首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The toxicity and mobility of the redox-active metalloid As strongly depends on its oxidation state, with As(III) (arsenite) being more toxic and mobile than As(V) (arsenate). It is, therefore, necessary to know the biogeochemical processes potentially influencing As redox state to understand and predict its environmental behavior. The first part of this presentation will discuss the quantification of As redox changes by pH-neutral mineral suspensions of goethite [α-FeIIIOOH] amended with Fe(II) using wet-chemical and synchrotron X-ray absorption (XANES) analysis (Amstaetter et al., 2010). First, it was found that goethite itself did not oxidize As(III). Second, in contrast to thermodynamic predictions, Fe(II)–goethite systems did not reduce As(V). However, surprisingly, rapid oxidation of As(III) to As(V) was observed in Fe(II)–goethite systems. Iron speciation and mineral analysis by Mössbauer spectroscopy showed rapid formation of 57Fe–goethite after 57Fe(II) addition and the formation of a so far unidentified additional Fe(II) phase. No other Fe(III) phase could be detected by Mössbauer spectroscopy, EXAFS, scanning electron microscopy, X-ray diffraction or high-resolution transmission electron microscopy. This suggests that reactive Fe(III) species form as an intermediate Fe(III) phase upon Fe(II) addition and electron transfer into bulk goethite but before crystallization of the newly formed Fe(III) as goethite.The second part of the presentation will show that semiquinone radicals produced during microbial or chemical reduction of a humic substance model quinone (AQDS, 9,10-anthraquinone-2,6-disulfonic acid) can react with As and change its redox state (Jiang et al., 2009). The results of these experiments showed that these semiquinone radicals are strong oxidants and oxidize arsenite to arsenate, thus decreasing As toxicity and mobility. The oxidation of As(III) depended strongly on pH. More arsenite (up to 67.3%) was oxidized at pH 11 compared to pH 7 (12.6% oxidation) and pH 3 (0.5% oxidation). In addition to As(III) oxidation by semiquinone radicals, hydroquinones that were also produced during quinone reduction, reduced As(V) to As(III) at neutral and acidic pH values (less than 12%) but not at alkaline pH. In an attempt to understand the observed redox reactions between As and reduced/oxidized quinones present in humic substances, the radical content in reduced AQDS solutions was quantified and Eh-pH diagrams were constructed. Both the radical quantification and the Eh-pH diagram allowed explaining the observed redox reactions between the reduced AQDS solutions and the As.In summary these studies indicate that in the simultaneous presence of Fe(III) oxyhydroxides, Fe(II), and humic substances as commonly observed in environments inhabited by Fe-reducing microorganisms, As(III) oxidation can occur. This potentially explains the presence of As(V) in reduced groundwater aquifers.  相似文献   

2.
《Applied Geochemistry》2000,15(8):1219-1244
Arsenian pyrite, formed during Cretaceous gold mineralization, is the primary source of As along the Melones fault zone in the southern Mother Lode Gold District of California. Mine tailings and associated weathering products from partially submerged inactive gold mines at Don Pedro Reservoir, on the Tuolumne River, contain ∼20–1300 ppm As. The highest concentrations are in weathering crusts from the Clio mine and nearby outcrops which contain goethite or jarosite. As is concentrated up to 2150 ppm in the fine-grained (<63 μm) fraction of these Fe-rich weathering products.Individual pyrite grains in albite-chlorite schists of the Clio mine tailings contain an average of 1.2 wt.% As. Pyrite grains are coarsely zoned, with local As concentrations ranging from ∼0 to 5 wt.%. Electron microprobe, transmission electron microscope, and extended X-ray absorption fine-structure spectroscopy (EXAFS) analyses indicate that As substitutes for S in pyrite and is not present as inclusions of arsenopyrite or other As-bearing phases. Comparison with simulated EXAFS spectra demonstrates that As atoms are locally clustered in the pyrite lattice and that the unit cell of arsenian pyrite is expanded by ∼2.6% relative to pure pyrite. During weathering, clustered substitution of As into pyrite may be responsible for accelerating oxidation, hydrolysis, and dissolution of arsenian pyrite relative to pure pyrite in weathered tailings. Arsenic K-edge EXAFS analysis of the fine-grained Fe-rich weathering products are consistent with corner-sharing between As(V) tetrahedra and Fe(III)-octahedra. Determinations of nearest-neighbor distances and atomic identities, generated from least-squares fitting algorithms to spectral data, indicate that arsenate tetrahedra are sorbed on goethite mineral surfaces but substitute for SO4 in jarosite. Erosional transport of As-bearing goethite and jarosite to Don Pedro Reservoir increases the potential for As mobility and bioavailability by desorption or dissolution. Both the substrate minerals and dissolved As species are expected to respond to seasonal changes in lake chemistry caused by thermal stratification and turnover within the monomictic Don Pedro Reservoir. Arsenic is predicted to be most bioavailable and toxic in the reservoir’s summer hypolimnion.  相似文献   

3.
The competitive adsorption of arsenate and arsenite with silicic acid at the ferrihydrite–water interface was investigated over a wide pH range using batch sorption experiments, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, extended X-ray absorption fine structure (EXAFS) spectroscopy, and density functional theory (DFT) modeling. Batch sorption results indicate that the adsorption of arsenate and arsenite on the 6-L ferrihydrite surface exhibits a strong pH-dependence, and the effect of pH on arsenic sorption differs between arsenate and arsenite. Arsenate adsorption decreases consistently with increasing pH; whereas arsenite adsorption initially increases with pH to a sorption maximum at pH 7–9, where after sorption decreases with further increases in pH. Results indicate that competitive adsorption between silicic acid and arsenate is negligible under the experimental conditions; whereas strong competitive adsorption was observed between silicic acid and arsenite, particularly at low and high pH. In situ, flow-through ATR-FTIR data reveal that in the absence of silicic acid, arsenate forms inner-sphere, binuclear bidentate, complexes at the ferrihydrite surface across the entire pH range. Silicic acid also forms inner-sphere complexes at ferrihydrite surfaces throughout the entire pH range probed by this study (pH 2.8–9.0). The ATR-FTIR data also reveal that silicic acid undergoes polymerization at the ferrihydrite surface under the environmentally-relevant concentrations studied (e.g., 1.0 mM). According to ATR-FTIR data, arsenate complexation mode was not affected by the presence of silicic acid. EXAFS analyses and DFT modeling confirmed that arsenate tetrahedra were bonded to Fe metal centers via binuclear bidentate complexation with average As(V)-Fe bond distance of 3.27 Å. The EXAFS data indicate that arsenite forms both mononuclear bidentate and binuclear bidentate complexes with 6-L ferrihydrite as indicated by two As(III)–Fe bond distances of ∼2.92–2.94 and 3.41–3.44 Å, respectively. The As–Fe bond distances in both arsenate and arsenite EXAFS spectra remained unchanged in the presence of Si, suggesting that whereas Si diminishes arsenite adsorption preferentially, it has a negligible effect on As–Fe bonding mechanisms.  相似文献   

4.
Oxidation of mackinawite (FeS) and concurrent mobilization of arsenic were investigated as a function of pH under oxidizing conditions. At acidic pH, FeS oxidation is mainly initiated by the proton-promoted dissolution, which results in the release of Fe(II) and sulfide in the solution. While most of dissolved sulfide is volatilized before being oxidized, dissolved Fe(II) is oxidized into green rust-like precipitates and goethite (α-FeOOH). At basic pH, the development of Fe(III) (oxyhydr)oxide coating on the FeS surface inhibits the solution-phase oxidation following FeS dissolution. Instead, FeS is mostly oxidized into lepidocrocite (γ-FeOOH) via the surface-mediated oxidation without dissolution. At neutral pH, FeS is oxidized via both the solution-phase oxidation following FeS dissolution and the surface-mediated oxidation mechanisms. The mobilization of arsenic during FeS oxidation is strongly affected by FeS oxidation mechanisms. At acidic pH (and to some extent at neutral pH), the rapid FeS dissolution and the slow precipitation of Fe (oxyhydr)oxides results in arsenic accumulation in water. In contrast, the surface-mediated oxidation of FeS at basic pH leads to the direct formation of Fe (oxyhydr)oxides, which provides effective adsorbents for As under oxic conditions. At acidic and neutral pH, the solution-phase oxidation of dissolved Fe(II) accelerates the oxidation of the less adsorbing As(III) to the more adsorbing As(V). This study reveals that the oxidative mobilization of As may be a significant pathway for arsenic enrichment of porewaters in sulfidic sediments.  相似文献   

5.
The behaviour of trace amounts of arsenate coprecipitated with ferrihydrite, lepidocrocite and goethite was studied during reductive dissolution and phase transformation of the iron oxides using [55Fe]- and [73As]-labelled iron oxides. The As/Fe molar ratio ranged from 0 to 0.005 for ferrihydrite and lepidocrocite and from 0 to 0.001 for goethite. For ferrihydrite and lepidocrocite, all the arsenate remained associated with the surface, whereas for goethite only 30% of the arsenate was desorbable. The rate of reductive dissolution in 10 mM ascorbic acid was unaffected by the presence of arsenate for any of the iron oxides and the arsenate was not reduced to arsenite by ascorbic acid. During reductive dissolution of the iron oxides, arsenate was released incongruently with Fe2+ for all the iron oxides. For ferrihydrite and goethite, the arsenate remained adsorbed to the surface and was not released until the surface area became too small to adsorb all the arsenate. In contrast, arsenate preferentially desorbs from the surface of lepidocrocite. During Fe2+ catalysed transformation of ferrihydrite and lepidocrocite, arsenate became bound more strongly to the product phases. X-ray diffractograms showed that ferrihydrite was transformed into lepidocrocite, goethite and magnetite whereas lepidocrocite either remained untransformed or was transformed into magnetite. The rate of recrystallization of ferrihydrite was not affected by the presence of arsenate. The results presented here imply that during reductive dissolution of iron oxides in natural sediments there will be no simple correlation between the release of arsenate and Fe2+. Recrystallization of the more reactive iron oxides into more crystalline phases, induced by the appearance of Fe2+ in anoxic aquifers, may be an important trapping mechanism for arsenic.  相似文献   

6.
Methylmercury can accumulate in fish to concentrations unhealthy for humans and other predatory mammals. Most sources of mercury (Hg) emit inorganic species to the environment. Therefore, ecological harm occurs when inorganic Hg is converted to methylmercury. Sulfate- and iron-reducing bacteria (SRB and FeRB) methylate Hg, but the effects of processes involving oxidized and reduced forms of sulfur and iron on the reactivity of Hg, including the propensity of inorganic Hg to be methylated, are poorly understood. Under abiotic conditions, using a laboratory flow reactor, bisulfide (HS) was added at 40 to 250 μM h−1 to 5 g L−1 goethite (α-FeOOH) suspensions to which Hg(II) was adsorbed (30-100 nmol m−2) at pH 7.5. Dissolved Hg initially decreased from 103 or 104 nM (depending on initial conditions) to 10−1 nM, during which the concentration of Hg(II) adsorbed to goethite decreased by 80% and metacinnabar (β-HgS(s)) formed, based on identification using Hg LIII-edge extended X-ray absorption fine structure (EXAFS) spectroscopic analysis. The apparent coordination of oxygens surrounding Hg(II), measured with EXAFS spectroscopy, increased during one flow experiment, suggesting desorption of monodentate-bound Hg(II) while bidentate-bound Hg(II) persisted on the goethite surface. Further sulfidation increased dissolved Hg concentrations by one to two orders of magnitude (0.5 to 10 nM or 30 nM), suggesting that byproducts of bisulfide oxidation and Fe(III) reduction, primarily polysulfide and potentially Fe(II), enhanced the dissolution of β-HgS(s) and/or desorption of Hg(II). Rapid accumulation of Fe(II) in the solid phase (up to 40 μmol g−1) coincided with faster elevation of dissolved Hg concentrations. Fe(II) served as a proxy for elemental sulfur [S(0)], as S(0) was the dominant bisulfide oxidation product coupled to Fe(III) reduction, based on sulfur K-edge X-ray absorption near edge structure (XANES) spectroscopy. In one experiment, dissolved Hg concentrations tracked those of all sulfide species [S(-II)]. These results suggest that S(-II) reacted with S(0) to form polysulfide, which then caused the dissolution of β-HgS(s). A secondary Fe-bearing phase resembling poorly formed green rust was observed in sulfidized solids with scanning electron microscopy, although there was no clear evidence that either surface-bound or mineralized Fe(II) strongly affected Hg speciation. Examination of interrelated processes involving S(-II) and Fe(III) revealed new modes of Hg solubilization previously not considered in Hg reactivity models.  相似文献   

7.
《Applied Geochemistry》2003,18(8):1267-1278
At the abandoned As mine in Nishinomaki, Japan, discharged water from the mining and waste dump area is acidic and rich in As. However, the As concentration in the drainage has been decreased to below the maximum contaminant level (0.01 mg/l for drinking water, Japan) without any artificial treatments before mixing with a tributary to populated areas. This implies that the As concentration in water from the waste dump area has been naturally attenuated. To elucidate the reaction mechanisms of the natural attenuation, analysis of water quality and characterization of the precipitates from the stream floor were performed by measuring pH, ORP and electric conductivity on-site, as well as X-ray diffraction, ICP-mass spectrometry and ion-chromatography. Selective extractions and mineral alteration experiments were also conducted to estimate the distribution of As in constituent phases of the precipitates and to understand the stability of As-bearing phases, respectively. The water contamination resulted from oxidation of sulfide minerals in the waste rocks, i.e., the oxidation of pyrite and realgar and subsequent release of Fe, SO4, As(V) and proton. The released Fe(II) transformed to Fe(III) by bacterial oxidation; schwertmannite then formed immediately. While the As concentrations in the stream were lowered nearly to background level downstream, those in the ochreous precipitates were up to several tens of mg/g. The As(V) was effectively removed by the formed schwertmannite and had been naturally attenuated. Although schwertmannite is metastable with respect to goethite, the experiments show that the transformation of schwertmannite to goethite may be retarded by the presence of absorbed As(V) in the structure. Therefore, the attenuation of As in the drainage and the retention of As by schwertmannite are expected to be maintained for the long term.  相似文献   

8.
Sorption of contaminants such as arsenic (As) to natural Fe(III) (oxyhydr)oxides is very common and has been demonstrated to occur during abiotic and biotic Fe(II) oxidation. The molecular mechanism of adsorption- and co-precipitation of As has been studied extensively for synthetic Fe(III) (oxyhydr)oxide minerals but is less documented for biogenic ones. In the present study, we used Fe and As K-edge X-ray Absorption Near Edge Structure (XANES), extended X-ray Absorption Fine Structure (EXAFS) spectroscopy, Mössbauer spectroscopy, XRD, and TEM in order to investigate the interactions of As(V) and As(III) with biogenic Fe(III) (oxyhydr)oxide minerals formed by the nitrate-reducing Fe(II)-oxidizing bacterium Acidovorax sp. strain BoFeN1. The present results show the As immobilization potential of strain BoFeN1 as well as the influence of As(III) and As(V) on biogenic Fe(III) (oxyhydr)oxide formation. In the absence of As, and at low As loading (As:Fe ≤ 0.008 mol/mol), goethite (Gt) formed exclusively. In contrast, at higher As/Fe ratios (As:Fe = 0.020-0.067), a ferrihydrite (Fh) phase also formed, and its relative amount systematically increased with increasing As:Fe ratio, this effect being stronger for As(V) than for As(III). Therefore, we conclude that the presence of As influences the type of biogenic Fe(III) (oxyhydr)oxide minerals formed during microbial Fe(II) oxidation. Arsenic-K-edge EXAFS analysis of biogenic As-Fe-mineral co-precipitates indicates that both As(V) and As(III) form inner-sphere surface complexes at the surface of the biogenic Fe(III) (oxyhydr)oxides. Differences observed between As-surface complexes in BoFeN1-produced Fe(III) (oxyhydr)oxide samples and in abiotic model compounds suggest that associated organic exopolymers in our biogenic samples may compete with As oxoanions for sorption on Fe(III) (oxyhydr)oxides surfaces. In addition HRTEM-EDXS analysis suggests that As(V) preferentially binds to poorly crystalline phases, such as ferrihydrite, while As(III) did not show any preferential association regarding Fh or Gt.  相似文献   

9.
Uranyl and arsenate cosorption on aluminum oxide surface   总被引:1,自引:0,他引:1  
In this study, we examined the effects of simultaneous adsorption of aqueous arsenate and uranyl onto aluminum oxide over a range of pH and concentration conditions. Arsenate was used as a chemical analog for phosphate, and offers advantages for characterization via X-ray absorption spectroscopy. By combining batch experiments, speciation calculations, X-ray absorption spectroscopy, and X-ray diffraction, we investigated the uptake behavior of uranyl, as well as the local and long-range structure of the final sorption products. In the presence of arsenate, uranyl sorption was greatly enhanced in the acidic pH range, and the amount of enhancement is positively correlated to the initial arsenate and uranyl concentrations. At pH 4-6, U LIII- and As K-edge EXAFS results suggest the formation of surface-sorbed uranyl and arsenate species as well as uranyl arsenate surface precipitate(s) that have a structure similar to trögerite. Uranyl polymeric species or oxyhydroxide precipitate(s) become more important with increasing pH values. Our results provide the basis for predictive models of the uptake of uranyl by aluminum oxide in the presence of arsenate and (by analogy) phosphate, which can be especially important for understanding phosphate-based uranium remediation systems.  相似文献   

10.
《Applied Geochemistry》2005,20(8):1445-1460
Changes in precipitate mineralogy, morphology, and major and trace element concentrations and associations throughout 5 coal mine drainage (CMD) remediation systems treating discharges of varying chemistries were investigated in order to determine the factors that influence the characteristics of precipitates formed in passive systems. The 5 passive treatment systems sampled in this study are located in the bituminous coal fields of western Pennsylvania and northern Maryland, and treat discharges from Pennsylvanian age coals. The precipitates are dominantly (>70%) goethite. Crystallinity varies throughout an individual system, and lower crystallinity is associated with enhanced sorption of trace metals. Degree of crystallinity (and subsequently morphology and trace metal associations) is a function of the treatment system and how rapidly Fe(II) is oxidized, forms precipitates, aggregates and settles. Precipitates formed earlier in the passive treatment systems tend to have the highest crystallinity and the lowest concentrations of trace metal cations. High surface area and cation vacancies within the goethite structure enable sorption and incorporation of metals from coal mine drainage-polluted waters. Sorption affinities follow the order of Zn > Co  Ni > Mn. Cobalt and Ni are preferentially sorbed to Mn oxide phases when these phases are present. As pH increases in the individual CMD treatment systems toward the pHpzc of goethite, As sorption decreases and transition metal (Co, Mn, Ni and Zn) sorption increases. Sulfate, Na and Fe(II) concentrations may all influence the sorption of trace metals to the Fe hydroxide surface. Results of this study have implications not only for solids disposal and resource recovery but also for the optimization of passive CMD treatment systems.  相似文献   

11.
Scorodite, ferric arsenate and arsenical ferrihydrite are important arsenic carriers occurring in a wide range of environments and are also common precipitates used by metallurgical industries to control arsenic in effluents. Solubility and stability of these compounds are controversial because of the complexities in their identification and characterization in heterogeneous media. To provide insights into the formation of scorodite, ferric arsenate and ferrihydrite, series of synthesis experiments were carried out at 70 °C and pH 1, 2, 3 and 4.5 from 0.2 M Fe(SO4)1.5 solutions also containing 0.02-0.2 M Na2HAsO4. The precipitates were characterized by transmission electron microscopy, X-ray diffraction and X-ray absorption fine structure techniques. Ferric arsenate, characterized by two broad diffuse peaks on the XRD pattern and having the structural formula of FeAsO4·4-7H2O, is a precursor to scorodite formation. As defined by As XAFS and Fe XAFS, the local structure of ferric arsenate is profoundly different than that of scorodite. It is postulated that the ferric arsenate structure is made of single chains of corner-sharing Fe(O,OH)6 octahedra with bridging arsenate tetrahedra alternating along the chains. Scorodite was precipitated from solutions with Fe/As molar ratios of 1 over the pH range of 1-4.5. The pH strongly controls the kinetics of scorodite formation and its transformation from ferric arsenate. The scorodite crystallite size increased from 7 to 33 nm by ripening and aggregation. Precipitates, resulting from continuous synthesis at pH 4.5 from solutions having Fe/As molar ratios ranging from 1 to 4 and resembling the compounds referred to as ferric arsenate, arsenical ferrihydrite and As-rich hydrous ferric oxide in the literature, represent variable mixtures of ferric arsenate and ferrihydrite. When the Fe/As ratio increases, the proportion of ferrihydrite increases at the expense of ferric arsenate. Arsenate adsorption appears to retard ferrihydrite growth in the precipitates with molar Fe/As ratios of 1-4, whereas increased reaction gradually transforms two-line ferrihydrite to six-line ferrihydrite at Fe/As ratios of 5 and greater.  相似文献   

12.
The complexation of Cd(II) and Cd(II)-phthalate at the goethite/water interface were investigated by EXAFS and IR spectroscopy, by batch adsorption experiments and by potentiometric titrations at 298.15 K. The EXAFS spectra showed Cd(II) to form only inner-sphere corner-sharing complexes with the goethite surface sites in the presence and absence of phthalate. EXAFS spectra also showed the presence of Cd(II)-chloride complexes in 0.1 mol/L NaCl. IR spectra also showed phthalate to form (1) an inner-sphere complex with adsorbed corner-sharing Cd(II) surface complexes in the pH 3.5 to 9.5 and (2) an outer-sphere complex with the same type of corner-sharing Cd(II) complex however at pH > 6, in addition to the inner- and outer-sphere complexes of phthalate reported in a previous study. The potentiometric titration and the batch adsorption data were used to constrain the formation constants of the different Cd(II)-phthalate surface complexes on the dominant {110} and the {001} planes of the goethite. The models were carried out with the Charge Distribution Multisite Complexation model coupled to the Three Plane Model and can predict the molecular-scale speciation of cadmium and phthalate in the presence of goethite. Cd(II) adsorption models calibrated on a 90 m2/g goethite also could accurately predict experimental data for a 37 m2/g goethite of slightly different basic charging properties.  相似文献   

13.
The partitioning of arsenate between Paraho indirectly retorted and directly retorted oil shales and a combusted oil shale was examined with batch equilibrium adsorption isotherms. Arsenate adsorption was found to conform to the Freundlich adsorption model, and the combusted oil shale was found to have the greatest affinity for arsenate. The indirectly and directly retorted oil shale samples did not have statistically different affinities for arsenate. The greater adsorption capacity of combusted oil shale for arsenate was attributed to greater surface area and free iron oxide. Arsenate adsorption by combusted oil shale was not reversible. Upon dilution of the solution phase, arsenate did not desorb. Upon dilution of the retorted oil shale solutions, arsenate continued to be removed from solution. An evaluation of metal arsenate stability in the spent oil shale systems indicated that the retorted oil shale solutions were highly supersaturated with respect to magnesium and barium arsenates, whereas the combusted oil shale solutions were not supersaturated. The data were interpreted to indicate that adsorption reactions control arsenate solubility at short reaction times. As reaction times increase, precipitation reactions control soluble arsenate concentrations.  相似文献   

14.
Schwertmannite is a ubiquitous mineral formed from acid rock drainage (ARD), and plays a major role in controlling the water chemistry of many acid streams. The formation of schwertmannite was investigated in the acid discharge of the Monte Romero abandoned mine (Iberian Pyrite Belt, SW, Spain). Schwertmannite precipitated from supersaturated solutions mainly owing to the oxidation of Fe(II) to Fe(III) and transformed with time into goethite and jarosite. In a few hours, schwertmannite precipitation removed more than half of the arsenic load from solution, whereas the concentration of divalent trace metals (Zn, Cu, Pb, Cd, Ni, and Co) remained almost unchanged. In the laboratory, natural schwertmannite was kept in contact with its coexisting acid water in a flask with a solid-liquid mass ratio of 1:5 for 353 days. During this time, the pH of the solution dropped from 3.07 to 1.74 and the concentrations of sulfate and Fe increased. During the first 164 days, schwertmannite transformed into goethite plus H3O-jarosite but, subsequently, goethite was the only mineral to form. Some of the trace elements, such as Al, Cu, Pb, and As were depleted in solution during the first stage as schwertmannite transformed into goethite plus H3O-jarosite. On the contrary, the transformation of schwertmannite to goethite (with no jarosite) during the second stage released Al, Cu, and As to the solution. Despite the variation in their concentrations in solution, approximately 80% of the total Al and Cu inventories and more than 99% As and Pb remained in the solid phase throughout the entire aging process.  相似文献   

15.
Reductive dissolution of arsenic-bearing ferrihydrite   总被引:2,自引:0,他引:2  
Ferrihydrites were prepared by coprecipitation (COP) or adsorption (ADS) of arsenate, and the products were characterized using solid-state methods. In addition, the kinetics of reductive dissolution by hydroquinone of these well-characterized materials were quantified. Characterization and magnetism results indicate that the 10 wt% As COP ferrihydrite is less crystalline and possibly has smaller crystallite size than the other ferrihydrites, which all have similar crystallinity and particle size. The results from reductive dissolution experiments show similar reaction rates, reaction mechanism, and activation energy for ferrihydrite precipitated with or without added arsenate. However, a marked decrease in reactivity was observed for 10 wt% As ADS ferrihydrite. The decrease is not attributed to differences in activation energy but rather the preferential blocking of active sites on the ferrihydrite surface. Results demonstrate that arsenic may be released by the reductive dissolution of arsenic-bearing ferrihydrite regardless of whether the arsenic is coprecipitated with or adsorbed onto the ferrihydrite. However, under these reaction conditions, release from materials with adsorbed arsenate greatly exceeds that from materials with coprecipitated arsenate. In fact, a considerable amount of arsenic was released from the 10 wt% ADS ferrihydrite before reductive dissolution was initiated. Therefore, the characterization of arsenate-bearing iron oxide materials to determine the method of arsenate incorporation into structures—perhaps by quantification of Fe-Fe coordination with EXAFS spectroscopy—may lead to improved predictions of the large-scale release of arsenic within aquifer systems under reducing conditions.  相似文献   

16.
The mineralogical and chemical evolution of ochreous precipitates forming from acid mine drainage (AMD) from the abandoned Libiola Fe–Cu-sulfide mine (Eastern Liguria, Italy) was followed through a multianalytical approach (XRD, TEM, XRF, ICP) applied to surface precipitates and associated waters collected from several mine adits. The mineralogy of the precipitates changed significantly as a consequence of the variations of the chemical parameters of the circulating solutions (mainly pH, Eh, and sulfate concentrations) which, in turn, were mainly controlled by mixing with unpolluted stream and rill waters of the mining area. A progressive transition from jarosite-, to schwertmannite-, to goethite-, to ferrihydrite-, to amorphous-dominated precipitates was observed, mainly as a consequence of an increase in the pH of the associated solutions. This mineralogical evolution agrees well with the aqueous speciation and Eh–pH stability calculations performed on the waters associated with the different precipitate types. Furthermore, TEM analysis indicated that metastable pristine phases (schwertmannite) tend to transform progressively to well-crystallized more stable species, here represented by goethite. The comparison of the water chemistry and the crystal chemistry of the different precipitates showed a significant decrease in the Zn, Cu, Ni, Co contents in waters where the coexisting precipitates were almost exclusively composed of goethite. The distribution of V, Sr, As concentrations within the different precipitates showed that the most efficient scavenging phase for these elements was jarosite, whereas ferrihydrite efficiently took up Pb ions, and schwermannite acted as a natural sink for Cr.  相似文献   

17.
Soil contamination with As and potentially harmful metals is a widespread problem around the world especially from mining and metallurgical wastes, which release substantial amounts of these elements to the environment in potentially mobile species. Recently, it has been found that in various Mexican soils contaminated with these types of wastes, arsenate is not in the form of sorbed species on Fe oxides present in the soils, as generally reported in the literature, but in the form of very insoluble compounds such as Pb, Cu and Ca arsenates. Here a thermodynamic model is applied and validated with the results from wet chemical experiments to determine the fundamental geochemical conditions governing the mobility of As in the presence of Pb. For this purpose, a relatively simple but fundamental system of goethite (α-FeOOH)/As(V)/Pb(II)/carbonate was defined as a function of the As(V)/Fe(III) ratio, in a pH range of 5–10. The speciation model included the simultaneous inclusion of triple layer surface complexation and arsenate precipitation equilibria. The model predicts that from very low total As(V)/Fe(III) molar ratios (0.012 at pH 7) the precipitation mechanism significantly influences the attenuation of As(V), and rapidly becomes the dominant process over the adsorption mechanism. Model results identify the quantitative conditions of predominance for each mechanism and describe the transition conditions in which relatively large fractions of adsorbed, precipitated and dissolved As(V) species prevail. Experimental measurements at selected As(V)/Fe(III) ratios and pH confirmed the predictions and validated the coupled thermodynamic model utilized.  相似文献   

18.
成东  廖鹏  袁松虎 《地球科学》2016,41(2):325-330
地下水中的含铁胶体颗粒会携带污染物如砷等运移,但人们对该过程中的机理缺乏认识.通过群组静态吸附解吸模拟实验, 探究FeS胶体对吸附在覆Fe2O3石英砂上As(Ⅴ)的解吸作用, 以及腐殖酸(HA)、H2PO4-和HCO3-对解吸的影响.实验结果表明,室内合成的FeS胶体具有纳米级粒径和较大的比表面积,且能均匀稳定存在于水溶液中.低浓度的FeS胶体主要通过竞争覆Fe2O3石英砂表面的吸附点位将As(Ⅴ)解吸,而高浓度的FeS胶体主要通过与覆Fe2O3石英砂竞争对As(Ⅴ)的吸附而导致解吸.HA、H2PO4-和HCO3-对As(Ⅴ)的竞争解吸作用降低了FeS胶体导致的解吸效率.   相似文献   

19.
In the old mining area of Rodalquilar, mine wastes, soil and sediments were characterized and the results revealed high concentration of Au, Ag, As, Bi, Cu, Fe, Mn, Pb, Se, Sb and Zn in tailings and sediments. The contaminant of greatest environmental concern is As. The mean concentration in the tailings was 679.9, and 345 mg/kg in the sediments of Playazo creek. The groundwater samples from the alluvial aquifer showed high concentration of Al, As, Cd, Fe, Hg, Mn, Ni, Pb, Se, Sb and Zn and very high concentration of chloride and sulfate, which were above the concentration defined in the European standards for drinking water. The presence of As in groundwater may be caused by the oxidation of arsenian pyrite, the possible As desorption from goethite and ferrihydrite and the jarosite dissolution. Groundwater concentrations of Cd, Fe, Mn, and possibly Cu, were associated with low values of Eh, indicating the possible dissolution of oxy-hydroxides of Fe and Mn. The mobility of metals in the column experiments show the release of Al, Fe, Mn, Cr, Cu, Ni, V and Zn in significant concentrations but below the detected values in groundwater. However, As, Cd, Sb, Se Pb and Au, are generally mobilized in concentrations above the detected values in groundwater. The possible mass transfer processes that could explain the presence of the contaminants in the aquifer and the leachates was simulated with the PHREEQC numerical code and revealed the possible dissolution of the following mineral phases: jarosite, natrojarosite, arsenian pyrite, alunite, chlorite, kaolinite and calcite.  相似文献   

20.
《Applied Geochemistry》2005,20(6):1226-1239
High concentrations of Cr (up to 812 ppm) and As (up to 6740 ppm) were detected in precipitates of the mineral schwertmannite in areas influenced by acid mine drainage. Schwertmannite may act as well as a natural filter for these elements in water as well as their source by releasing the previously bound elements during its dissolution or mineral-transformation. The mechanisms of uptake and potential release for the species arsenate and chromate were investigated by performing synthesis and stability experiments with schwertmannite.Schwertmannite, synthesized in solutions containing arsenate in addition to sulphate, was enriched by up to 10.3 wt% arsenate without detectable structural changes as demonstrated by powder X-ray diffraction (XRD). In contrast to arsenate, a total substitution of sulphate by chromate was possible in sulphate-free solutions. Thereby, the chromate content in schwertmannite could reach 15.3 wt%.To determine the release of oxyanions from schwertmannite over time, synthetic schwertmannite samples containing varying amounts of sulphate, chromate and arsenate were kept at a stable pH of either 2 or 4 over 1 year in suspension. At several time intervals Fe and the oxyanions were measured in solution and alterations of the solid part were observed by XRD and Fourier-Transform infrared (FT-IR) spectroscopy. At pH 2 schwertmannite partly dissolved and the total release of arsenate (24%) was low in contrast to chromate (35.4–57.5%) and sulphate (67–76%). Accordingly, the ionic activity product (log IAP) of arsenated schwertmannite was lowest (13.5), followed by the log IAP for chromated schwertmannite (16.2–18.5) and the log IAP for regular (=non-substituted) schwertmannite (18). At pH 4 schwertmannite transformed to goethite, an effect which occurred at the fastest rate for regular schwertmannite (=arsenate- and chromate-free), followed by chromate and arsenate containing schwertmannite. Both chromate and more evidently arsenate have a stabilizing effect on the schwertmannite structure, because they retarded the dissolution and transformation reactions.These kinetic investigations as well as crystallographic considerations demonstrated that the strength of the Fe(III) complexes with the anions controls the formation process and the stability of schwertmannite: with increasing affinity of the oxyanions to form complexes with Fe(III), the strength of the resulting binding and thus the stability and substitution preference increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号