首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Geochemical processes occurring in cold environments on Earth, Mars, and Europa have elicited considerable interest in the application of geochemical models to subzero temperatures. Few existing geochemical models explicitly include acid chemistry and those that do are largely restricted to temperatures ≥0°C or rely on the mole-fraction scale rather than the more common molal scale. This paper describes (1) use of the Clegg mole-fraction acid models to develop a molal-based model for hydrochloric, nitric, and sulfuric acids at low temperatures; (2) incorporation of acid chemistry and nitrate minerals into the FREZCHEM model; (3) validation and limitations of the derived acid model; and (4) simulation of hypothetical acidic brines for Europa.The Clegg mole-fraction acid models were used to estimate activities of water and mean ionic activity coefficients that serve as the database for estimating molal Pitzer-equation parameters for HCl (188 to 298 K), HNO3 (228 to 298 K), and H2SO4 (208 to 298 K). Model eutectics for HNO3 and H2SO4 agree with experimental measurements to within ± 0.2°C. In agreement with previous work, the experimental freezing point depression (fpd) data for pure HCl at subzero temperatures were judged to be flawed and unreliable. Three alternatives are discussed for handling HCl chemistry at subzero temperatures. In addition to defining the solubility of solid-phase acids, this work also adds three new nitrate minerals and six new acid salts to the FREZCHEM model and refines equilibria among water ice, liquid water, and water vapor over the temperature range from 180 to 298 K. The final system is parameterized for Na-K-Mg-Ca-H-Cl-SO4-NO3-OH-HCO3-CO3-CO2-H2O.Simulations of hypothetical MgSO4-H2SO4-H2O and Na2SO4-MgSO4-H2SO4-H2O brines for Europa demonstrate how freezing can convert a predominantly salt solution into a predominantly acid solution at subzero temperatures. This result has consequences for the effects of salinity, acidity, and temperature as limiting factors for potential life on Europa. Strong acidity would limit life-forms to highly acidophilic organisms.  相似文献   

2.
The sublimation of water in the region of extremely low pressures and temperatures meets increasing interest for the exploration of icy cosmic bodies. At temperatures below 130 K, the shape of the sublimation curve of H2O is not known; neither experimental data nor theoretical treatments exist for this region. Based upon theoretical upper and lower bounds for the heat capacity of water vapor in this range, a narrow region in the pressure-temperature diagram is identified which must necessarily enclose the sublimation curve down to virtually any lower pressures and temperatures. Within this region, an approximate sublimation curve is computed from the 2006 Gibbs potential of ice Ih, using available heat capacity data points of water vapor between 10 and 130 K. The theoretical zero-point limiting law of the sublimation pressure is derived. Valid between 20 and 273.16 K, correlation equations for the sublimation enthalpy and the sublimation pressure are fitted to the computed data. All quantities are expressed in the 1990 temperature scale ITS-90. Under cosmic conditions, our results suggest that the sublimation of ice is unlikely below 50 K and impossible below 23 K.  相似文献   

3.
《Chemical Geology》1999,153(1-4):187-209
This paper describes a model for barite and celestite solubilities in the Na–K–Ca–Mg–Ba–Sr–Cl–SO4–H2O system to 200°C and to 1 kbar. It is based on Pitzer's ion interaction model for the thermodynamic properties of the aqueous phase and on values of the solubility products of the solids revised in this work. It is shown how barite and celestite solubilities in electrolyte solutions can be accurately predicted as a function of temperature and pressure from previously determined Pitzer's parameters. The equilibrium constant for the BaSO4(aq) ion pair dissociation reaction is calculated from recently reported barite solubility in Na2SO4 solutions from 0 to 80°C. Pressure corrections are evaluated through partial molal volume calculations and are partially validated by comparing model predictions to measured barite and celestite solubilities in pure water to 1 kbar and in NaCl solutions to 500 bars. The model is then used to investigate the tendency of ion pairing of Ca, Sr and Ba with sulfate in seawater. Finally, the activity coefficient of aqueous barium sulfate in seawater is calculated for temperature, pressure and salinity values found in the ocean and compared to published values.  相似文献   

4.
Perennial ice covers on many Antarctic lakes have resulted in high lake inorganic carbon contents. The objective of this paper was to evaluate and compare the brine and CO2 chemistries of Lake Vida (Victoria Valley) and West Lake Bonney (Taylor Valley), two lakes of the McMurdo Dry Valleys (East Antarctica), and their potential consequences during global warming. An existing geochemical model (FREZCHEM-15) was used to convert measured molarity into molality needed for the FREZCHEM model, and this model added a new algorithm that converts measured DIC into carbonate alkalinity needed for the FREZCHEM model. While quite extensive geochemical information exists for ice-covered Taylor Valley lakes, such as West Lake Bonney, only limited information exists for the recently sampled brine of >25 m ice-thick Lake Vida. Lake Vida brine had a model-calculated pCO2 = 0.60 bars at the field pH (6.20); West Lake Bonney had a model-calculated pCO2 = 5.23 bars at the field pH (5.46). Despite the high degree of atmospheric CO2 supersaturation in West Lake Bonney, it remains significantly undersaturated with the gas hydrate, CO2·6H2O, unless these gas hydrates are deep in the sediment layer or are metastable having formed under colder temperatures or greater pressures. Because of lower temperatures, Lake Vida could start forming CO2·6H2O at lower pCO2 values than West Lake Bonney; but both lakes are significantly undersaturated with the gas hydrate, CO2·6H2O. For both lakes, simulation of global warming from current subzero temperatures (?13.4 °C in Lake Vida and ?4.7 °C in West Lake Bonney) to 10 °C has shown that a major loss of solution-phase carbon as CO2 gases and carbonate minerals occurred when the temperatures rose above 0 °C and perennial ice covers would disappear. How important these Antarctic CO2 sources will be for future global warming remains to be seen. But a recent paper has shown that methane increased in atmospheric concentration due to deglaciation about 10,000 years ago. So, CO2 release from ice lakes might contribute to atmospheric gases in the future.  相似文献   

5.
The Cretaceous is a special episode in the history of the Earth named for a unique rock type, chalk. Chalk is similar to modern deep-sea calcareous ooze and its deposition in epicontinental seas occurred as these areas became an integral part of the ocean. The shelf-break fronts that today separate inshore from open-ocean waters cannot have existed during the Late Cretaceous probably because the higher sea level brought the base of the wind-mixed Ekman layer above the sea floor on the continental margins.A second peculiarity of the Cretaceous is its warm equable climate. Tropical and polar temperatures were warmer than today. Meridional and ocean-continent temperature gradients were lower. The warmer climate was a reflection of higher atmospheric levels of greenhouse gasses, CO2 and possibly CH4, reinforced by higher water vapor content in response to the warmer temperatures. Most of the additional energy involved in the meridional heat transport system was transported as latent heat of vaporization of H20 by the atmosphere. Poleward heat transport may have been as much as 1 Petawatt (20%) greater than it is today. C3 plants provided for more efficient energy transport into the interior of the continents.Circulation of the Cretaceous ocean may have been very different from that of today. It is impossible for large areas of the modern ocean to become anoxic, but episodes of local anoxia occurred during the earlier Cretaceous and became regional to global during the middle of the Cretaceous. The present ocean structure depends on constant wind systems, which in turn depend on stability of the atmospheric pressure systems forced by polar ice. During most of the Cretaceous the polar regions were ice free. Without polar ice there were seasonal reversals of the high-latitude atmospheric pressure systems, resulting in disruption of the mid- and high latitude wind systems. Without constant mid-latitude westerly winds, there would be no subtropical and polar fronts in the ocean, no well-developed ocean pycnocline, and no tropical subtropical gyres dominating ocean circulation. Instead the ocean circulation would be accomplished through mesoscale eddies which could carry warmth to the polar regions.Greater knowledge and understanding of the Cretaceous is critical for learning how the climate system operates when one or both polar regions are ice free.  相似文献   

6.
We present an ultrasonic and neutron powder diffraction study of crystalline MgSO4·7H2O (synthetic epsomite) and MgSO4·7D2O under pressure up to ~3 GPa near room temperature and up to ~2 GPa at lower temperatures. Both methods provide complementary data on the phase transitions and elasticity of magnesium sulphate heptahydrate, where protonated and deuterated counterparts exhibit very similar behaviour and properties. Under compression in the declared pressure intervals, we observed three different sequences of phase transitions: between 280 and 295 K, phase transitions occurred at approximately 1.4, 1.6, and 2.5 GPa; between 240 and 280 K, only a single phase transition occurred; below 240 K, there were no phase transformations. Overall, we have identified four new phase fields at high pressure, in addition to that of the room-pressure orthorhombic structure. Of these, we present neutron powder diffraction data obtained in situ in the three phase fields observed near room temperature. We present evidence that these high-pressure phase fields correspond to regions where MgSO4·7H2O decomposes to a lower hydrate by exsolving water. Upon cooling to liquid nitrogen temperatures, the ratio of shear modulus G to bulk modulus B increases and we observe elastic softening of both moduli with pressure, which may be a precursor to pressure-induced amorphization. These observations may have important consequences for modelling the interiors of icy planetary bodies in which hydrated sulphates are important rock-forming minerals, such as the large icy moons of Jupiter, influencing their internal structure, dynamics, and potential for supporting life.  相似文献   

7.
We analyze models of the internal structure of Titan, a large icy satellite of the Saturn system. Calculations are carried out using information on the mass, mean density, moment of inertia, orbital parameters, and elastic properties of the satellite obtained by the Cassini–Huygens mission, as well as geochemical data on the composition of chondrite materials, equations of state of water and ices I, III, V, VI, and VII, and thermodynamic models for conductive heat transfer in the outer icy crust and of global convection in the interior zones of the satellite. The analysis of the models shows that models of partially differentiated Titan are most consistent; they include an outer water–ice shell, an intermediate ice–rock mantle, and an inner rock–iron core. It is shown that for the models of this type the maximum thickness of the water–ice shell is 460–470 km; it can be composed of an outer conductive crust of Ih ice 80–110 km thick and a subsurface water ocean 200–300 km deep. The maximum radius of the central rock–iron core of Titan can reach ~1300 km. The thickness of Titan’s ice–rock mantle does not exceed 2100 km at a density of 1.22–2.64 g/cm3. The model of partially differentiated Titan is feasible in the moment of inertia range of 0.312 < I/MR 2 < ~0.350.  相似文献   

8.
A thermodynamic model is presented to calculate methane solubility, liquid phase density and gas phase composition of the H2O-CH4 and H2O-CH4-NaCl systems from 273 to 523 K (possibly up to 573 K), from 1 to 2000 bar and from 0 to 6 mol kg−1 of NaCl with experimental accuracy. By a more strict theoretical approach and using updated experimental data, this model made substantial improvements over previous models: (1) the accuracy of methane solubility in pure water in the temperature range between 273 and 283 K is increased from about 10% to about 5%, but confirms the accuracy of the Duan model [Duan Z., Moller N., Weare J.H., 1992a. Prediction of methane solubilities in natural waters to high ionic strength from 0 to 250 °C and from 0 to 1600 bar. Geochim. Cosmochim. Acta56, 1451-1460] above 283 K up to 2000 bar; (2) the accuracy of methane solubility in the NaCl aqueous solutions is increased from >12% to about 6% on average from 273 K and 1 bar to 523 K and 2000 bar; (3) this model is able to calculate water content in the gas phase and liquid phase density, which cannot be calculated by previous models; and (4) it covers a wider range of temperature and pressure space. With a simple approach, this model is extended to predict CH4 solubility in other aqueous salt solutions containing Na+, K+, Mg2+, Ca2+, Cl and , such as seawater and geothermal brines, with excellent accuracy. This model is also able to calculate homogenization pressure of fluid inclusions (CH4-H2O-NaCl) and CH4 solubility in water at gas-liquid-hydrate phase equilibrium. A computer code is developed for this model and can be downloaded from the website: www.geochem-model.org/programs.htm.  相似文献   

9.
We investigate two key transport properties, self-diffusion and viscosity, of Mg2SiO4 liquid as a function of temperature and pressure using density functional theory-based molecular dynamics method. Liquid dynamics in a 224-atom supercell was captured in equilibrium simulations of relatively long durations (50-300 ps) to obtain an acceptable convergence. Our results show that Mg and Si are, respectively, the most and least mobile species at most conditions studied and all diffusivities become similar at high pressure. With increasing temperature from 2200 to 6000 K at ambient pressure, the self-diffusivities increase by factors of 25 (Mg), 80 (Si) and 65 (O), and the viscosity decreases by a factor of 30. The predicted temperature variations of all transport coefficients closely follow the Arrhenian law. However, their pressure variations show a significant non-Arrhenian behavior and also are sensitive to temperature. At 3000 K, the diffusivity (viscosity) decreases (increases) by more than one order of magnitude between 0 and 50 GPa with their activation volumes increasing on compression. Over the entire mantle pressure range, the variations at 4000 K are of two orders of magnitude with nearly constant activation volumes whereas the variations at 6000 K are within one order of magnitude with decreasing activation volumes. The predicted complex dynamical behavior of Mg2SiO4 liquid can be associated with the structural changes occurring on compression. We also estimate the diffusivity and viscosity profiles along a magma ocean isentrope, which suggest that the melt transport properties vary modestly over the relevant magma ocean depth ranges.  相似文献   

10.
The abundances of Ni and Co in the Earth’s mantle are depleted relative to chondrites due to terrestrial core formation. Recently, the observed mantle depletions of these elements have been explained by liquid metal-liquid silicate equilibrium during core formation in a high pressure, high temperature magma ocean on the early Earth. However, different magma ocean models, which would be expected to give consistent results, have proposed vastly different pressures (24 to 59 GPa), temperatures (2200 to >4000 K) and oxygen fugacities (−0.15 to −2.4 ΔIW) for the Earth’s magma ocean. In an attempt to resolve the contradictory results from different magma ocean models and determine the thermodynamic conditions appropriate for core formation in the Earth, experiments were conducted to better constrain the influences of temperature and C on the partitioning behaviors of Ni and Co. Results of experiments at 7 GPa with temperatures of 1923-2673 K show that the metal-silicate partition coefficients for both Ni and Co decrease with increasing temperature, with the effect being more significant for Ni. Little change in the partitioning behaviors of either Ni or Co with varying C-content of the metallic liquid was found. By combining the new temperature data with previous results from pressure and oxygen fugacity studies, we parameterized the partitioning behavior of Ni and Co and applied the parameterizations to core formation in a terrestrial magma ocean. Multiple combinations of pressure, temperature, and oxygen fugacity can explain the observed mantle depletions of Ni and Co, and all of the very different previously proposed magma ocean conditions are generally consistent with valid solutions. By using the FeO content of the Earth’s mantle as an additional constraint on the oxygen fugacity, magma ocean conditions of 30-60 GPa, > 2000 K, and −2.2 ΔIW are suggested. Similar systematic approaches and studies of other moderately siderophile elements could further constrain the magma ocean conditions on the early Earth.  相似文献   

11.
《Applied Geochemistry》2001,16(2):161-181
Thermodynamic properties of water, in various families of hydroxides, oxihydroxides and hydrates (chlorides, chlorates, sulfates and sulfites …), have been calculated by using a large number of data available in the literature. A phase diagram of water has been used to find the first complete set of thermodynamic properties at 298 K, 1 bar of 8 ice polymorphs, from Ih (hexagonal ice, the common polymorph) to IX (very low temperature and high pressure polymorph). These results are used to illustrate the concept of ‘ice-like water’ available for a very large number of hydrated phases (noted X.H2O) in which water is attached to the corresponding anhydrous substrate (noted X) within a large spectrum of different enthalpies (ΔfH°) or Gibbs free energies (ΔfG°), but within a relatively small range of others properties. Heat capacity (Cp°), entropy (S°), and volume (V°) of hydration water (X.H2O−X=H2O) appeared to be very close to those characterizing ice polymorphs such as ice II or ice VIII. This concept allows the authors to propose a classification of minerals in terms of affinity for water and to predict the relative stability of hydrated and dehydrated phases under climatic variations.  相似文献   

12.
Potential contractional folds on Jupiter's icy moon Europa have been identified. The best example is at the extensional band Astypalaea Linea, where a series of subtle topographic undulations, 25 km in wavelength, possess parasitic tectonic features that support a folding origin. A scenario has been qualitatively proposed, whereby folds form via unstable contraction of the icy lithosphere, compensate for extension elsewhere on Europa, and then subsequently relax. Here, we quantitatively address this scenario, applying a model for viscous-plastic buckling of planetary lithospheres and finite element simulations of topographic relaxation. Our results suggest that the lithosphere of Europa could indeed be unstable, but the low required surface temperatures limit fold formation to higher latitudes, and the high required driving stresses (9–10 MPa) are difficult to achieve on the satellite. The depth to the brittle–ductile transition is well constrained, and high thermal gradients are indicated, implying heat flows near 100 mW m−2. In addition, topographic relaxation progresses so slowly even at these heat flows that it is not a viable mechanism to eliminate such features over the age of Europa's surface. Given the paucity of identified folds, we conclude that the necessary conditions for their formation are rare and that lithospheric folding is a minor mechanism for compensating the large amounts of extension seen elsewhere on Europa.  相似文献   

13.
Finite Prandtl number thermal convection is important to the dynamics of planetary bodies in the solar system. For example, the complex geology on the surface of the Jovian moon Europa is caused by a convecting, brine-rich global ocean that deforms the overlying icy “lithosphere”. We have conducted a systematic study on the variations of the convection style, as Prandtl numbers are varied from 7 to 100 at Rayleigh numbers 106 and 108. Numerical simulations show that changes in the Prandtl number could exert significant effects on the shear flow, the number of convection cells, the degree of layering in the convection, and the number and size of the plumes in the convecting fluid. We found that for a given Rayleigh number, the convection style can change from single cell to layered convection, for increasing Prandtl number from 7 to 100. These results are important for determining the surface deformation on the Jovian moon Europa. They also have important implications for surface heat flow on Europa, and for the interior heat transfer of the early Earth during its magma ocean phase. Electronic Supplementary Material is available if you access this article at . On that page (frame on the left side), a link takes you directly to the supplementary material. Electronic Supplementary Material is available if you access this article at . On that page (frame on the left side), a link takes you directly to the supplementary material.  相似文献   

14.
A detailed, systematic experimental and theoretical study was conducted to investigate the effect of pressure on equilibrium D/H fractionation between brucite (Mg(OH)2) and water at temperatures from 200 to 600°C and pressures up to 800 MPa. A fine-grained brucite was isotopically exchanged with excess amounts of water, and equilibrium D/H fractionation factors were calculated by means of the partial isotope exchange method. Our experiments unambiguously demonstrated that the D/H fractionation factor between brucite and water increased by 4.4 to 12.4‰ with increasing pressure to 300 or 800 MPa at all the temperatures investigated. The observed increases are linear with the density of water under experimental conditions. We calculated the pressure effects on the reduced partition function ratios (β-factor) of brucite (300-800 K and P ≤ 800 MPa) and water (400-600°C and P ≤ 100 MPa), employing a statistical-mechanical method similar to that developed by Kieffer (1982) and a simple thermodynamic method based on the molar volumes of normal and heavy waters, respectively. Our theoretical calculations showed that the reduced partition function ratio of brucite increases linearly with pressure at a given temperature (as much as 12.6‰ at 300 K and 800 MPa). The magnitude of the pressure effects rapidly decreases with increasing temperature. On the other hand, the β-factor of water decreases 4 to 5‰ with increasing pressure to 100 MPa at 400 to 600°C. Overall D/H isotope pressure effects combined from the separate calculations on brucite and water are in excellent agreement with the experimental results under the same temperature-pressure range. Our calculations also suggest that under the current experimental conditions, the magnitude of the isotope pressure effects is much larger on water than brucite. Thus, the observed pressure effects on D/H fractionation are common to other systems involving water. It is very likely that under some geologic conditions, pressure is an important variable in controlling D/H partitioning.  相似文献   

15.
Jupiter’s and Saturn’s regular satellites, which posses much ice, are currently thought to have been formed during the early evolution of the Solar System in circumplanetary protosatellite disks. Two of Saturn’s regular satellites—Titan and Enceladus—were experimentally proved to contain, along with water, other volatile components: molecular nitrogen, and methane (which are the major components of Titan’s atmosphere) and various nitrogen and carbon compounds in water plumes of Enceladus. The protomaterial of these rocky–icy satellites was formed in the outer regions of the gas–dust circumsolar nebula, and its closest analogue currently accessible to study is cometary material. The paper presents a review of experimental data on the chemical and isotopic composition of cometary material as possible sources of volatile components on Titan and Enceladus and model evaluations of temperatures in the circumsolar gas–dust protoplanetary disk and Jupiter’s and Saturn’s protosatellite disks during various evolutionary episodes of the solar system. The PT parameters of the origin of the protomaterial of Jupiter’s and Saturn’s regular satellites were proved to have been remarkably different, and hence, the material of Europa, a Jupiter’s regular satellite, cannot contain any volatile components other than water, in contrast to Titan and Enceladus. This conclusion is supported by experimental data. Cometary material is likely genetically related to the material of Saturn’s regular satellites Titan and Enceladus. The paper presents results of thermodynamic simulation of the evolution of the chemical and phase composition of Saturn’s satellites and suggests a model for the origin of Titan’s nitrogen–methane atmosphere.  相似文献   

16.
Consideration of available thermodynamic data and the published results of direct experiments relating to (1) formation. of periclase from dolomite and (2) hydration of periclase to brucite, permits the following conclusions to be drawn: (1) At very low partial pressures of CO2 (perhaps of the order of 1 bar) and relatively high partial pressures of water (up to 2000 bars), dolomite can break down directly to brucite and calcite at temperatures above about 400° C, and below temperatures on the brucite dehydration curve. (2) The reaction dolomite calcite + periclase + CO2 in contact metamorphism near granitic bodies is likely to occur only at low partial pressures of CO2 (perhaps 10 or 20 bars); this can be achieved without direct formation of brucite, by maintaining a partial pressure of water of the order of 1000 bars or more. (3) At low CO2 pressures dolomite may re-form in the cooling stages of metamorphism by reaction between calcite, brucite, and CO2 at temperatures below about 400° C.  相似文献   

17.
http://dx.doi.org/10.1016/j.gsf.2016.07.005   总被引:1,自引:1,他引:0  
The Hadean history of Earth is shrouded in mystery and it is considered that the planet was born dry with no water or atmosphere. The Earth-Moon system had many features in common during the birth stage. Solidification of the dry magma ocean at 4.53 Ga generated primordial continents with komatiite. We speculate that the upper crust was composed of fractionated gabbros and the middle felsic crust by anorthosite at ca. 21 km depth boundary, underlain by meta-anorthosite (grossular + kyanite + quartz) down to 50–60 km in depth. The thickness of the mafic KREEP basalt in the lower crust, separating it from the underlying upper mantle is not well-constrained and might have been up to ca. 100–200 km depending on the degree of fractionation and gravitational stability versus surrounding mantle density. The primordial continents must have been composed of the final residue of dry magma ocean and enriched in several critical elements including Ca, Mg, Fe, Mn, P, K, and Cl which were exposed on the surface of the dry Earth. Around 190 million years after the solidification of the magma ocean, “ABEL bombardment” delivered volatiles including H2O, CO2, N2 as well as silicate components through the addition of icy asteroids. This event continued for 200 Myr with subordinate bombardments until 3.9 Ga, preparing the Earth for the prebiotic chemical evolution and as the cradle of first life. Due to vigorous convection arising from high mantle potential temperatures, the primordial continents disintegrated and were dragged down to the deep mantle, marking the onset of Hadean plate tectonics.  相似文献   

18.
Feature     
Over the past decade, planets have been discovered that orbit other stars, a vast ocean has been detected below the icy crust of Jupiter's satellite, Europa, and fossils have been reported in a rock from Mars. On Earth, micro-organisms have been identified that inhabit environments previously thought to be too inhospitable to support life. All these observations have helped to define the interdisciplinary subject that has come to be known as astrobiology.  相似文献   

19.
We have conducted high pressure (to 3 kbar), water saturated melting experiments on an andesite (62 wt% SiO2) and a basaltic andesite (55 wt% SiO2) from western Mexico. A close comparison between the experimental phase assemblages and their compositions, and the phenocryst assemblages of the lavas, is found in water saturated liquids, suggesting that the CO2 content was minimal in the fluid phase. Thus the historic lavas from Volcan Colima (with phenocrysts of orthopyroxene, augite, plagioclase, and hornblende) were stored at a temperature between 950–975 °C, at a pressure between 700–1500 bars, and with a water content of 3.0–5.0 wt%. A hornblende andesite (spessartite) from Mascota, of nearly identical composition but with only amphibole phenocrysts, had a similar temperature but equilibrated at a minimum of 2000 bars pressure with a dissolved water content of at least 5.5 wt% in the liquid. Experiments on the basaltic andesite show that the most common natural phenocryst assemblages (olivine, ±augite, ±plagioclase) could have precipitated at temperatures from 1000–1150 °C, in liquids with a wide range of dissolved water content (∼2.0–6.0 wt%) and a corresponding pressure range. A lava of the same bulk composition with phenocrysts of hornblende, olivine, plagioclase, and augite is restricted to temperatures below 1000 °C and pressures below 2500 bars, corresponding to <5.5 wt% water in the residual liquid. Although there is some evidence for mixing in the andesites (sporadic olivine phenocrysts), the broad theme of the history of both lava types is that the phenocryst assemblages for both the andesitic magmas and basaltic andesitic magmas are generated from degassing and reequilibration on ascent of initially hydrous parents containing greater than 6 wt% water. Indeed andesitic magmas could be related to a basaltic andesite parent by hornblende-plagioclase fractionation under the same hydrous conditions. Received: 10 December 1996 / Accepted: 21 August 1997  相似文献   

20.
The temperature-X CO 2-equilibrium data for the reaction 1 tremolite + 11 dolomite 8 forsterite + 13 calcite + 9 CO2 +1H2O have been determined at total pressures (P CO 2 + P H2O) of 3,000 and 5,000 bars. The results are shown in Figure 2 along with the data for the total pressure of 1,000 bars (Metz, 1967).The MgCO3 contents of the magnesian-calcites formed during the experiments agree very well with the calcite-dolomite-solvus which can be recalculated from Equation (1) and the activity coefficients for MgCO3 in magnesiancalcite as given by Gordon and Greenwood (1970).If the T-X CO 2-equilibrium data are calculated from the equilibrium constant as given by Skippen (1974), assuming ideal mixing of CO2 and H2O, good agreement is achieved for the total pressure of 1,000 bars (see Figs. 4 and 5). At a total pressure of 3,000 bars, however, the calculated equilibrium temperatures are about 40 ° C below the experimentally determined values (see Fig. 6). This difference increases up to 70 ° C for a total pressure of 5,000 bars (see Fig. 7).From the experimentally determined equilibrium conditions of the assemblage: tremolite + dolomite + forsterite + magnesian calcite (see Fig. 8) the pressure of metamorphism can be estimated if the temperature is determined by the MgCO3-content of the magnesian-calcite from the calcite-dolomite solvus. However, when using the data of Figure 8, attention has to be drawn to the limiting condition of X CO 20.2.Simplified reaction equation not considering solid solution in the carbonates  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号