首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Measurements of 238U, 234U, 230Th, 232Th, 231Pa, Mn, Fe, Co, Ni, Cu, and Zn were made on 23 samples from core GPC-5, a 29-m giant piston core from a water depth of 4583 m on the northeastern Bermuda Rise (33°41.2′N, 57°36.9′W). This area is characterized by rapid deposition of sediment transported by abyssal currents. Unsupported 230Th and 231Pa are present throughout the core but, because of large variations in the sedimentation rate, show marked departures from exponential decay with depth. The trend with depth of the 231Paex230Thex ratio is consistent with the average accumulation rate of 36 cm/1000 y reported earlier on the basis of radiocarbon dating and CaCO3 stratigraphy. When expressed on a carbonate-free basis, concentrations of Mn, Co, Ni, Cu, Zn, 230Thex, and 231Paex all show cyclic variations positively correlated with those of CaCO3. The correlations can be explained by a model in which all of these constituents, including CaCO3, are supplied to the sediments from the water column at a constant rate. Concentration variations are controlled mainly by varying inputs of terrigenous detritus, with low inputs occurring during interglacials and high inputs during glacials. Relationships between the metal and 230Thex concentrations permit estimates of the rates at which the metals are removed to the sediment by scavenging from the water column. The results, in μg/cm2-1000 y, are: 4300 ± 1100 for Mn, 46 ± 16 for Ni and 76 ± 26 for Cu. These rates are somewhat larger than ocean-wide averages estimated by other methods, and the absolute rate of 230Th accumulation in GPC-5 averages about nine times higher than production in the overlying water column. This part of the Bermuda Rise and similar bottom-current deposits may act as important accumulators of elements scavenged from seawater.  相似文献   

2.
In order to determine the geochemical evolution of a freshwater limestone cave system located in central Switzerland (Hell Grottoes at Baar/Zug,) young postglacial tufaceous limestone and travertine precipitates were investigated using the 230Th/234U ingrowth system. Additional analyses of further radionuclides within the 238U decay chain, i.e. 226Ra and 210Pb, showed that the Th/U chronometer started with insignificant inherited 230Th over the entire formation period of the travertine setting (i.e. 230Th(0)=0). A contribution from detrital impurities with 230Th/234U in secular equilibrium could be precisely subtracted by applying isochron dating of cogenetic phases and recently formed travertine. The resulting precise 230Th/234U formation ages were found to be consistent with the geological stratigraphy and were furthermore used to demonstrate the applicability of the next geologically important chronometer in the 238U-decay series, based on decay of excess 226Ra normalized to the initial, i.e.226Raex/226Ra(0). This system is suitable for dating phases younger than 7000 yr when the correction of a detritus component increasingly limits the precision of the 230Th/234U chronometer. Analytical solutions of the coupled 234U/230Th/226Ra radionuclide system predicted that the 226Raex/226Ra(0) chronometer is independent of the actual 230Th activity build up from decay of 234U, if the systems starts with zero inherited 230Th(0). The data set confirmed this hypothesis and showed furthermore that the initially incorporated 226Ra excess must have remained almost uniform in all limestone over a period of at least 7000 yr, i.e. 4–5 half-lives of 226Ra. This is concluded because (i) the 226Raex/226Ra(0) ages agreed well with those derived from 230Th/234U, (ii) all data plot within uncertainty on the 226Raex/226Ra(0) decay curve and (iii) the atomic Ba/Ca ratio was found to be constant in the travertine material independent of the sample ages. Provided that such boundary conditions hold, 226Raex/226Ra(0) should be applicable to materials which are suitable for 230Th/234U dating in sedimentology and oceanography, i.e. travertine, corals, phosphorites, etc., and should strongly support 230Th/234U for samples that have been formed a few thousand years ago.  相似文献   

3.
We analyzed 238U, 234U, 232Th, 230Th, and 226Ra by thermal ionization mass spectrometry (TIMS) and Ba by inductively coupled plasma optical emission spectrometry (ICP-OES) on eight Mn/Fe crusts from the Mecklenburg Bay (SW Baltic) and on one from the Bothnian Bay (N Baltic) to test the 226Raex/Ba ratio as potential geochronometer. 226Raex/Ba ratios decrease as a function of depth within the concretions in all analyzed profiles. Calculated diffusion coefficients are relatively low (∼9 · 10−7 cm2/yr for Ra and 5 · 10−7 cm2/yr for Ba) and suggest that diffusion is negligible for the Ra and Ba record. In addition, 226Raex/Ba ages are consistent and independent from the growth rate and growth direction within a crust. Thus, the decline in 226Raex/Ba ratio is most likely due to radioactive decay of 226Raex, although the influence of varying oxic conditions has still to be evaluated. 226Raex/Ba growth rates range from 0.021 to 0.0017 mm/yr and tend to be lower than those calculated and based on stratigraphic methods (1 to 0.013 mm/yr). 226Raex/Ba ages of concretions from shallow water environment (20 m depth, Mecklenburg Bay/SW Baltic) cover a time interval from 990 ± 140 yr to 4310 ± 310 yr BP corresponding to the stabilization of the sea level close to the present position about 5500 to 4500 yr ago. One sample from greater depth (70 m, Bothnian Bay-/N Baltic) showed a higher 226Raex/Ba age of 6460 ± 520 yr BP.  相似文献   

4.
The main limiting factor in obtaining precise and accurate uranium-series (U-series) ages of corals that lived during the last few hundred years is the ability to constrain and correct for initial thorium-230 (230Th0), which is proportionally much higher in younger samples. This is becoming particularly important in palaeoecological research where accurate chronologies, based on the 230Th chronometer, are required to pinpoint changes in coral community structure and the timing of mortality events in recent time (e.g. since European settlement of northern Australia in the 1850s). In this study, thermal ionisation mass spectrometry (TIMS) U-series dating of 43 samples of known ages collected from living Porites spp. from the far northern, central and southern inshore regions of the Great Barrier Reef (GBR) was performed to spatially constrain initial 230Th/232Th (230Th/232Th0) variability. In these living Porites corals, the majority of 230Th/232Th0 values fell within error of the conservative bulk Earth 230Th/232Th atomic value of 4.3 ± 4.3 × 10?6 (2σ) generally assumed for 230Th0 corrections where the primary source is terrestrially derived. However, the results of this study demonstrate that the accuracy of 230Th ages can be further improved by using locally determined 230Th/232Th0 values for correction, supporting the conclusion made by Shen et al. (2008) for the Western Pacific. Despite samples being taken from regions adjacent to contrasting levels of land modification, no significant differences were found in 230Th/232Th0 between regions exposed to varying levels of sediment during river runoff events. Overall, 39 of the total 43 230Th/232Th0 atomic values measured in samples from inshore reefs across the entire region show a normal distribution ranging from 3.5 ± 1.1 to 8.1 ± 1.1 × 10?6, with a weighted mean of 5.76 ± 0.34 × 10?6 (2σ, MSWD = 8.1). Considering the scatter of the data, the weighted mean value with a more conservative assigned error of 25% (i.e. 5.8 ± 1.4 × 10?6) that encompasses the full variation of the 39 230Th/232Th0 measurements is recommended as a more appropriate value for initial 230Th corrections for U-series dating of most Porites samples from inshore regions of the GBR. This will result in significant improvement in both the precision and accuracy of the corrected 230Th ages related to those based on the assumed bulk Earth 230Th/232Th0 value of 4.3 ± 4.3 × 10?6. However, several anomalously high 230Th/232Th0 values reaching up to 28.0 ± 1.6 × 10?6 occasionally found in some coral annual bands coinciding with El Niño years imply high 230Th/232Th0 sources and highlight the complexities of understanding 230Th/232Th0 variability. For U-series dating of young coral samples from such sites where anomalous 230Th/232Th0 values occur, we suggest replicate dating of multiple growth bands with known age difference to verify age accuracy.  相似文献   

5.
A 230Th-234U-238U dating study on pedogenic silica-carbonate clast rinds and matrix laminae from alluvium in Crater Flat, Nevada was conducted using small-sample thermal-ionization mass spectrometry (TIMS) analyses on a large suite of samples. Though the 232Th content of these soils is not particularly low (mostly 0.1-9 ppm), the high U content of the silica component (mostly 4-26 ppm) makes them particularly suitable for 230Th/U dating on single, 10 to 200 mg totally-digested samples using TIMS. We observed that (1) both micro- (within-rind) and macro-stratigraphic (mappable deposit) order of the 230Th/U ages were preserved in all cases; (2) back-calculated initial 234U/238U fall in a restricted range (typically 1.67±0.19), so that 234U/238U ages with errors of about 100 kyr (2σ) could be reliably determined for the oldest, 400 to 1000 ka rinds; and (3) though 13 of the samples were >350 ka, only three showed evidence for an open-system history, even though the sensitivity of such old samples to isotopic disruption is very high. An attempt to use leach-residue techniques to separate pedogenic from detrital U and Th failed, yielding corrupt 230Th/U ages. We conclude that 230Th/U ages determined from totally dissolved, multiple sub-mm size subsamples provide more reliable estimates of soil chronology than methods employing larger samples, chemical enhancement of 238U/232Th, or isochrons.  相似文献   

6.
To examine the petrogenesis and sources of basalts from the Kolbeinsey Ridge, one of the shallowest locations along the global ridge system, we present new measurements of Nd, Sr, Hf, and Pb isotopes and U-series disequilibria on 32 axial basalts. Young Kolbeinsey basalts (full-spreading rate = 1.8 cm/yr; 67°05′-70°26′N) display (230Th/238U) < 1 and (230Th/238U) > 1 with (230Th/238U) from 0.95 to 1.30 and have low U (11.3-65.6 ppb) and Th (33.0 ppb-2.40 ppm) concentrations. Except for characteristic isotopic enrichment near the Jan Mayen region, the otherwise depleted Kolbeinsey basalts (e.g. 87Sr/86Sr = 0.70272-0.70301, εNd = 8.4-10.5, εHf = 15.4-19.6 (La/Yb)N = 0.28-0.84) encompass a narrow range of (230Th/232Th) (1.20-1.32) over a large range in (238U/232Th) (0.94-1.32), producing a horizontal array on a (230Th/232Th) vs. (238U/232Th) diagram and a large variation in (230Th/238U). However, the (230Th/238U) of the Kolbeinsey Ridge basalts (0.96-1.30) are inversely correlated with (234U/238U) (1.001-1.031). Samples with low (230Th/238U) and elevated (234U/238U) reflect alteration by seawater or seawater-derived materials. The unaltered Kolbeinsey lavas with equilibrium 234U/238U have high (230Th/238U) values (?1.2), which are consistent with melting in the presence of garnet. This is in keeping with the thick crust and anomalously shallow axial depth for the Kolbeinsey Ridge, which is thought to be the product of large degrees of melting in a long melt column. A time-dependent, dynamic melting scenario involving a long, slowly upwelling melting column that initiates well within the garnet peridotite stability zone can, in general, reproduce the (230Th/238U) and (231Pa/235U) ratios in uncontaminated Kolbeinsey lavas, but low (231Pa/235U) ratios in Eggvin Bank samples suggest eclogite involvement in the source for that ridge segment.  相似文献   

7.
Whole rock samples of hydrothermally-altered Biscuit Basin rhyolite from Yellowstone drill cores Y-7 and Y-8 were analyzed for 230Th, 234U, 238U, and 232Th. Extreme disequilibrium was found, with (230Th/ 234U) ranging from 0.30 to 1.27. Values of (230Th/232Th) and (234U/232Th) define a linear correlation with a slope of 0.16 ± 0.01, which corresponds to a (230Th/234U) age of approximately 19 ka. The (230Th/234U) disequilibrium was apparently caused by U redistribution which occurred mostly at about 19 ka, and is not related simply to the relative degree of hydrothermal alteration and self-sealing of the rhyolite. Mass balance of U requires a large flux of U-bearing groundwater through the rhyolite at the time of U redistribution; rough estimates of minimum water/rock ratio range from 102 to 104, for a range of possible groundwater U concentrations. Conservative hydraulic calculations indicate that the required groundwater flux could have occurred within a period of hundreds of years prior to self-sealing. The disequilibrium data are consistent with a model involving U redistribution during the initial stages of development of a geothermal discharge zone that formed in response to the hydrogeologic effects of glacial melting and unloading during the decline of the Pinedale Glaciation.  相似文献   

8.
One hundred eighty U-Th data, including 23 isochrons on 24 pristine modern and Holocene corals and 33 seawater samples, were analyzed using sector-field mass spectrometry to understand the variability of initial 230Th/232Th (230Th/232Th0). This dataset allows us to further assess the accuracy and precision of coral 230Th dating method. By applying quality control, including careful sampling and subsampling protocols and the use of contamination-free storage and workbench spaces, the resulting low procedural blanks give an equivalent uncertainty in age of only ±0.2-0.3 yr for 1-2 g of coral sample. Using site-specific 230Th/232Th0 values or isochron techniques, our study demonstrates that corals with an age less than 100 yrs can be 230Th-dated with precisions of ±1 yr. Six living subtidal coral samples were collected from two continental shelf sites, Nanwan off southern Taiwan in the western Pacific and Son Tra off central Vietnam in the South China Sea; one coral core was drilled from an open-ocean site, Santo Island, Vanuatu, in the western tropical Pacific; and modern and fossil intertidal coral slabs, 17 in total, were cut from six sites around the islands of Simeulue, Lago, North Pagai and South Pagai of Sumatra in the eastern Indian Ocean. The results indicate that the main source of thorium is the dissolved phase of seawater, with variation of 230Th/232Th0 depending on local hydrology. With intense input of terrestrial material, low 230Th/232Th0 atomic ratios of 4.9 × 10−6 and 3.2 × 10−6 with a 10% variation are observed in Nanwan and Son Tra, respectively. At the Santo site, we find a value of 5.6 × 10−6 at 4 horizons and one high value of 24 × 10−6 in a sample from AD 1974.6 ± 0.5, likely due to the upwelling of cold water during a La Niña event between AD 1973 and 1976. The natural dynamics of 230Th/232Th0 recorded in the intertidal corals at sites in the Sumatran islands are complicated so that this value varies significantly from 3.0 to 9.4 × 10−6. Three of the 141 modern coral 230Th ages differ from their true ages by −23 to +4, indicating the presence of detrital material with anomalous 230Th/232Th values. Duplicate measurement of coeval subsamples is therefore recommended to verify the age accuracy. This improved high precision coral 230Th dating method raises the prospects of refining the age models for band-counted and tracer-tuned chronologies and of advancing coral paleoclimate research.  相似文献   

9.
High-resolution records of the natural radionuclide230Th were measured in sediments from the eastern Atlantic sector of the Antarctic circumpolar current to obtain a detailed reconstruction of the sedimentation history of this key area for global climate change during the late Quaternary. High-resolution dating rests on the assumption that the230Thex flux to the sediments is constant. Short periods of drastically increased sediment accumulation rates (up to a factor of 8) were determined in the sediments of the Antarctic zone during the climate optima at the beginning of the Holocene and the isotope stage 5e. By comparing expected and measured accumulation rate of230Thex, lateral sediment redistribution was quantified and vertical particle rain rates originating from the surface water above were calculated. We show that lateral contributions locally were up to 6.5 times higher than the vertical particle rain rates. At other locations only 15% of the expected vertical particle rain rate were deposited.  相似文献   

10.
Previous studies of the distribution of U and Th in parent versus weathered granites have shown both depletion and enrichment of these elements during weathering. In this study, the distribution of U and Th decay series isotopes was determined in a weathering profile of a granitic saprolite, which showed textural preservation indicating isovolumetric weathering. Two types of dissolution methods were used: a whole-rock dissolution and a sodium-citrate dithionite leach to preferentially attack noncrystalline phases of weathering products. Using volume-based activities, 45–70 percent of the total 232Th was gradually removed during weathering. Although the whole-rock 228Th232Th activity ratios were in equilibrium, there were large excesses of 228Th in the leachable fraction of both parent rock (228Th232Th = 2.06) and partially weathered saprolite (228Th232Th = 3–6.5), due to alpha recoil and release of daughter 228Th to the weathering rind of the mineral grain. For the most weathered sample, 81 percent of the thorium was in the teachable fraction and 228Th232Th = 1, indicating that even the more resistant minerals were attacked.The total U activities showed as much variation in the six parent rock samples as in the weathered profile, and 234U238U were in equilibrium in both the whole-rock and leachable fractions. 230Th was deficient relative to 234U and 226Ra in both fractions, suggesting recent addition of U and Ra to the entire profile. The large variation in U was not from absorption onto the intermediate weathering products, because only 11–23 percent of the U was in the leachable fraction.  相似文献   

11.
Layers from one manganese nodule dredged from the Philippine Sea(16°56'N, 129°48'E; water depth, 5700 m) and 45 bulk nodules from offshore Minami-Torishima Island, Japan(23°3'N, 153°22'E; water depth, 1200 m) were analyzed chemically and their origin is discussed based on geochemical constraints. In general, Cu, Ni, Zn and Mo tend to increase with increasing Mn content, while Co, Pb, Ba, V, Sc, Th, and the rare earth elements(REEs) show less variation with increasing Mn content. Nodule 42 H from the Philippine Sea has an average Mn/Fe ratio close to 1 and shows a positive Ce anomaly, suggesting a predominant hydrogenous origin. Profiles of 230Th230 ex and Thex/232 Th ratios in the outer ~0.3 mm of nodule 42 H indicate a steady growth rate of ~1.7 mm/Myr. Nodule E30 from offshore Minami-Torishima is characterized by lower Mn, Fe, Mn/Fe(0.53) and Mo/V(0.2) ratios but higher P and Cu/Ni(0.31) ratio relative to other nodules from that area. The Ce content of E30 is unusually low(82 ppm) when compared with other nodules from the area and it is the only nodule analyzed with a negative Ce anomaly(-0.64). Based on the geochemical data we suggest that most nodules from offshore Minami-Torishima are primarily of hydrogenous origin except E30, which is dominated by hydrothermal input, and E45, which has about a 35% hydrothermal contribution.  相似文献   

12.
The short residence times of Th and Pa in seawater make them very responsive to changes in the ocean environment. We use a new multi-ion-counting technique to make Th and Pa isotope measurements in seawaters from a near-shore environment in which oceanic chemical tracers are not overwhelmed by terrestrial inputs (the Bahamas). An unusual feature of the Bahamas setting is the shallow depth of water residing on the bank tops. These waters have significantly lower 232Th/230Th (∼10,000) than those immediately adjacent to the banks (24,000-31,000) and a (231Pa/230Th) near the production ratio (∼0.1). The change in 232Th/230Th and (231Pa/230Th) on the bank tops is explained by almost quantitative removal of Th and Pa by scavenging, and their replacement with a mixture of 230Th and 231Pa alpha-recoiled from the underlying carbonates, together with Th from dust dissolution. Analysis of a water profile in the Tongue of the Ocean, which separates the Great and Little Bahama Banks, allows us to trace the movement of bank-top water to depth. A distinct minimum in both 232Th/230Th (∼13,000) and (231Pa/230Th) (∼0.5) is observed at ∼430 m and is interpreted to reflect density cascading of bank-top water with entrained carbonate sediment. These results suggest that Th and Pa can be used as water-mass tracers in near-shore environments. Uranium concentration measurements on the same waters demonstrate that U is conservative across a range in salinity of 2 psu, with a concentration of 3.33 ppb (at a salinity of 35).The incorporation of U and Th isotopes into marine carbonates has also been assessed by analyzing carbonate samples from the same location as these Bahamas waters. Such incorporation is critical for U-Th geochronology. U isotope analyses demonstrate that seawater δ234U averages 146.6 and does not vary by more than 2.5%o, and that carbonates capture this value. Additional high precision measurements (≈±1%o) on modern carbonates confirm that all oceans have identical δ234U. Modern marine carbonates are shown to have 232Th/230Th ratios that reflect the local seawater in which they formed.  相似文献   

13.
Thorium- and uranium isotopes were measured in a diagenetic manganese nodule from the Peru basin applying alpha- and thermal ionization mass spectrometry (TIMS). Alpha-counting of 62 samples was carried out with a depth resolution of 0.4 mm to gain a high-resolution230Thexcess profile. In addition, 17 samples were measured with TIMS to obtain precise isotope concentrations and isotope ratios. We got values of 0.06–0.59 ppb (230Th), 0.43–1.40 ppm (232Th), 0.09–0.49 ppb (234U) and 1.66–8.24 ppm (238U). The uranium activity ratio in the uppermost samples (1–6 mm) and in two further sections in the nodule at 12.5±1.0 mm and 27.3–33.5 mm comes close to the present ocean water value of 1.144±0.004. In two other sections of the nodule, this ratio is significantly higher, probably reflecting incorporation of diagenetic uranium. The upper 25 mm section of the Mn nodule shows a relatively smooth exponential decrease in the230Thexcess concentration (TIMS). The slope of the best fit yields a growth rate of 110 mm/Ma up to 24.5 mm depth. The section from 25 to 30.3 mm depth shows constant230Thexcess concentrations probably due to growth rates even faster than those in the top section of the nodule. From 33 to 50 mm depth, the growth rate is approximately 60 mm/Ma. Two layers in the nodule with distinct laminations (11–15 and 28–33 mm depth) probably formed during the transition from isotopic stage 8 to 7 and in stage 5e, respectively. The Mn/Fe ratio shows higher values during interglacials 5 and 7, and lower ones during glacials 4 and 6. A comparison of our data with data from adjacent sediment cores suggests (a) a variable supply of hydrothermal Mn to sediments and Mn nodules of the Peru basin or (b) suboxic conditions at the water sediment interface during periods with lower Mn/Fe ratios.  相似文献   

14.
We discuss geochemical proxies, reflecting processes of primary productivity, CaCO3 dissolution, and sediment redistribution in a piston core (RNDB 74P) from the Ontong Java Plateau. Due to the shallow water depth, biogenic carbonate is well preserved and a very goodδ 18O stratigraphy is available down to isotopic stage 11.230Thex gives evidence that the sediment accumulation pattern is driven mainly by processes of sediment focusing or winnowing. Due to the constant production of230Th in the water column, the bulk sediment accumulation rates could be corrected for the particle rain deriving from the water column above. The230Thex 0/CaCO3 ratio reflects the well-known Pacific CaCO3 preservation pattern with ice growth dissolution spikes and deglacial preservation spikes. The record of the grain size fraction >63 μm supports these results. The downcore concentrations and accumulation rates of barium (Ba) are on a higher level during interglacials and show several peaks. Normalization of Ba with230Thex 0 delivers a more uniform level of the Ba accumulation rates throughout the core. This pattern suggests a constantly higher biological productivity (nearly tenfold) in this area throughout the past 200 kyr compared with an open ocean environment. Barium peaks observed at the climatic transitions 2/1 and 6/5 and in stage 5 are in contrast to a predicted reduction of interglacial productivity at this location. A possible explanation might be the onset of the modern circulation pattern. The transition from Ba-enriched deep water to lower contents in the Atlantic might have resulted in an enhanced deposition of Ba in the Pacific.  相似文献   

15.
Examined in this paper is the tentative history of the depositional flux of230Thxs (the unsupported fraction of230Th scavenged from the overlying water column), for the Late Quaternary period from a sediment core of the Central Indian Basin (CIB). The measured depositional flux of230Thxs is found substantially higher than that of the possible theoretical flux from the overlying water column. Historical records, reconstructed from the230Thxs chronology suggests that the depositional flux has varied considerably with time, reflecting an enhanced scavenging during the Holocene and the preceding interglacial periods whereas, comparatively lower flux than the predicted one occurred during the Last Glacial Maximum (LGM) period. The average ratio of the measured depositional flux to that of the predicted flux from the overlying water column, indicates that the core site acts as a sink for230Thxs and based on the existence of bottom current activity; the230Thxs could be the result of focusing of younger sediments. The depositional index (Di) has also been calculated to quantify the extent of lateral supply throughout the core with time. The estimated (Di) suggests that bottom focusing and feeble deposition and/or winnowing processes had occurred and that the former was most prevalent during the Holocene and the preceding interglacials, whereas the latter was observed at the LGM period.  相似文献   

16.
Layered ferromanganese crusts collected by dredge from a water depth range of 2770 to 2200 m on Mendeleev Ridge, Arctic Ocean, were analyzed for mineralogical and chemical compositions and dated using the excess 230Th technique. Comparison with crusts from other oceans reveals that Fe-Mn deposits of Mendeleev Ridge have the highest Fe/Mn ratios, are depleted in Mn, Co, and Ni, and enriched in Si and Al as well as some minor elements, Li, Th, Sc, As and V. However, the upper layer of the crusts shows Mn, Co, and Ni contents comparable to crusts from the Atlantic and Indian Oceans. Growth rates vary from 3.03 to 3.97 mm/Myr measured on the uppermost 2 mm. Mn and Fe oxyhydroxides (vernadite, ferroxyhyte, birnessite, todorokite and goethite) and nonmetalliferous detrital minerals characterize the Arctic crusts. Temporal changes in crust composition reflect changes in the depositional environment. Crust formation was dominated by three main processes: precipitation of Fe-Mn oxyhydroxides from ambient ocean water, sorption of metals by those Fe and Mn phases, and fluctuating but large inputs of terrigenous debris.  相似文献   

17.
Precise measurements of 238U-230Th-226Ra disequilibria in lavas erupted within the last 100 yr on Mt. Cameroon are presented, together with major and trace elements, and Sr-Nd-Pb isotope ratios, to unravel the source and processes of basaltic magmatism at intraplate tectonic settings. All samples possess 238U-230Th-226Ra disequilibria with 230Th (18-24%) and 226Ra (9-21%) excesses, and there exists a positive correlation in a (226Ra/230Th)-(230Th/238U) diagram. The extent of 238U-230Th-226Ra disequilibria is markedly different in lavas of individual eruption ages, although the (230Th/232Th) ratio is constant irrespective of eruption age. When U-series results are combined with Pb isotope ratios, negative correlations are observed in the (230Th/238U)-(206Pb/204Pb) and (226Ra/230Th)-(206Pb/204Pb) diagrams. Shallow magma chamber processes like magma mixing, fractional crystallization and wall rock assimilation do not account for the correlations. Crustal contamination is not the cause of the observed isotopic variations because continental crust is considered to have extremely different Pb isotope compositions and U/Th ratios. Melting of a chemically heterogeneous mantle might explain the Mt. Cameroon data, but dynamic melting under conditions of high DU and DU/DTh, long magma ascent time, or disequilibrium mineral/melt partitioning, is required. The most plausible scenario to produce the geochemical characteristics of Mt. Cameroon samples is the interaction of melt derived from the asthenospheric mantle with overlying sub-continental lithospheric mantle which has elevated U/Pb (>0.75) and Pb isotope ratios (206Pb/204Pb > 20.47) due to late Mesozoic metasomatism.  相似文献   

18.
Hydrogenetic ferromanganese oxyhydroxide crusts (Fe-Mn crusts) precipitate out of cold ambient ocean water onto hard-rock surfaces (seamounts, plateaus, ridges) at water depths of about 400 to 4000 m throughout the ocean basins. The slow-growing (mm/Ma) Fe-Mn crusts concentrate most elements above their mean concentration in the Earth’s crust. Tellurium is enriched more than any other element (up to about 50,000 times) relative to its Earth’s crustal mean of about 1 ppb, compared with 250 times for the next most enriched element.We analyzed the Te contents for a suite of 105 bulk hydrogenetic crusts and 140 individual crust layers from the global ocean. For comparison, we analyzed 10 hydrothermal stratabound Mn-oxide samples collected from a variety of tectonic environments in the Pacific. In the Fe-Mn crust samples, Te varies from 3 to 205 ppm, with mean contents for Pacific and Atlantic samples of about 50 ppm and a mean of 39 ppm for Indian crust samples. Hydrothermal Mn samples have Te contents that range from 0.06 to 1 ppm. Continental margin Fe-Mn crusts have lower Te contents than open-ocean crusts, which is the result of dilution by detrital phases and differences in growth rates of the hydrogenetic phases.Correlation coefficient matrices show that for hydrothermal deposits, Te has positive correlations with elements characteristic of detrital minerals. In contrast, Te in open-ocean Fe-Mn crusts usually correlates with elements characteristic of the MnO2, carbonate fluorapatite, and residual biogenic phases. In continental margin crusts, Te also correlates with FeOOH associated elements. In addition, Te is negatively correlated with water depth of occurrence and positively correlated with crust thickness. Q-mode factor analyses support these relationships. However, sequential leaching results show that most of the Te is associated with FeOOH in Fe-Mn crusts and ≤10% is leached with the MnO2.Thermodynamic calculations indicate that Te occurs predominantly as H5TeO6 in ocean water. The speciation of Te in ocean water and charge balance considerations indicate that Te should be scavenged by FeOOH, which is in agreement with our leaching results. The thermodynamically more stable Te(IV) is less abundant by factors of 2 to 3.5 than Te(VI) in ocean water. This can be explained by preferential (not exclusive) scavenging of Te(IV) by FeOOH at the Fe-Mn crust surface and by Fe-Mn colloids in the water column. We propose a model in which the extreme enrichment of Te in Fe-Mn crusts is likely the result of an oxidation reaction on the surface of FeOOH. A similar oxidation process has been confirmed for Co, Ce, and Tl at the surface of MnO2 in crusts, but has not been suggested previously to occur in association with FeOOH in Fe-Mn crusts. Mass-balance considerations indicate that ocean floor Fe-Mn deposits are the major sink for Te in the oceans. The concentration and redox chemistry of Te in the global ocean are likely controlled by scavenging on Fe-Mn colloids in the water column and Fe-Mn deposits on the ocean floor, as is also the case for Ce.  相似文献   

19.
U-series disequilibria measured in waters and rocks from a chalk aquifer in France have been used as an analog for long-term radionuclide migration. Drill core samples from a range of depths in the vadose zone and in the saturated zone, as well as groundwater samples were analyzed for 238U, 234U, 232Th and 230Th to determine transport mechanisms at the water/rock interface and to quantify parameters controlling the migration of radionuclides. Isotope measurements in rocks were done by TIMS, whereas (234U/238U) and (230Th/232Th) activity ratios in water samples were measured by multi-collector-ICP-MS. Both depletion and enrichment in 234U relative to 238U were observed in carbonate rock samples resulting from chemical weathering in the unsaturated zone and calcite precipitation in the zone of water-table oscillation, respectively. The correlation between (230Th/232Th) activity ratios and 87Sr/86Sr ratios found in the chalk samples indicates that thorium is mainly contained in a minor silicate phase whose abundance is variable in chalk samples. Water samples are all characterized by (234U/238U) > 1 resulting from α-recoil effect of 234Th. Groundwaters are characterized by a more radiogenic signature in 87Sr/86Sr than the rocks. Moreover, (230Th/232Th) activity ratios in the waters are lower than in the rocks, and increase with distance from the water divide, which suggests that Th transport is controlled by colloids formed during water infiltration in the soil. A 1-D transport model has been developed in order to constrain the U-series nuclide transport considering a transient behavior of radionuclides in the aquifer and a time-dependent composition for the solid phase. This model permits a prediction of the time scale of equilibration of the system, and an estimation of parameters such as weathering rate, distribution coefficients and α-recoil fractions. Retardation factors of 10-35 and from 1 × 104 to 2 × 105 were predicted for U and Th, respectively, and can be used to predict the migration of radionuclides released as contaminants in the environment. At the scale of our watershed (∼32 km2), a characteristic migration time from recharge to riverine discharge of 200-600 yr for U and 0.2-3.7 Myr for Th was obtained.  相似文献   

20.
During recent humid episodes, stromatolites were built along paleolake margins, some 60 m above the modern water level of Lakes Natron and Magadi (southern Gregory Rift Valley). Three generations of stromatolites are observed, the more recent ones frequently covering pebbles and boulders eroded from the older ones. The youngest one yielded 14C ages ranging from approximately 12,000 to 10,000 yr B.P. Their δ13C values (≥2.6%) suggest isotopic equilibrium between the paleolake total inorganic dissolved carbon and the atmospheric CO2, thereby lending credence to the reliability of the 14C. An initial 230Th/232Th ratio in the detrital component was determined by Th/U measurements on the 14C dated stromatolites. Using this value a 230Th/234U chronology for the older stromatolites was calculated. Ages of ≥240,000 and 135,000 ± 10,000 yr were obtained for the first and second generations, respectively. A humid episode apparently characterized eastern Africa during each glacial-interglacial transition. 18O and 13C measurements on stromatolites, when compared to values on modern waters and carbonates, provide paleohydrological information. Long residence time of the paleolake waters and less seasonally contrasted regimes are inferred.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号