
The reaction between dissolved sulfide and synthetic iron (oxyhydr)oxide minerals was studied in artificial seawater and 0.1 M NaCl at pH 7.5 and 25°C. Electron transfer between surface-complexed sulfide and solid-phase Fe(III) results in the oxidation of dissolved sulfide to elemental sulfur, and the subsequent dissolution of the surface-reduced Fe. Sulfide oxidation and Fe(II) dissolution kinetics were evaluated for freshly precipitated hydrous ferric oxide (HFO), lepidocrocite, goethite, magnetite, hematite, and Al-substituted lepidocrocite. Reaction kinetics were expressed in terms of an empirical rate equation of the form:
  相似文献   

8.
We ran a series of 124 semi-batch reactor experiments to measure the dissolution rate of forsterite in solutions of nitric and oxalic acid solutions over a pH range of 0-7 and total oxalate concentrations between 0 and 0.35 m at 25 °C. We found that the empirical rate law for the dissolution of forsterite in these solutions is
  相似文献   

9.
Partitioning of strontium during spontaneous calcite formation was experimentally studied using an advanced CO2-diffusion technique. Results at different precipitation rates and T = 5, 25, and 40 °C show that at constant temperature Sr incorporation into calcite is controlled by the precipitation rate (R in μmol/m2/h) according to the individual expressions
  相似文献   

10.
Steady-state talc dissolution rates, at far-from-equilibrium conditions, were measured as a function of aqueous silica and magnesium activity, pH from 1 to 10.6, and temperature from 25 to 150 °C. All rates were measured in mixed flow reactors and exhibited stoichiometric or close to stoichiometric dissolution. All measured rates at pH > 2 obtained at a fixed ionic strength of 0.02 M can be described to within experimental uncertainty using
  相似文献   

11.
The influence of solution complexation on the sorption of yttrium and the rare earth elements (YREEs) by amorphous ferric hydroxide was investigated at 25 °C over a range of pH (4.0-7.1) and carbonate concentrations . Distribution coefficients, defined as , where [MSi]T is the total concentration of sorbed YREE, MT is the total YREE concentration in solution, and [Si] is the concentration of amorphous ferric hydroxide, initially increased in magnitude with increasing carbonate concentration, and then decreased. The initial increase of is due to sorption of YREE carbonate complexes , in addition to sorption of free YREE ions (M3+). The subsequent decrease of , which is more extensive for the heavy REEs, is due to the increasing intensity of YREE solution complexation by carbonate ions. The competition for YREEs between solution complexation and surface complexation was modeled via the equation:
  相似文献   

12.
Diffusion of helium has been characterized in natural zircon and apatite. Polished slabs of zircon and apatite, oriented either normal or parallel to c were implanted with 100 keV 3He at a dose of 5 × 1015 3 He/cm2. Diffusion experiments on implanted zircon and apatite were run in Pt capsules in 1-atm furnaces. 3He distributions following experiments were measured with Nuclear Reaction Analysis using the reaction 3He(d,p)4He. For diffusion in zircon we obtain the following Arrhenius relations:
Although activation energies for diffusion normal and parallel to c are comparable, there is marked diffusional anisotropy, with diffusion parallel to c nearly 2 orders of magnitude faster than transport normal to c. These diffusivities bracket the range of values determined for He diffusion in zircon in bulk-release experiments, although the role of anisotropy could not be directly evaluated in those measurements.In apatite, the following Arrhenius relation was obtained over the temperature range of 148–449 °C for diffusion normal to c:
In contrast to zircon, apatite shows little evidence of anisotropy. He diffusivities obtained in this study fall about an order of magnitude lower than diffusivities measured through bulk release of He through step-heating, and within an order of magnitude of determinations where ion implantation was used to introduce helium and He distributions measured with elastic recoil detection.Since the diffusion of He in zircon exhibits such pronounced anisotropy, helium diffusional loss and closure cannot be modeled with simple spherical geometries and the assumption of isotropic diffusion. A finite-element code (CYLMOD) has recently been created to simulate diffusion in cylindrical geometry with differing radial and axial diffusion coefficients. We present some applications of the code in evaluating helium lost from zircon grains as a function of grain size and length to diameter ratios, and consider the effects of “shape anisotropy”, where diffusion is isotropic (as in the case of apatite) but shapes of crystal grains or fragments may depart significantly from spherical geometry.  相似文献   

13.
This UV spectrophotometric study was aimed at providing precise, experimentally derived thermodynamic data for the ionisation of molybdic acid (H2MoO4) from 30 to 300 °C and at equilibrium saturated vapour pressures. The determination of the equilibrium constants and associated thermodynamic parameters were facilitated by spectrophotometric measurements using a specially designed high temperature optical Ti-Pd flow-through cell with silica glass windows.The following van’t Hoff isochore equations describe the temperature dependence of the first and second ionisation constants of molybdic acid up to 300 °C:
  相似文献   

14.
Lead speciation in many aqueous geochemical systems is dominated by carbonate complexation. However, direct observations of Pb2+ complexation by carbonate ions are few in number. This work represents the first investigation of the equilibrium over a range of ionic strength. Through spectrophotometric observations of formation at 25 °C in NaHCO3-NaClO4 solutions, formation constants of the form were determined between 0.001 and 5.0 molal ionic strength. Formation constant results were well represented by the equation:
  相似文献   

15.
The solubility of metallic mercury in dodecane, octane and toluene has been investigated experimentally at temperatures up to 200°C and pressures up to 6 bars (toluene). The equilibrium Hg concentrations are very similar in octane and dodecane, reaching values of 821 ppm and 647 ppm, respectively at 200°C, whereas they are significantly lower in toluene (e.g., 280 ppm at 200°C). The behavior of Hg in toluene is nevertheless similar to that in the alkanes. There is a strong prograde dependence of Hg concentration on temperature in both types of solvent, which can be described by the following experimentally determined relationships:
  相似文献   

16.
Direct oxygen isotope fractionation between cassiterite and calcite has been investigated experimentally at 15 kbar with temperature ranging from 800 to 1000°C. Combined with the quartz-calcite fractionation measured with the same technique (Clayton et al., 1989), the calcite-cassiterite and quartz-cassiterite oxygen isotope fractionations can be expressed as:
  相似文献   

17.
The speciation of samarium (III) in chloride-bearing solutions was investigated spectrophotometrically at temperatures of 100-250 °C and a pressure of 100 bars. The simple hydrated ion, Sm3+, is predominant at ambient temperature, but chloride complexes are the dominant species at elevated temperatures. Cumulative formation constants for samarium chloride species were calculated for the following reactions:
  相似文献   

18.
The sulfur concentration in silicate melts at sulfide saturation (SCSS) was experimentally investigated in a temperature range from 1150 to 1450 °C and a pressure range from 500 MPa to 1 GPa in a piston-cylinder apparatus. The investigated melt compositions varied from rhyolitic to basaltic and water concentrations varied from 0 to ∼9 wt%. All experiments were saturated with FeS melt or pyrrhotite crystals. Temperature was confirmed to have a positive effect on the SCSS. Experimental oxygen fugacities were either near the carbon-carbon monoxide buffer or one log unit above the nickel-nickel oxide buffer, and found to positively affect the SCSS. Combining our results with data from the literature we constructed a model to predict the SCSS in melts ranging in composition from komatiitic to rhyolitic, with water concentrations from 0 to 9 wt%, at pressures from 1 bar to 9 GPa and oxygen fugacities between ∼2 log units below the fayalite-magnetite-quartz buffer to ∼2 log units above it. The coefficients were obtained by multiple linear regression of experimental data and the best model found for the prediction of the SCSS is:
  相似文献   

19.
Hydrogen-deuterium exchange in tourmaline single crystals of elbaite composition from Nepal has been studied at 1 atm and at temperatures between 973 and 1073 K. H/D ratios were determined after each annealing experiment using micro FTIR-spectroscopy. Diffusion coefficients (10−16-10−15 m2 s−1) were determined by fitting the data using a 3D numerical simulation. The rate of diffusion is two to three times faster along the c direction than along directions parallel to the basal plane. The diffusion laws are, respectively:
  相似文献   

20.
Carbon isotopic exchange between graphite and three polymorphs of CaCO3 was investigated at temperatures of 600-1400 °C and at pressures from 1.4 to 2.3 GPa. Fractionation factors at all temperatures were determined by the partial exchange treatment of Northrop and Clayton (1966).Graphite starting material for the majority of the experiments was milled in water for 20-25 h, producing aggregates of nanosheets. The sheets range in width from 50 to 1000 nm and in thickness from 20 to 30 nm, and they retain hexagonal symmetry.Isotopic exchange appears to be the sum of surface exchange and interior exchange. At 1100-1400 °C, interior exchange exceeded surface exchange, probably by a combination of grain growth, as determined by increase in crystallite size, recrystallization, as observed in FESEM images, and diffusion. In some runs at 1200 and 1400 °C with an isotopic contrast between the initial graphite and calcite of close to 50‰, equilibrium fractionation was actually overstepped due to a kinetic effect. A weighted regression of fractionation factors from the high-temperature runs yields the line of equilibrium interior exchange:
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号