首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A combination of macroscopic experiments and in situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy was used to study Cd(II)-sulfate interactions on the goethite-water interface. The presence of SO4 dramatically promoted Cd adsorption at lower pH (pH 5.5-6.5) and had a smaller effect at higher pH. ATR-FTIR studies indicated sulfate adsorption on goethite occurred via both outer- and inner-sphere complexation. The relative importance of both complexes was a function of pH and sulfate concentration. ATR-FTIR spectra provided direct evidence of the formation of Cd-SO4 ternary surface complexes on goethite. In addition to ternary complexes, Cd specifically sorbed on goethite promoted SO4 adsorption via changing the surface charge, and caused additional SO4 adsorption as both inner- and outer-sphere complexes. The relative importance of ternary complexes versus electrostatic effects depended upon pH values and Cd concentration. Ternary complex formation was promoted by low pH and high Cd levels, whereas electrostatic effects were more pronounced at high pH and low Cd levels. A portion of SO4 initially sorbed in inner-sphere complexes in the absence of Cd was transformed into Cd-SO4 ternary complexes with increased Cd concentration.  相似文献   

2.
《Geochimica et cosmochimica acta》1999,63(19-20):2957-2969
Fourier transform infrared (FTIR) and extended X-ray absorption fine structure (EXAPS) spectroscopic measurements were performed on Pb(II)ethylenediaminetetraacetic (EDTA) adsorbed on goethite as a function of pH (4–6), Pb(II)EDTA concentration (0.11–72 μM), and ionic strength (16 μM–0.5 M). FTIR measurements show no evidence for carboxylate-Fe(III) bonding or protonation of EDTA at Pb:EDTA = 1:1. Both FTIR and EXAFS spectroscopic measurements suggest that EDTA acts as a hexadentate ligand, with all four of its carboxylate and both of its amine groups bonded to Pb(II). No evidence was observed for inner-sphere Pb(II)-goethite bonding at Pb:EDTA = 1:1. Hence, the adsorbed complexes should have composition Pb(II)EDTA2−. Because substantial uptake of PbEDTA(II)2− occurred in the samples, we interpret that Pb(II)EDTA2− adsorbed as outer-sphere complexes and/or as complexes that lose part of their solvation shells and hydrogen bond directly to goethite surface sites. We propose the term “hydration-sphere” for the latter type of complexes because they should occupy space in the primary hydration spheres of goethite surface functional groups and to distinguish this mode of sorption from common structural definitions of inner- and outer-sphere complexes. The lack of evidence for inner-sphere EDTA-Fe(III) bonding suggests that previously proposed metal/ligand-promoted dissolution mechanisms should be modified, specifically to account for the presence of outer-sphere precursor species.  相似文献   

3.
We measured the adsorption of Cu(II) onto kaolinite from pH 3-7 at constant ionic strength. EXAFS spectra show that Cu(II) adsorbs as (CuO4Hn)n−6 and binuclear (Cu2O6Hn)n−8 inner-sphere complexes on variable-charge ≡AlOH sites and as Cu2+ on ion exchangeable ≡X--H+ sites. Sorption isotherms and EXAFS spectra show that surface precipitates have not formed at least up to pH 6.5. Inner-sphere complexes are bound to the kaolinite surface by corner-sharing with two or three edge-sharing Al(O,OH)6 polyhedra. Our interpretation of the EXAFS data are supported by ab initio (density functional theory) geometries of analog clusters simulating Cu complexes on the {110} and {010} crystal edges and at the ditrigonal cavity sites on the {001}. Having identified the bidentate (≡AlOH)2Cu(OH)20, tridentate (≡Al3O(OH)2)Cu2(OH)30 and ≡X--Cu2+ surface complexes, the experimental copper(II) adsorption data can be fit to the reactions
  相似文献   

4.
The adsorption of five toxic metallic cations, Cd(II), Cu(II), Ni(II), Pb(II) and Zn(II), onto montmorillonite was investigated as a function of pH and ionic strength and a two-site surface complexation model was used to predict the adsorption data. The results showed that in the lower pH range, 3∼6 for Cd, Cu, Ni and Zn, and 3∼4.5 for Pb, the adsorption was greatly affected by ionic strength, while in the higher pH range, the adsorption was not. In the lower pH range, the metallic cations were mainly bound through the formation of outer-sphere surface on the permanently charged basal surface sites (≡X), while in the higher pH range the adsorption occurred mainly on the variably charged edge sites (≡SOH) through the formation of inner-sphere surface complexes. Acid-base surface constants and metal binding constants for the two sites were optimized using FITEQL. The adsorption affinity of the five metallic cations to the permanently charged sites of montmorillonite was Pb > Cu > Ni ≈ Zn ≈ Cd, while that to the variable charged sites was Pb ? Cu > Zn > Cd > Ni.  相似文献   

5.
6.
The adsorption of oxalate and malonate at the water-goethite interface was studied as a function of pH and total ligand concentrations by means of quantitative adsorption measurements and attenuated total reflectance Fourier transform infrared spectroscopy. The obtained results conclusively showed that oxalate and malonate both form outer-sphere and inner-sphere surface complexes on goethite, and that these complexes coexist over a broad pH interval. The inner-sphere complexes were favored by low pH, while the relative concentrations of the outer-sphere species increase with increasing pH. Based on comparisons with model complexes characterized by Extended X-Ray Adsorption Fine Structure (EXAFS) and results from theoretical frequency calculations, the structures of the inner-sphere complexes of oxalate and malonate were best described as mononuclear five- and six-membered ring chelate structures, respectively. The stability of the inner-sphere complexes followed the trend expected from solutions studies, with the oxalate five-membered ring yielding the more stable complexes compared to the six-membered ring of malonate. The increased stability of the inner-sphere complex of oxalate was manifested in a greater extent of adsorption at acidic pH values. Despite the fact that significant amounts of oxalate and malonate inner-sphere surface complexes were formed, no ligand-promoted dissolution was observed at the experimental conditions in the study.  相似文献   

7.
Proton binding constants for the edge and basal surface sites of kaolinite were determined by batch titration experiments at 25 °C in the presence of 0.1 M, 0.01 M and 0.001 M solutions of NaNO3 and in the pH range 3-9. By optimizing the results of the titration experiments, the ratio of the edge sites to the basal surface sites was found to be 6:1. The adsorption of Cd(II), Cu(II), Ni(II), Zn(II) and Pb(II) onto kaolinite suspensions was investigated using batch adsorption experiments and results suggested that in the lower pH range the metallic cations were bound through non-specific ion exchange reactions on the permanently charged basal surface sites (X). Adsorption on these sites was greatly affected by ionic strength. With increasing pH, the variable charged edge sites (SOH) became the major adsorption sites and inner-sphere specifically adsorbed monodentate complexes were believed to be formed. The effect of ionic strength on the extent of adsorption of the metals on the variable charged edge sites was much less than those on the permanently charged sites. Two binding constants, log K(X2Me) and log K(SOMe), were calculated by optimizing these constants in the computer program FITEQL. A model combining non-specific ion exchange reactions and inner-sphere specific surface complexations was developed to predict the adsorption of heavy metals onto kaolinite in the studied pH range. Linear free energy relationships were found between the edge site binding constants and the first hydrolysis constants of the metals.  相似文献   

8.
We measured the adsorption of Cu(II) onto goethite (α-FeOOH), hematite (α-Fe2O3) and lepidocrocite (γ-FeOOH) from pH 2-7. EXAFS spectra show that Cu(II) adsorbs as (CuO4Hn)n−6 and binuclear (Cu2O6Hn)n−8 complexes. These form inner-sphere complexes with the iron (hydr)oxide surfaces by corner-sharing with two or three edge-sharing Fe(O,OH)6 polyhedra. Our interpretation of the EXAFS data is supported by ab initio (density functional theory) geometries of analogue Fe2(OH)2(H2O)8Cu(OH)4and Fe3(OH)4(H2O)10Cu2(OH)6 clusters. We find no evidence for surface complexes resulting from either monodentate corner-sharing or bidentate edge-sharing between (CuO4Hn)n−6 and Fe(O,OH)6 polyhedra. Sorption isotherms and EXAFS spectra show that surface precipitates have not formed even though we are supersaturated with respect to CuO and Cu(OH)2. Having identified the bidentate (FeOH)2Cu(OH)20 and tridentate (Fe3O(OH)2)Cu2(OH)30 surface complexes, we are able to fit the experimental copper(II) adsorption data to the reactions
  相似文献   

9.
Arsenic(III) adsorption reactions are thought to play a critical role in the mobility of arsenic in the environment. It is the nature of the As(III) surface species that must be known on a wide variety of minerals and over a range of pH, ionic strength and surface coverage in order to be able to predict adsorption behavior. EXAFS and XANES spectroscopic studies have identified bidentate, binuclear inner-sphere surface species and/or an outer-sphere species, but only a few oxides have been examined. These results need to be integrated with a predictive surface complexation model in order to ascertain the environmental conditions under which the different surface species may be important on a wide range of solids. In the present study, the surface species information from XAFS and XANES studies has been built into a recent extension of the triple-layer model (ETLM) for the formation of inner-sphere complexes of anions that takes into account the electrostatics of water dipole desorption during ligand exchange reactions. The ETLM has been applied to regress surface titration, proton coadsorption, and As(III) adsorption data over extensive ranges of pH, ionic strength, electrolyte type and surface coverage for magnetite, goethite, gibbsite, amorphous hydrous alumina, hydrous ferric oxide (HFO), ferrihydrite, and amorphous iron oxide. Two principal reactions forming inner- and outer-sphere As(III) surface species,
  相似文献   

10.
We have characterized the adsorption of Suwannee River humic acid (SRHA) and Cu(II) on calcite from preequilibrated solutions at pH 8.25. Sorption isotherms of SRHA on calcite follow Langmuir-type behavior at SRHA concentrations less than 15 mg C L−1, whereas non-Langmuirian uptake becomes evident at concentrations greater than 15 mg C L−1. The adsorption of SRHA on calcite is rapid and mostly irreversible, with corresponding changes in electrostatic properties. At pH 8.25, Cu(II) uptake by calcite in the presence of dissolved SRHA decreases with increasing dissolved SRHA concentration, suggesting that formation of Cu-SRHA aqueous complexes is the primary factor controlling Cu(II) sorption at the calcite surface under the conditions of our experiments. We also observed that surface-bound SRHA has little influence on Cu(II) uptake by calcite, suggesting that Cu(II) coordinates to calcite surface sites rather than to surface-bound SRHA.Cu K-edge X-ray absorption near edge structure (XANES) and extended X-ray absorption fine-structure (EXAFS) spectroscopic results show that the local coordination of Cu adsorbed at the calcite surface is very similar in the presence and absence of SRHA. Ca backscatterers at ∼3.90 Å indicate that Cu(II) forms tetragonally distorted inner-sphere adsorption complexes in both binary and ternary systems. Subtle differences in the XANES and EXAFS between binary sorption samples and ternary sorption samples, however, prevent us from ruling out the formation of ternary Cu-SRHA surface complexes. Our findings demonstrate that SRHA plays an important role in controlling the fate and transport of Cu(II) in calcite-bearing systems.  相似文献   

11.
Interaction of heavy metals with clay minerals can dominate solid-solution reactions in soil, controlling the fate of the metals in the environment. In this study we used powdered and polarized extended X-ray absorption fine structure (EXAFS) spectroscopy and X-ray absorption near edge spectroscopy (XANES) to investigate Cu sorbed on Llano vermiculite and compare the results to reported Cu sorption mechanism on Wyoming (WY) smectite and reduced South African (SA) vermiculite. Analysis of the Cu K-edge spectra revealed that Cu sorbed on Llano vermiculite at high ionic strength (I) has the greatest degree of covalent bond character, followed by Cu sorbed on montmorillonite at high I, and Cu sorbed on reduced SA vermiculite at high I. Cu sorbed on clay minerals at low I has the least covalent character. EXAFS data from Cu sorbed Ca- and K-equilibrated Llano vermiculites showed the presence of a second-shell Al, Si, or Mg backscatterer at 3.02 Å. This distance is consistent with Cu sorbing via a corner-sharing monodentate or bidentate bond. Polarized XANES and EXAFS results revealed that the angle between the Cu atom and the mineral sorption sites is 68° with respect to the [001] direction. From the bond angle and the persistence of the second-shell backscatterer when the interlayer is collapsed (K-equilibration), we conclude that Cu adsorption on the Llano vermiculite is not occurring in the interlayer but rather Cu is adsorbing onto the edges of the vermiculite. Results from this research provide evidence that Cu forms inner-sphere and outer-sphere complexes on clay minerals, and does not form the vast multinuclear surface precipitates that have been observed for Co, Zn, and Ni.  相似文献   

12.
Adsorption of Cu2+, Zn2+, Cd2+, and Pb2+ onto goethite is enhanced in the presence of sulfate. This effect, which has also been observed on ferrihydrite, is not predicted by the diffuse layer model (DLM) using adsorption constants derived from single sorbate systems. However, by including ternary surface complexes with the stoichiometry FeOHMSO4, where FeOH is a surface adsorption site and M2+ is a cation, the effect of SO42− on cation adsorption was accurately predicted for the range of cation, goethite and SO42− concentrations studied. While the DLM does not provide direct molecular scale insights into adsorption reactions there are several properties of ternary complexes that are evident from examining trends in their formation constants. There is a linear relationship between ternary complex formation constants and cation adsorption constants, which is consistent with previous spectroscopic evidence indicating ternary complexes involve cation binding to the oxide surface. Comparing the data from this work to previous studies on ferrihydrite suggests that ternary complex formation on ferrihydrite involves complexes with the same or similar structure as those observed on goethite. In addition, it is evident that ternary complex formation constants are larger where there is a stronger metal-ligand interaction. This is also consistent with spectroscopic studies of goethite-M2+-SO42− and phthalate systems showing surface species with metal-ligand bonding. Recommended values of ternary complex formation constants for use in SO4-rich environments, such as acid mine drainage, are presented.  相似文献   

13.
Aqueous solutions containing Ni(II) and a series of structurally related carboxylic acids were analyzed using attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and Ni K-edge X-ray absorption fine structure spectroscopy (XAFS). XAFS spectra were also collected for solutions containing Ni2+ and chelating ligands (ethylenediaminetetraacetic acid, nitrilotriacetic acid (NTA)) as well as soil fulvic acid. Limited spectral changes are observed for aqueous Ni(II) complexes with monocarboxylates (formate, acetate) and long-chain polycarboxylates (succinate, tricarballylate), where individual donor groups are separated by multiple bridging methylene groups. These spectral changes indicate weak interactions between Ni(II) and carboxylates, and the trends are similar to some earlier reports for crystalline Ni(II)-acetate solids, for which X-ray crystallography studies have indicated monodentate Ni(II)-carboxylate coordination. Nonetheless, electrostatic or outer-sphere coordination cannot be ruled out for these complexes. However, spectral changes observed for short-chain dicarboxylates (oxalate, malonate) and carboxylates that contain an alcohol donor group adjacent to one of the carboxylate groups (lactate, malate, citrate) demonstrate inner-sphere metal coordination by multiple donor groups. XAFS spectral fits of Ni(II) solutions containing soil fulvic acid are consistent with inner-sphere Ni(II) coordination by one or more carboxylate groups, but spectra are noisy and outer-sphere modes of coordination cannot be ruled out. These molecular studies refine our understanding of the interactions between carboxylates and weakly complexing divalent transition metals, such as Ni(II).  相似文献   

14.
Arsenic(V), as the arsenate (AsO4)3− ion and its conjugate acids, is strongly sorbed to iron(III) oxides (α-Fe2O3), oxide hydroxides (α-,γ-FeOOH) and poorly crystalline ferrihydrite (hydrous ferric oxide). The mechanism by which arsenate complexes with iron oxide hydroxide surfaces is not fully understood. There is clear evidence for inner sphere complexation but the nature of the surface complexes is controversial. Possible surface complexes between AsO4 tetrahedra and surface FeO6 polyhedra include bidentate corner-sharing (2C), bidentate edge-sharing (2E) and monodentate corner-sharing (1V). We predicted the relative energies and geometries of AsO4-FeOOH surface complexes using density functional theory calculations on analogue Fe2(OH)2(H2O)nAsO2(OH)23+ and Fe2(OH)2(H2O)nAsO4+ clusters. The bidentate corner-sharing complex is predicted to be substantially (55 kJ/mole) more favored energetically over the hypothetical edge-sharing bidentate complex. The monodentate corner-sharing (1V) complex is very unstable. We measured EXAFS spectra of 0.3 wt. % (AsO4)3− sorbed to hematite (α-Fe2O3), goethite(α-FeOOH), lepidocrocite(γ-FeOOH) and ferrihydrite and fit the EXAFS directly with multiple scattering. The phase-shift-corrected Fourier transforms of the EXAFS spectra show peaks near 2.85 and 3.26 Å that have been attributed by previous investigators to result from 2E and 2C complexes. However, we show that the peak near 2.85 Å appears to result from As-O-O-As multiple scattering and not from As-Fe backscatter. The observed 3.26 Å As-Fe distance agrees with that predicted for the bidentate corner-sharing surface (2C) complex. We find no evidence for monodentate (1V) complexes; this agrees with the predicted high energies of such complexes.  相似文献   

15.
We measured the adsorption of V(V) onto goethite (α-FeOOH) under oxic (PO2 = 0.2 bar) atmospheric conditions. EXAFS spectra show that V(V) adsorbs by forming inner-sphere complexes as VO2(OH)2 and VO3(OH). We predicted the relative energies and geometries of VO2(O, OH)2-FeOOH surface complexes using ab initio calculations of the geometries and energetics of analogue Fe2(OH)2(H2O)6O2VO2(O, OH)2 clusters. The bidentate corner-sharing complex is predicted to be substantially (57 kJ/mol) favoured energetically over the hypothetical edge-sharing bidentate complex. Fitting the EXAFS spectra using multiple scattering shows that only the bidentate corner-sharing complex is present with Fe-V and V-O distances in good agreement with those predicted. We find it important to include multiple scattering in the fits of our EXAFS data otherwise spurious V-Fe distances near 2.8 Å result which may be incorrectly attributed to edge-sharing complexes. We find no evidence for monodentate complexes; this agrees with predicted high energies of such complexes. Having identified the Fe2O2V(OH)2+ and Fe2O2VO(OH)0 surface complexes, we are able to fit the experimental vanadium(V) adsorption data to the reactions
  相似文献   

16.
Natural hexagonal birnessite is a poorly crystalline layer type Mn(IV) oxide precipitated by bacteria and fungi which has a particularly high adsorption affinity for Pb(II). X-ray spectroscopic studies have shown that Pb(II) forms strong inner-sphere surface complexes mainly at two sites on hexagonal birnessite nanoparticles: triple corner-sharing (TCS) complexes on Mn(IV) vacancies in the interlayers and double edge-sharing (DES) complexes on lateral edge surfaces. Although the TCS surface complex has been well characterized by spectroscopy, some important questions remain about the structure and stability of the complexes occurring on the edge surfaces. First-principles simulation techniques such as density functional theory (DFT) offer a useful way to address these questions by providing complementary information that is difficult to obtain by spectroscopy. Following this computational approach, we used spin-polarized DFT to perform total-energy-minimization geometry optimizations of several possible Pb(II) surface complexes on model birnessite nanoparticles similar to those that have been studied experimentally. We first validated our DFT calculations by geometry optimizations of (1) the Pb-Mn oxyhydroxide mineral, quenselite (PbMnO2OH), and (2) the TCS surface complex, finding good agreement with experimental structural data while uncovering new information about bonding and stability. Our geometry optimizations of several protonated variants of the DES surface complex led us to conclude that the observed edge-surface species is very likely to be this complex if the singly coordinated terminal O that binds to Pb(II) is protonated. Our geometry optimizations also revealed that an unhydrated double corner-sharing (DCS) species that has been proposed as an alternative to the DES complex is intrinsically unstable on nanoparticle edge surfaces, but could become stabilized if the local coordination environment is well-hydrated. A significant similarity exists in the structural parameters for the TCS complex and those for a DCS edge-surface complex that is protonated in the same manner as the optimal DES complex, which could complicate detecting the DCS complex in X-ray absorption spectra.  相似文献   

17.
Strontium sorption to amorphous silica and goethite was measured as a function of pH and dissolved strontium and carbonate concentrations at 25°C. Strontium sorption gradually increases from 0 to 100% from pH 6 to 10 for both phases and requires multiple outer-sphere surface complexes to fit the data. All data are modeled using the triple layer model and the site-occupancy standard state; unless stated otherwise all strontium complexes are mononuclear. Strontium sorption to amorphous silica in the presence and absence of dissolved carbonate can be fit with tetradentate Sr2+ and SrOH+ complexes on the β-plane and a monodentate Sr2+complex on the diffuse plane to account for strontium sorption at low ionic strength. Strontium sorption to goethite in the absence of dissolved carbonate can be fit with monodentate and tetradentate SrOH+ complexes and a tetradentate binuclear Sr2+ species on the β-plane. The binuclear complex is needed to account for enhanced sorption at hgh strontium surface loadings. In the presence of dissolved carbonate additional monodentate Sr2+ and SrOH+ carbonate surface complexes on the β-plane are needed to fit strontium sorption to goethite. Modeling strontium sorption as outer-sphere complexes is consistent with quantitative analysis of extended X-ray absorption fine structure (EXAFS) on selected sorption samples that show a single first shell of oxygen atoms around strontium indicating hydrated surface complexes at the amorphous silica and goethite surfaces.  相似文献   

18.
The competitive adsorption of arsenate and arsenite with silicic acid at the ferrihydrite–water interface was investigated over a wide pH range using batch sorption experiments, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, extended X-ray absorption fine structure (EXAFS) spectroscopy, and density functional theory (DFT) modeling. Batch sorption results indicate that the adsorption of arsenate and arsenite on the 6-L ferrihydrite surface exhibits a strong pH-dependence, and the effect of pH on arsenic sorption differs between arsenate and arsenite. Arsenate adsorption decreases consistently with increasing pH; whereas arsenite adsorption initially increases with pH to a sorption maximum at pH 7–9, where after sorption decreases with further increases in pH. Results indicate that competitive adsorption between silicic acid and arsenate is negligible under the experimental conditions; whereas strong competitive adsorption was observed between silicic acid and arsenite, particularly at low and high pH. In situ, flow-through ATR-FTIR data reveal that in the absence of silicic acid, arsenate forms inner-sphere, binuclear bidentate, complexes at the ferrihydrite surface across the entire pH range. Silicic acid also forms inner-sphere complexes at ferrihydrite surfaces throughout the entire pH range probed by this study (pH 2.8–9.0). The ATR-FTIR data also reveal that silicic acid undergoes polymerization at the ferrihydrite surface under the environmentally-relevant concentrations studied (e.g., 1.0 mM). According to ATR-FTIR data, arsenate complexation mode was not affected by the presence of silicic acid. EXAFS analyses and DFT modeling confirmed that arsenate tetrahedra were bonded to Fe metal centers via binuclear bidentate complexation with average As(V)-Fe bond distance of 3.27 Å. The EXAFS data indicate that arsenite forms both mononuclear bidentate and binuclear bidentate complexes with 6-L ferrihydrite as indicated by two As(III)–Fe bond distances of ∼2.92–2.94 and 3.41–3.44 Å, respectively. The As–Fe bond distances in both arsenate and arsenite EXAFS spectra remained unchanged in the presence of Si, suggesting that whereas Si diminishes arsenite adsorption preferentially, it has a negligible effect on As–Fe bonding mechanisms.  相似文献   

19.
Calcium oxalate monohydrate (CaC2O4·H2O—abbreviated as CaOx) is produced by two-thirds of all plant families, comprising up to 80 wt.% of the plant tissue and found in many surface environments. It is unclear, however, how CaOx in plants and soils interacts with metal ions and possibly sequesters them. This study examines the speciation of Sr(II)aq following its reaction with CaOx. Batch uptake experiments were conducted over the pH range 4-10, with initial Sr solution concentrations, [Sr]aq, ranging from 1 × 10−4 to 1 × 10−3 M and ionic strengths ranging of 0.001-0.1 M, using NaCl as the background electrolyte. Experimental results indicate that Sr uptake is independent of pH and ionic strength over these ranges. After exposure of CaOx to Sraq for two days, the solution Ca concentration, [Ca]aq, increased for all samples relative to the control CaOx suspension (with no Sr added). The amount of Sraq removed from solution was nearly equal to the total [Ca]aq after exposure of CaOx to Sr. These results suggest that nearly 90% of the Sr is removed from solution to a solid phase as Ca is released into solution. We suggest that the other 10% is sequestered through surface adsorption on a solid phase, although we have no direct evidence for this. Extended X-ray absorption fine structure (EXAFS) spectroscopy was used to determine the molecular-level speciation of Sr in the reaction products. Deconvolutions of the Sr K-edge EXAFS spectra were performed to identify multi-electron excitation (MEE) features. MEE effects were found to give rise to low-frequency peaks in the Fourier transform before the first shell of oxygen atoms and do not affect EXAFS fitting results. Because of potential problems caused by asymmetric distributions of Sr-O distances when fitting Sr K-edge EXAFS data using the standard harmonic model, we also employed a cumulant expansion model and an asymmetric analytical model to account for anharmonic effects in the EXAFS data. For Sr-bearing phases with low to moderate first-shell (Sr-O pair correlation) anharmonicity, the cumulant expansion model is sufficient for EXAFS fitting; however, for higher degrees of anharmonicity, an analytical model is required. Based on batch uptake results and EXAFS analyses of reaction products, we conclude that Sr is dominantly sequestered by a solid phase at the CaOx surface, likely the result of a dissolution-reprecipitation mechanism, to form SrC2O4 of mixed hydration state (i.e. SrOx·nH2O, where n = 0, 1, or 2). Surprisingly, no spectroscopic or XRD evidence was found for a (Sr,Ca)Ox solid solution or for a separate SrCO3 phase. In addition, we found no evidence for Sr(II) inner-sphere sorption complexes on CaOx surfaces based on lack of Sr-Ca second-neighbor pair correlations in the EXAFS spectra, although some type of Sr(II) surface complex (perhaps a type B Sr-oxalate ternary complex or an outer-sphere Sr(II) complex) or some as yet undetected Sr-bearing solid phases are needed to account for approximately 10% of Sr uptake by CaOx. The formation of a hydrated SrOx phase in environments under conditions similar to those of our experiments should retard Sr mobility and could be a significant factor in the biogeochemical cycling of Sr in soils and sediments or in plants and plant litter where CaOx is present.  相似文献   

20.
Sorption of U(VI) to goethite is a fundamental control on the mobility of uranium in soil and groundwater. Here, we investigated the sorption of U on goethite using EXAFS spectroscopy, batch sorption experiments and DFT calculations of the energetics and structures of possible surface complexes. Based on EXAFS spectra, it has previously been proposed that U(VI), as the uranyl cation , sorbs to Fe oxide hydroxide phases by forming a bidentate edge-sharing (E2) surface complex, >Fe(OH)2UO2(H2O)n. Here, we argue that this complex alone cannot account for the sorption capacity of goethite (α-FeOOH). Moreover, we show that all of the EXAFS signal attributed to the E2 complex can be accounted for by multiple scattering. We propose that the dominant surface complex in CO2-free systems is a bidentate corner-sharing (C2) complex, (>FeOH)2UO2(H2O)3 which can form on the dominant {101} surface. However, in the presence of CO2, we find an enhancement of UO2 sorption at low pH and attribute this to a (>FeO)CO2UO2 ternary complex. With increasing pH, U(VI) desorbs by the formation of aqueous carbonate and hydroxyl complexes. However, this desorption is preceded by the formation of a second ternary surface complex (>FeOH)2UO2CO3. The three proposed surface complexes, (>FeOH)2UO2(H2O)3, >FeOCO2UO2, and (>FeOH)2UO2CO3 are consistent with EXAFS spectra. Using these complexes, we developed a surface complexation model for U on goethite with a 1-pK model for surface protonation, an extended Stern model for surface electrostatics and inclusion of all known UO2-OH-CO3 aqueous complexes in the current thermodynamic database. The model gives an excellent fit to our sorption experiments done in both ambient and reduced CO2 environments at surface loadings of 0.02-2.0 wt% U.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号