首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Sorption of Cs to micaceous subsurface sediments from the Hanford site, USA   总被引:1,自引:0,他引:1  
The sorption of Cs+ was investigated over a large concentration range (10−9−10−2 mol/L) on subsurface sediments from a United States nuclear materials site (Hanford) where high-level nuclear wastes (HLW) have been accidentally released to the vadose zone. The sediment sorbs large amounts of radiocesium, but expedited migration has been observed when HLW (a NaNO3 brine) is the carrier. Cs+ sorption was measured on homoionic sediments (Na+, K+, Ca2+) with electrolyte concentrations ranging from 0.01 to 1.0 mol/L. In Na+ electrolyte, concentrations were extended to near saturation with NaNO3(s) (7.0 mol/L). The sediment contained nonexpansible (biotite, muscovite) and expansible (vermiculite, smectite) phyllosilicates. The sorption data were interpreted according to the frayed edge-planar site conceptual model. A four-parameter, two-site (high- and low-affinity) numeric ion exchange model was effective in describing the sorption data. The high-affinity sites were ascribed to wedge zones on the micas where particle edges have partially expanded due to the removal of interlayer cations during weathering, and the low-affinity ones to planar sites on the expansible clays. The electrolyte cations competed with Cs+ for both high- and low-affinity sites according to the trend K+ >> Na+ ≥ Ca2+. At high salt concentration, Cs+ adsorption occurred only on high-affinity sites. Na+ was an effective competitor for the high-affinity sites at high salt concentrations. In select experiments, silver-thiourea (AgTU) was used as a blocking agent to further isolate and characterize the high-affinity sites, but the method was found to be problematic. Mica particles were handpicked from the sediment, contacted with Cs+(aq), and analyzed by electron microprobe to identify phases and features important to Cs+ sorption. The microprobe study implied that biotite was the primary contributor of high-affinity sites because of its weathered periphery. The poly-phase sediment exhibited close similarity in ion selectivity to illite, which has been well studied, although its proportion of high-affinity sites relative to the cation exchange capacity (CEC) was lower than that of illite. Important insights are provided on how Na+ in HLW and indigenous K+ displaced from the sediments may act to expedite the migration of strongly sorbing Cs+ in subsurface environments.  相似文献   

2.
The effect of temperature on the sorption of cations onto a dioctahedral smectite was investigated by running batch experiments at 25, 40, 80 and 150°C. We measured the distribution coefficient (Kd) of Cs+, Ni2+ and 14 lanthanides (Ln3+) between solutions and the montmorillonite fraction of the MX80 bentonite at various pH and ionic strengths. Up to 80°C we used a conventional experimental protocol derived from Coppin et al. (2002). At 150°C, the experiments were conducted in a PTFE reactor equipped with an internal filter allowing the sampling of clear aliquots of solution.The results show a weak but measurable influence of the temperature on the elements sorption. Kd’s for Ni2+ and Ln3+ increase by a factor 2 to 5 whereas temperature raises from 25 to 150°C. This effect seems higher at high ionic strength. The estimated apparent endothermic sorption enthalpies are 33 ± 10 kJ.mol−1 and 39 ± 15 kJ.mol−1 for Ni2+ and Eu3+, respectively. On the other hand, the temperature effect on Cs+ sorption is only evidenced at low ionic strength and under neutral conditions where the Kd decreases by a factor 3 between 25 and 150°C. Apparent exothermic sorption enthalpy for Cs+ on the montmorillonite is −19 ± 5 kJ.mol−1.Experiments conducted at the four temperatures with the coexistence of all of the cations in the reacting solution (100 ppb of each element in the starting solution) or only one of them, produced similar values of Kd. This suggests the absence of competition between the sorbed cations, and consequently a low degree of saturation of the available sites. A fractionation of the lanthanides spectrum is also observed at high pH and high ionic strength whatever the temperature.The conclusion of this study is that the temperature dependence on sorption reflects, as the fractionation of REE or the pH and ionic strength effects, the chemical process which controls the overall reaction. In the case of an exchange dominated reaction (low pH and low ionic strength), the temperature effect is negligible. In the case of surface complexation (high pH and high ionic strength), the observed increase of Kd with temperature reflects either an increase of the sorption equilibrium constant with temperature or an endothermic property for reactions describing the montmorillonite surface chemistry.  相似文献   

3.
In the DI-A2 experiment several non-reactive and reactive tracers were injected as a pulse in a packed-off borehole in the Opalinus Clay. Unlike the previous DI-A1 test, the design of the Teflon filter in the injection borehole forced the water to flow through the filter and the open space between the filter and the borehole wall (the filter itself did not act as a diffusion barrier between the circulating solution and the rock). The decrease in tracer concentration in the liquid phase was monitored during a period of a year. Afterwards, the borehole section was overcored and the tracer profiles in the rock were analyzed. A main interest of this experiment was to understand the chemical behavior of sorbing tracers: Cs+ (stable), 85Sr2+, 60Co2+ and Eu3+ (stable). The complete dataset (except for Eu3+ because of strong sorption to experimental equipment) was analyzed in a previous study with a 2D diffusion–reaction model and the derived diffusion and sorption parameters were compared with laboratory data. As in DI-A1, a difference by a factor of about 2 for sorption (magnitude of the Freundlich isotherm) was obtained between in situ and laboratory batch sorption experiments.Recent experimental and modeling studies have shown equivalent Cs+ sorption on intact and disaggregated Opalinus Clay samples. In view of these developments, new modeling of Cs+ diffusion and retention in the DI-A2 experiment has been performed using CrunchFlow. The calculations include transport by diffusion and a multisite cation exchange model to account for the retention of Cs+. The new results show that upscaling of Cs+ sorption from laboratory to field is no longer required. However, a difference in sorption by a factor of about 2 is still explained by the use of different versions of the same cation exchange model (a small difference in the selectivity coefficient for one type of site). This uncertainty in sorption leads to an uncertainty in the effective diffusion coefficient (De) for Cs+, also by a factor of 2 (2–4 × 10−10 m2/s). Clearly, the values of De obtained are correlated with the strength of sorption in the model, with stronger sorption leading to larger De values. Discrimination between the two versions of the exchange model is not possible when using only the results of the in situ test. Additionally, during early times (t < 10 days) the drop in Cs+ concentration in the circulation system is slower than expected. Due to the experimental setup, this slow decrease in concentration cannot be caused by the filter in the contact between borehole and rock. Poor mixing in the circulation system could explain this effect.  相似文献   

4.
Diffusion and sorption behaviors of cationic Cs+, anionic I and neutral HTO in samples of the Wakkanai Formation from the Horonobe underground research laboratory (URL), Japan, were investigated as a function of ionic strength (I) of synthetic groundwater by through-diffusion and batch sorption experiments and mechanistic modeling. The effective diffusivities (De) measured by through-diffusion experiments showed cation excess and anion exclusion effects, which were strongly dependent on I; De for Cs+ decreased as I increased, De for I showed the opposite dependency and De for HTO showed no dependence. The sorption of Cs+ measured by through-diffusion and batch sorption experiments were described by Freundlich isotherms with consistent parameters and decreased with I as a result of competitive ion exchange.Diffusion and sorption behaviors were interpreted by assuming the clay components of illite and smectite control diffusion and sorption mechanisms. The component additive (CA) sorption model, which includes illite and smectite contents and their ion exchange constants, provided a reasonable account of the Cs+ sorption trends measured as functions of I and Cs concentration. The diffusion model was developed by coupling the electrical double layer (EDL) model, describing the change of ionic concentrations (cation excess and anion deficit) and viscoelectric effects caused by electrostatic interaction at negatively charged clay surfaces, and a simplified pore model assuming one type of pore shape and includes their size distribution. When averaging the electrostatic effects by using the pore surface area distribution, the model could predict the cation excess and anion exclusion effects, and its dependence on I reasonably well. This result implies the nanoscale pores dominating the pore surface area can strongly impact on ionic diffusion in argillaceous rocks. The clay-based modeling approach described here provides a useful tool to predict ionic diffusion and sorption in argillaceous rocks.  相似文献   

5.
The subsurface mobility of Np is difficult to predict in part due to uncertainties associated with its sorption behavior in geologic systems. In this study, we measured Np adsorption onto a common gram-positive soil bacterium, Bacillus subtilis. We performed batch adsorption experiments with Np(V) solutions as a function of pH, from 2.5 to 8, as a function of total Np concentration from 1.29 × 10−5 M to 2.57 × 10−4 M, and as a function of ionic strength from 0.001 to 0.5 M NaClO4. Under most pH conditions, Np adsorption is reversible and exhibits an inverse relationship with ionic strength, with adsorption increasing with increasing pH. At low pH in the 0.1 M ionic strength systems, we observed irreversible adsorption, which is consistent with reduction of Np(V) to Np(IV). We model the adsorption reaction using a nonelectrostatic surface complexation approach to yield ionic strength dependent NpO2+-bacterial surface stability constants. The data require two bacterial surface complexation reactions to account for the observed adsorption behavior: R-L1 + NpO2+ ↔ R-L1-NpO2° and R-L2 + NpO2+ ↔ R-L2-NpO2°, where R represents the bacterium to which each functional group is attached, and L1 and L2 represent the first and second of four discrete site types on the bacterial surface. Stability constants (log K values) for the L1 and L2 reactions in the 0.001 M system are 2.3 ± 0.3 and 2.3 ± 0.2, and in the 0.1 M system the values are 1.7 ± 0.2 and 1.6 ± 0.2, respectively. The calculated neptunyl-bacterial surface stability constants are not consistent with values predicted using the linear free energy correlation approach from Fein et al. (2001), suggesting that possible unfavorable steric interactions and the low charge of NpO2+ affects Np-bacterial adsorption.  相似文献   

6.
The desorption of 137Cs+ was investigated on sediments from the United States Hanford site. Pristine sediments and ones that were contaminated by the accidental release of alkaline 137Cs+-containing high level nuclear wastes (HLW, 2 × 106 to 6 × 107 pCi 137Cs+/g) were studied. The desorption of 137Cs+ was measured in Na+, K+, Rb+, and NH4+electrolytes of variable concentration and pH, and in presence of a strong Cs+-specific sorbent (self-assembled monolayer on a mesoporous support, SAMMS). 137Cs+ desorption from the HLW-contaminated Hanford sediments exhibited two distinct phases: an initial instantaneous release followed by a slow kinetic process. The extent of 137Cs+ desorption increased with increasing electrolyte concentration and followed a trend of Rb+ ≥ K+ > Na+ at circumneutral pH. This trend followed the respective selectivities of these cations for the sediment. The extent and rate of 137Cs+ desorption was influenced by surface armoring, intraparticle diffusion, and the collapse of edge-interlayer sites in solutions containing K+, Rb+, or NH4+. Scanning electron microscopic analysis revealed HLW-induced precipitation of secondary aluminosilicates on the edges and basal planes of micaceous minerals that were primary Cs+ sorbents. The removal of these precipitates by acidified ammonium oxalate extraction significantly increased the long-term desorption rate and extent. X-ray microprobe analyses of Cs+-sorbed micas showed that the 137Cs+ distributed not only on mica edges, but also within internal channels parallel to the basal plane, implying intraparticle diffusive migration of 137Cs+. Controlled desorption experiments using Cs+-spiked pristine sediment indicated that the 137Cs+ diffusion rate was fast in Na+-electrolyte, but much slower in the presence of K+ or Rb+, suggesting an effect of edge-interlayer collapse. An intraparticle diffusion model coupled with a two-site cation exchange model was used to interpret the experimental results. Model simulations suggested that about 40% of total sorbed 137Cs+ was exchangeable, including equilibrium and kinetic desorbable pools. At pH 3, this ratio increased to 60-80%. The remainder of the sorbed 137Cs+ was fixed or desorbed at much slower rate than our experiments could detect.  相似文献   

7.
The sorption of Eu(III) onto kaolinite and montmorillonite was investigated up to 150 °C. The clays were purified samples, saturated with Na in the case of montmorillonite. Batch experiments were conducted at 25, 40, 80 and 150 °C in 0.5 M NaClO4 solutions to measure the distribution coefficients (Kd) of Eu as a trace element (<10−6 mol/L) between the solution and kaolinite. For the Na-montmorillonite, we used Kd results from a previous study [Tertre, E., Berger, G., Castet, S., Loubet, M., Giffaut, E., 2005. Experimental study of adsorption of Ni2+, Cs+ and Ln3+ onto Na-montmorillonite up to 150 °C. Geochim. Cosmochim. Acta69, 4937-4948] obtained under exactly the same conditions. The number and nature of the Eu species sorbed onto both clay minerals were investigated by time resolved laser fluorescence spectroscopy (TRLFS) in specific experiments in the same temperature range. We identified a unique inner-sphere complex linked to the aluminol sites in both clays, assumed to be AlOEu2+ at the edge of the particles, and a second exchangeable outer-sphere complex for montmorillonite, probably in an interlayer position. The Kd values were used to adjust the parameters of a surface complexation model (DLM: diffuse layer model) from 25 to 150 °C. The number of Eu complexes and the stoichiometry of reactions were constrained by TRLFS. The acidity constants of the amphoteric aluminol sites were taken from another study [Tertre, E., Castet, S., Berger, G., Loubet, M., Giffaut, E. Acid/base surface chemistry of kaolinite and Na-montmorillonite at 25 and 60 °C: experimental study and modelling. Geochim. Cosmochim. Acta, in press], which integrates the influence of the negative structural charge of clays on the acid/base properties of edge sites as a function of temperature and ionic strength. The results of the modelling show that the observed shift of the sorption edge towards low pH with increasing temperature results solely from the contribution of the AlOEu2+ edge complexes. Finally, we successfully tested the performance of our model by confronting the predictions with experimental Kd data. We used our own data obtained at lower ionic strength (previous study) or higher suspension density and higher starting concentration (TRLFS runs, this study), as well as published data from other experimental studies [Bradbury, M.H., Baeyens, B., 2002. Sorption of Eu on Na and Ca-montmorillonite: experimental investigations and modeling with cation exchange and surface complexation. Geochim. Cosmochim. Acta66, 2325-2334; Kowal-Fouchard, A., 2002. Etude des mécanismes de rétention des ions U(IV) et Eu(III) sur les argiles: influence des silicates. Ph.D. Thesis, Université Paris Sud, France, 330p].  相似文献   

8.
Cation partitioning and speciation in an aqueous soil suspension may depend on the coupling of reaction time, sorbate amount and mineral weathering reactions. These factors were varied in sediment suspension experiments to identify geochemical processes that affect migration of Sr2+ and Cs+ introduced to the subsurface by caustic high level radioactive waste (HLRW). Three glacio-fluvial and lacustrine sediments from the Hanford Site (WA, USA) were subjected to hyperalkaline (pH > 13), Na-Al-NO3-OH solution conditions within a gradient field of (i) sorptive concentration (10−5-10−3 m) and (ii) reaction time (0-365 d). Strontium uptake (qSr) exceeded that of cesium at nearly all reaction times. Sorbent affinity for both Cs+ and Sr2+ increased with clay plus silt content at early times, but a prolonged slow uptake process was observed over the course of sediment weathering that erased the texture effect for Sr2+; all sediments showed similar mass normalized uptake after several months of reaction time. Strontium became progressively recalcitrant to desorption after 92 d, with accumulation and aging of neoformed aluminosilicates. Formation of Cs+ and Sr2+-containing cancrinite and sodalite was observed after 183 d by SEM and synchrotron μ-XRF and μ-XRD. EXAFS data for qSr ≈ 40 mmol kg−1 showed incorporation of Sr2+ into both feldspathoid and SrCO3(s) coordination environments after one year. Adsorption was predominant at early times and low sorbate amount, whereas precipitation, controlled largely by sediment Si release, became increasingly important at longer times and higher sorbate amount. Kinetics of contaminant desorption at pH 8 from one year-weathered sediments showed significant dependence on background cation (Ca2+ versus K+) composition. Results of this study indicate that co-precipitation and ion exchange in neoformed aluminosilicates may be an important mechanism controlling Sr2+ and Cs+ mobility in siliceous sediments impacted by hyperalkaline HLRW.  相似文献   

9.
 The heat capacity of paranatrolite and tetranatrolite with a disordered distribution of Al and Si atoms has been measured in the temperature range of 6–309 K using the adiabatic calorimetry technique. The composition of the samples is represented with the formula (Na1.90K0.22Ca0.06)[Al2.24Si2.76O10nH2O, where n=3.10 for paranatrolite and n=2.31 for tetranatrolite. For both zeolites, thermodynamic functions (vibrational entropy, enthalpy, and free energy function) have been calculated. At T=298.15 K, the values of the heat capacity and entropy are 425.1 ± 0.8 and 419.1 ±0.8 J K−1 mol−1 for paranatrolite and 381.0 ± 0.7 and 383.2 ± 0.7 J K−1 mol−1 for tetranatrolite. Thermodynamic functions for tetranatrolite and paranatrolite with compositions corrected for the amount of extraframework cations and water molecules have also been calculated. The calculation for tetranatrolite with two water molecules and two extraframework cations per formula yields: C p (298.15)=359.1 J K−1 mol−1, S(298.15) −S(0)=362.8 J K−1 mol−1. Comparing these values with the literature data for the (Al,Si)-ordered natrolite, we can conclude that the order in tetrahedral atoms does not affect the heat capacity. The analysis of derivatives dC/dT for natrolite, paranatrolite, and tetranatrolite has indicated that the water- cations subsystem within the highly hydrated zeolite may become unstable at temperatures above 200 K. Received: 30 July 2001 / Accepted: 15 November 2001  相似文献   

10.
An experimental study of the solubility of Pt and Pd sulfides and Au metal in aqueous bisulfide solutions was conducted at temperatures from 200° to 350 °C and at saturated vapor pressure. A 500-mL Bridgemantype pressure vessel constructed of titanium, and equipped with a motor-driven magnetic stirrer was employed. The pH and the oxidation state were buffered by the coexistence of H2S/HS/SO inf4 sup2– . The pH at temperature was calculated to be in the range 5.91–9.43, and S was 0.3–2.2 m. Under the experimental conditions, the measured solubility of gold is about two to three orders of magnitude greater than that of either platinum and palladium, and the measured solubility of platinum is, in general, approximately equal to that of palladium, in molal units. The solubilities are found to be in the range: platinum 4–800 ppb, palladium 1–400 ppb, and gold 2–300 ppm. The solubility data can be modeled adequately using the following reactions: Au+H2S+HH=Au(HS) 2 +1/2H2 (K14); PtS+HS+H+=Pt (HS) 2 0 (K15); PdS+HS+H+=Pd (HS) 2 0 (K16); PtS2+H2=Pt (HS) 2 0 (K21).With equilibrium constants determined as follows (errors represent two standard deviations): Preliminary measurements of the solubilities of metallic Pt, Pd and Au as hydroxide complexes were also conducted using a second titanium pressure vessel, at temperatures of 200° to 350 °C and vapor saturation pressure, with pH and the oxidation state controlled or buffered by adding known amounts of NaOH and H2 gas. The concentration of NaOH was in the range 0.01–1.3 m, and the partial pressure of H2 at 200 °C was 62–275 bars, initially. Under the temperature and pressure conditions of these experiments, the solubility of platinum in 1 m NaOH solution is less than 100 ppb, that of palladium is less than 10 ppb and that of gold is less than 0.2 ppm; and in 0.01 m NaOH solutions, both Pt and Pd solubilities are less than 1 ppb. These data indicate that the contributions of hydroxide complexes to the total solubilities in the bisulfide runs, where the pH was in the range of 5.9–9.4, are negligible. The concentrations of both Pt and Pd as bisulfide complexes in the Salton Sea geothermal system predicted using the stability constants determined in this work agree very well with those values measured by McKibben et al. (1990). This calculation strongly suggests that the PGE are transported in moderately reducing, near neutral hydrothermal fluids as bisulfide complexes, as is gold. However, the much lower maximum solubility of the PGE relative to gold severely constrains models of re genesis, and may explain the relative rarity of hydrothermal PGE deposits compared to the relative abundance of hydrothermal Au deposits.  相似文献   

11.
The solubility of the albite-paragonite-quartz mineral assemblage was measured as a function of NaCl and fluorine concentration at 400°C, 500 bars and at 450°C, 500 and 1000 bars. Decreasing Al concentrations with increasing NaCl molality in F-free fluids of low salinity (mNaCl < 0.01) demonstrates that Al(OH)4 dominates Al speciation and is formed according to the reaction 0.5 NaAl3Si3O12H2(cr)+2 H2O = 0.5 NaAlSi3O8(cr)+Al(OH)4+H+. Log K results for this reaction are −11.28 ± 0.10 and −10.59 ± 0.10 at 400°C, 500 bars and 450°C, 1000 bars, respectively. Upon further salinity increase, Al concentration becomes constant (at 400°C, 500 bars) or even rises (at 450°C, 1000 bars). The observed Al behavior can be explained by the formation of NaAl(OH)40(aq) or NaAl(OH)3Cl(aq)0. The calculated constant for the reaction Al(OH)4+Na+=NaAl(OH)40(aq) expressed in log units is equal to 2.46 and 2.04 at 400°C, 500 bars and 450°C, 1000 bars, respectively. These values are in good agreement with the predictions given in Diakonov et al. (1996). Addition of fluoride at m(NaCl) = const = 0.5 caused a sharp increase in Al concentration in equilibrium with the albite-paragonite-quartz mineral assemblage. As fluid pH was also constant, this solubility increase indicates strong aluminum-fluoride complexation with the formation of NaAl(OH)3F(aq)0 and NaAl(OH)2F20(aq), according to 0.5 NaAl3Si3O12H2(cr)+Na++HF(aq)0+H2O = 0.5 NaAlSi3O8(cr)+ NaAl(OH)3F(aq)0+H+, log K = −5.17 and −5.23 at 400°C and 450°C, 500 bars, respectively, and 0.5 NaAl3Si3O12H2(cr)+Na++2 HF(aq)0 = 0.5 NaAlSi3O8(cr)+NaAl(OH)2F20(aq)+H+, log K = −2.19 and −1.64 at the same P-T conditions. It was found that temperature increase and pressure decrease promote the formation of Na-Al-OH-F species. Stability of NaAl(OH)2F20(aq) in low-density fluids also increases relative to NaAl(OH)3F(aq)0. These complexes, together with Al(OH)2F(aq)0 and AlOHF20(aq), whose stability constants were calculated from the corundum solubility measured by Soboleva and Zaraisky (1990) and Zaraisky (1994), are likely to dominate Al speciation in metamorphic fluids containing several ppm of fluorine.  相似文献   

12.
Sorption edges and isotherms for Eu(III) uptake on Ca-montmorillonite and Na-illite in 0.066 mol/L Ca(ClO4)2 and 0.1 mol/L NaClO4 background electrolytes, respectively, were modelled using a quasi-mechanistic sorption model (the two site protolysis non electrostatic surface complexation and cation exchange (2SPNE SC/CE) model). For both clay minerals the Eu sorption edges could be quantitatively modelled in the pH range ∼3 to ∼10 using cation exchange reactions for Eu3+/Na+ and Eu3+/Ca2+ and three surface complexation reactions on the strong sorption sites forming ≡SSOEu2+, ≡SSOEuOH+ and ≡SSOEu(OH)2° inner sphere complexes which appear successively with increasing pH. Time resolved laser fluorescence spectroscopy (TRLFS) measurements of Cm(III) loaded Ca-montmorillonite and Na-illite were available from Part 1 of this work. De-convolution of the normalised fluorescence spectra measured at different pH values indicated three distinct Cm surface complexes, Cm complexes 1, 2 and 3 for both clay minerals, in agreement with model predictions, but with different distribution functions for the individual species. Under the assumption that Eu and Cm exhibit essentially the same hydrolysis and sorption behaviour, the Eu surface complexation constants were used to predict surface species distribution functions for Cm under the same experimental conditions used in the TRLFS measurements. Comparison of modelled and experimentally deduced species distributions indicated that for both clay minerals peak heights and widths of the three peaks did not correspond particularly well. It is shown that the calculated species distribution functions are sensitive to the values of the hydrolysis constants used in the calculations, whereas modelling the sorption edge measurements by applying the 2SPNE SC/CE approach is much less sensitive. By modifying the values of the hydrolysis constants within their uncertainty range and re-modelling the sorption edges, considerably better correspondence between the modelled and TRLFS species distribution functions was found. In particular, peak positions, heights and widths for the model predicted peaks for the ≡SSOCm2+ and ≡SSOCmOH+ species distribution, and those for Cm complexes 1 and 2 derived from TRLFS, were found to be very close for both clay minerals. However, discrepancies were still apparent between the profile for the calculated ≡SSOEu(OH)2° surface species and the Cm complex 3 species, especially in the case of Na-illite.  相似文献   

13.
Boron isotopic fractionation during adsorption onto Ca-flocculated Aldrich humic acid (HA) has been investigated experimentally as a function of solution pH at 25°C and I = 0.15 M. Boron aqueous concentration and isotopic composition were determined by Cs2BO2+ Positive Thermal Ionization Mass Spectrometry analysis, while the structure of B surface complexes on HA was characterized using 11B Magic Angle Spinning Nuclear Magnetic Resonance (MAS NMR). Significant B sorption on HA was observed at 6 < pH < 12 with a maximum value of Kd, the partition coefficient between adsorbed and aqueous boron, equal to 40 at pH = 9.5-10. Combined 11B MAS NMR analysis and FITEQL modeling of B sorption on HA showed that this element forms tetrahedrally coordinated five- or six-membered ring chelates, most likely 1,2-diol and 1,3-diol complexes at alkaline pH (8 < pH < 11) and dicarboxylic complexes at near neutral conditions (6 < pH < 9). Results of this study demonstrate for the first time that boron sorption on HA induces a strong pH-dependent isotope fractionation—with 11B depleted at the surface of HA—that reaches a maximum at 5 < pH < 9 (α = 0.975, Δ = −25‰) and decreases sharply at pH >9. The measured isotope fractionation cannot be modeled assuming that the isotopic composition of the sorbed borate species is identical to that of B(OH)4- species in the parent solution. It is shown that the extent of isotopic fractionation depends not only on B aqueous speciation but also on the distribution and structure of the borate surface complexes formed. In agreement with energetic constrains, calculation of the isotope fractionation factors between aqueous boric acid and boron surface complexes suggests that the formation of the strained six-membered ring 1,3-diol complex yields a much higher fractionation (αBLP1−III = 0.954-0.960, Δ = −41/-47‰) than that of the very stable five-membered ring 1,2-diol (αBLP2−III = 0.983, Δ = −18‰). The results of this study open new perspectives to understand and model boron biogeochemical cycle. It is predicted that boron sorption onto organic matter can have important consequences for the boron isotopic composition of surface water reservoirs (seawater, groundwater, soil waters) in which either abundant organic surfaces or significant boron concentrations are available. In addition, the large isotope fractionation between aqueous boric acid and surface boron-organic complexes found in the present work makes boron a promising tracer of biologic activity.  相似文献   

14.
Radiocaesium (137Cs) dispersion and Cs+ fixation were studied in the sediments collected from the lagoon systems of “Ria de Aveiro”. The Cs+ sorption was tested for the fine mica grains and for the < 2 μm clay fractions extracted from silty clays. The Cs+ exchange is found strongly onto mica-rich fractions than smectite-rich fractions. The distribution coefficient increases if the silty material is constituted by rich-mica clay fractions or if the non-clay minerals are removed from the silty-clay material. The samples studied behave as multisite ion exchange, where Cs+ engages in ion-exchange reactions with hydrated cations on planar sites on expansible layer silicates. Higher concentrations of the 137Cs were found associated with mica-rich silty clays. The 137Cs ranges from 3.2 to 3.9 Bq kg− 1 in the < 38 μm fractions and from 2.9 to 3.3 Bq kg− 1 in the < 64 μm fractions.  相似文献   

15.
In view of ecological problems stemming from the leakage of reservoirs with liquid radioactive wastes (LRW) and groundwater contamination with radioactive Cs+ and Sr2+, we have estimated the physicochemical (including sorption) characteristics of clinoptilolite-bearing tuff (CBT) from the Chankanai deposit in Kazakhstan. Data were obtained on the chemical and phase composition of CBT, its total cationexchange capacity, and equilibrium (exchange isotherms) and kinetic (diffusion coefficients) characteristics in sorbing radioactive Cs+ and Sr2+ from 0.07 n CaCl2 solution (model solutions of groundwaters). We proved that CBT efficiently sorbs Cs from this solution and practically does not sorb Sr and elucidated the reasons for the low selectivity with respect to Sr2+. Based on the equilibrium and kinetic characteristics of the process, a mathematical model is suggested for Cs sorption under dynamic conditions. The protection lifetime of the clinoptilolite-based geochemical barrier is evaluated.  相似文献   

16.
Comparative observations of PdII and PtII hydrolysis in chloride solutions indicate that [PdCl3OH2−]/[PdCl42−] and [PtCl3OH2−]/[PtCl42−] concentration ratios in salinity 35 seawater (S = 35) are smaller than one at a typical surface ocean pH (∼8.2), and are larger than one at pH = 8.2 when S < 10. The hydrolysis behaviors of PdCl42− and PtCl42− are very similar. In 0.5 M NaCl at 25°C the hydrolysis constant for both elements, written in the form β1 = [MCl3OH2−][Cl][H+][MCl42−]−1, is logβ1*=−8.97. Between ionic strengths 0.3 M and 1.0 M for PdII and between 0.1 M and 1.0 M for PtII, log β1 is within approximately 0.1 units of the value appropriate to 0.5 M NaCl. This small dependence of PdCl42− and PtCl42− hydrolysis constants on ionic strength is consistent with predictions based on expected activity coefficient behavior.Carbonate is observed to complex PdCl42− significantly, but to a smaller extent than OH under conditions appropriate to seawater. Complexation of PtCl42− by CO32− was observed in this work but the rate of complexation was too slow to allow equilibrium observations. The principal dissimilarity between the chemistries of PdII and PtII in our investigation was the sharp contrast in observed PdII and PtII reaction rates. Differences in reaction kinetics may cause fractionation of PdII and PtII in the environment. The speciation of PtII, unlike PdII, is likely to be based on chemical environments experienced by PtII over a period of days, and perhaps weeks.  相似文献   

17.
Sorption of Ni(II) onto chlorite surfaces was studied as a function of pH (5–10), ionic strength (0.01–0.5 M) and Ni concentration (10−8–10−6 M) in an Ar atmosphere using batch sorption with radioactive 63Ni as tracer. Such studies are important since Ni(II) is one of the major activation products in spent nuclear fuel and sorption data on minerals such as chlorite are lacking. The sorption of Ni(II) onto chlorite was dependent on pH but not ionic strength, which indicates that the process primarily comprises sorption by surface complexation. The maximum sorption was at pH ∼ 8 (Kd = ∼10−3 cm3/g). Desorption studies over a period of 1–2 weeks involving replacement of the aqueous solution indicated a low degree of desorption. The acid–base properties of the chlorite mineral were determined by titration and described using a non-electrostatic surface complexation model in FITEQL. A 2-pK NEM model and three surface complexes, Chl_OHNi2+, Chl_OHNi(OH)+ and Chl_OHNi(OH)2, gave the best fit to the sorption results using FITEQL. The high Kd values and low degree of desorption observed indicate that under expected groundwater conditions, a large fraction of Ni(II) that is potentially leachable from spent nuclear fuel may be prevented from migrating by sorption onto chlorite surfaces.  相似文献   

18.
Strontium-90 is a beta emitting radionuclide produced during nuclear fission, and is a problem contaminant at many nuclear facilities. Transport of 90Sr in groundwaters is primarily controlled by sorption reactions with aquifer sediments. The extent of sorption is controlled by the geochemistry of the groundwater and sediment mineralogy. Here, batch sorption experiments were used to examine the sorption behaviour of 90Sr in sediment–water systems representative of the UK Sellafield nuclear site based on groundwater and contaminant fluid compositions. In experiments with low ionic strength groundwaters (<0.01 mol L−1), pH variation is the main control on sorption. The sorption edge for 90Sr was observed between pH 4 and 6 with maximum sorption occurring (Kd ∼ 103 L kg−1) at pH 6–8. At ionic strengths above 10 mmol L−1, and at pH values between 6 and 8, cation exchange processes reduced 90Sr uptake to the sediment. This exchange process explains the lower 90Sr sorption (Kd ∼ 40 L kg−1) in the presence of artificial Magnox tank liquor (IS = 29 mmol L−1). Strontium K-edge EXAFS spectra collected from sediments incubated with Sr2+ in either HCO3-buffered groundwater or artificial Magnox tank liquor, revealed a coordination environment of ∼9 O atoms at 2.58–2.61 Å after 10 days. This is equivalent to the Sr2+ hydration sphere for the aqueous ion and indicates that Sr occurs primarily in outer sphere sorption complexes. No change was observed in the Sr sorption environment with EXAFS analysis after 365 days incubation. Sequential extractions performed on sediments after 365 days also found that ∼80% of solid associated 90Sr was exchangeable with 1 M MgCl2 in all experiments. These results suggest that over long periods, 90Sr in contaminated sediments will remain primarily in weakly bound surface complexes. Therefore, if groundwater ionic strength increases (e.g. by saline intrusion related to sea level rise or by design during site remediation) then substantial remobilisation of 90Sr is to be expected.  相似文献   

19.
The adsorption of hydrogen sulfide (ΓH2S) and protons (ΓH+) on the surface of crystalline sulfur was investigated experimentally in H2S-bearing solutions at temperatures of 25, 50, and 70°C, NaCl concentrations of 0.1 and 0.5 mol/dm−3 and log CH+ values in the range −2.3 to −5. At all temperatures, the dominant process on the surface of the sulfur was deprotonation, and the average values of ΓH2S were very close to the highest values determined for ΓH+. This finding, combined with the lack of detectable proton adsorption in H2S-free solutions, suggests that proton adsorption/desorption on the surface of sulfur occurs through formation of ≡ SH2S complexes in the presence of H2S.We propose that this complexation represents sulfidation of the sulfur surface, a process analogous to hydroxylation of oxide surfaces, and that the sulfidation can be described by the reaction: ≡ S + H2S = ≡SSH20 β° The deprotonation of the ≡ SH° complex occurs via the reaction: ≡ SSH20 = ≡SSH + H+ β Values of 2.9, 2.8, and 2.9 (± 0.23) were obtained for −log β at 25, 50, and 70°C, respectively. These data were employed to estimate the second dissociation constant for hydrogen sulfide in aqueous solutions using the extrapolation method proposed by Schoonen and Barnes (1988) and yielded corresponding values for the constant of 17.4 ± 0.3, 15.7, and 14.5, respectively. The value for 25°C is in very good agreement with the experimentally determined values of Giggenbach (1971) at 17 ± 0.1; Meyer et al. (1983) at 17 ± 1; Licht and Manassen (1987) at 17.6 ± 0.3; and Licht et al. (1990) at 17.1 ± 0.3.  相似文献   

20.
Corundum (α-Al2O3) solubility was measured in 0.1-molal CaCl2 solutions from 400 to 600°C between 0.6 and 2.0 kbar. The Al molality at 2 kbar increases from 3.1 × 10−4 at 400°C to 12.7 × 10−4 at 600°C. At 1 kbar, the solubility increases from 1.5 × 10−4m at 400°C to 3.4 × 10−4m at 600°C. These molalities are somewhat less than corundum solubility in pure H2O (Walther, 1997) at 400°C but somewhat greater at 600°C. The distribution of species was computed considering the Al species Al(OH)30 and Al(OH)4, consistent with the solubility of corundum in pure H2O of Walther (1997) and association constants reported in the literature. The calculated solubility was greater than that measured except at 600°C and 2.0 kbar, indicating that neutral-charged species interactions are probably important.A Setchénow model for neutral species resulted in poor fitting of the measured values at 1.0 kbar. This suggests that Al(OH)30 has a greater stability relative to Al(OH)4 than given by the models of Pokrovskii and Helgeson (1995) or Diakonov et al. (1996). The significantly lower Al molalities in CaCl2 relative to those in NaCl solutions at the same concentration confirm the suggestions of Walther (2001) and others that NaAl(OH)40 rather than an Al-Cl complex must be significant in supercritical NaCl solutions to give the observed increase in corundum solubility with increasing NaCl concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号