首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Potential CO2 seepages from geological storage sites or from the injection rig may affect the surrounding environment. To develop reliable detection techniques for such seepages a laboratory rig was designed that is composed of three vertical Plexiglas columns. The columns can be filled with sediments and water; CO2 can be injected from the bottom. Two columns are used to simulate the impact of CO2 on soils; while the third one, which is larger in size, simulates CO2 seepage in aquatic environments. The main results of the laboratory experiments indicate that increased levels of CO2 generate a quick drop in pH. Once the seepage is stopped, a partial recovery towards the initial values of pH is recorded. The outcomes of the laboratory experiments on the aquatic seepage are compared with observations from a submarine natural emission of CO2. In this natural underwater seepage multi-parametric probes and laboratory analysis were used to analyze the composition and the chemical effects of the emitted gas; basic acoustic techniques were tested as tools for the prompt detection of CO2 bubbles in water.  相似文献   

2.
Geological sequestration of anthropogenic CO2 appears to be a promising method for reducing the amount of greenhouse gases released to the atmosphere. Geochemical modelling of the storage capacity for CO2 in saline aquifers, sandstones and/or carbonates should be based on natural analogues both in situ and in the laboratory. The main focus of this paper has been to study natural gas emissions representing extremely attractive surrogates for the study and prediction of the possible consequences of leakage from geological sequestration sites of anthropogenic CO2 (i.e., the return to surface, potentially causing localised environmental problems). These include a comparison among three different Italian case histories: (i) the Solfatara crater (Phlegraean Fields caldera, southern Italy) is an ancient Roman spa. The area is characterised by intense and diffuse hydrothermal activity, testified by hot acidic mud pools, thermal springs and a large fumarolic field. Soil gas flux measurements show that the entire area discharges between 1200 and 1500 tons of CO2 per day; (ii) the Panarea Island (Aeolian Islands, southern Italy) where a huge submarine volcanic-hydrothermal gas burst occurred in November, 2002. The submarine gas emissions chemically modified seawater causing a strong modification of the marine ecosystem. All of the collected gases are CO2-dominant (maximum value: 98.43 vol.%); (iii) the Tor Caldara area (Central Italy), located in a peripheral sector of the quiescent Alban Hills volcano, along the faults of the Ardea Basin transfer structure. The area is characterised by huge CO2 degassing both from water and soil. Although the above mentioned areas do not represent a storage scenario, these sites do provide many opportunities to study near-surface processes and to test monitoring methodologies.  相似文献   

3.
A long-term (up to 10 ka) geochemical change in saline aquifer CO2 storage was studied using the TOUGHREACT simulator, on a 2-dimensional, 2-layered model representing the underground geologic and hydrogeologic conditions of the Tokyo Bay area that is one of the areas of the largest CO2 emissions in the world. In the storage system characterized by low permeability of reservoir and cap rock, the dominant storage mechanism is found to be solubility trapping that includes the dissolution and dissociation of injected CO2 in the aqueous phase followed by geochemical reactions to dissolve minerals in the rocks. The CO2–water–rock interaction in the storage system (mainly in the reservoir) changes the properties of water in a mushroom-like CO2 plume, which eventually leads to convective mixing driven by gravitational instability. The geochemically evolved aqueous phase precipitates carbonates in the plume front due to a local rise in pH with mixing of unaffected reservoir water. The carbonate precipitation occurs extensively within the plume after the end of its enlargement, fixing injected CO2 in a long, geologic period.Dawsonite, a Na–Al carbonate, is initially formed throughout the plume from consumption of plagioclase in the reservoir rock, but is found to be a transient phase finally disappearing from most of the CO2-affected part of the system. The mineral is unstable relative to more common types of carbonates in the geochemical evolution of the CO2 storage system initially having formation water of relatively low salinity. The exception is the reservoir-cap rock boundary where CO2 saturation remains very high throughout the simulation period.  相似文献   

4.
Careful site characterization is critical for successful geologic storage of carbon dioxide (CO2) because of the many physical and chemical processes impacting CO2 movement and containment under field conditions. Traditional site characterization techniques such as geological mapping, geophysical imaging, well logging, core analyses, and hydraulic well testing provide the basis for judging whether or not a site is suitable for CO2 storage. However, only through the injection and monitoring of CO2 itself can the coupling between buoyancy flow, geologic heterogeneity, and history-dependent multi-phase flow effects be observed and quantified. CO2 injection and monitoring can therefore provide a valuable addition to the site-characterization process. Additionally, careful monitoring and verification of CO2 plume development during the early stages of commercial operation should be performed to assess storage potential and demonstrate permanence. The Frio brine pilot, a research project located in Dayton, Texas (USA) is used as a case study to illustrate the concept of an iterative sequence in which traditional site characterization is used to prepare for CO2 injection and then CO2 injection itself is used to further site-characterization efforts, constrain geologic storage potential, and validate understanding of geochemical and hydrological processes. At the Frio brine pilot, in addition to traditional site-characterization techniques, CO2 movement in the subsurface is monitored by sampling fluid at an observation well, running CO2-saturation-sensitive well logs periodically in both injection and observation wells, imaging with crosswell seismic in the plane between the injection and observation wells, and obtaining vertical seismic profiles to monitor the CO2 plume as it migrates beyond the immediate vicinity of the wells. Numerical modeling plays a central role in integrating geological, geophysical, and hydrological field observations.  相似文献   

5.
Diffuse CO2 efflux near the Ukinrek Maars, two small volcanic craters that formed in 1977 in a remote part of the Alaska Peninsula, was investigated using accumulation chamber measurements. High CO2 efflux, in many places exceeding 1000 g m−2 d−1, was found in conspicuous zones of plant damage or kill that cover 30,000–50,000 m2 in area. Total diffuse CO2 emission was estimated at 21–44 t d−1. Gas vents 3-km away at The Gas Rocks produce 0.5 t d−1 of CO2 that probably derives from the Ukinrek Maars basalt based on similar δ13C values (∼−6‰), 3He/4He ratios (5.9–7.2 RA), and CO2/3He ratios (1–2 × 109) in the two areas. A lower 3He/4He ratio (2.7 RA) and much higher CO2/3He ratio (9 × 1010) in gas from the nearest arc-front volcanic center (Mount Peulik/Ugashik) provide a useful comparison. The large diffuse CO2 emission at Ukinrek has important implications for magmatic degassing, subsurface gas transport, and local toxicity hazards. Gas–water–rock interactions play a major role in the location, magnitude and chemistry of the emissions.  相似文献   

6.
The active acid gas (H2S–CO2 mixture) injection operations in North America provide practical experience for the operators in charge of industrial scale CO2 geological storage sites. Potential leakage via wells and their environmental impacts make well construction durability an issue for efficiency/safety of gas geological storage. In such operations, the well cement is in contact with reservoir brines and the injected gas, meaning that gas–water–solid chemical reactions may change the physical properties of the cement and its ability to confine the gas downhole. The cement-forming Calcium silicate hydrates carbonation (by CO2) and ferrite sulfidation (by H2S) reactions are expected. The main objective of this study is to determine their consequences on cement mineralogy and transfer ability. Fifteen and 60 days duration batch experiments were performed in which well cement bars were immersed in brine itself caped by a H2S–CO2 phase at 500 bar–120 °C. Scanning electron microscopy including observations/analyses and elemental mapping, mineralogical mapping by micro-Raman spectroscopy, X-ray diffraction and water porosimetry were used to characterize the aged cement. Speciation by micro-Raman spectroscopy of brine trapped within synthetic fluid inclusions were also performed. The expected calcium silicate hydrates carbonation and ferrite sulfidation reactions were evidenced. Furthermore, armouring of the cement through the fast creation of a non-porous calcite coating, global porosity decrease of the cement (clogging) and mineral assemblage conservation were demonstrated. The low W/R ratio of the experimental system (allowing the cement to buffer the interstitial and external solution pH at basic values) and mixed species diffusion and chemical reactions are proposed to explain these features. This interpretation is confirmed by reactive transport modelling performed with the HYTEC code. The observed cement armouring, clogging and mineral assemblage conservation suggest that the tested cement has improved transfer properties in the experimental conditions. This work suggests that in both acid gas and CO2 geological storage, clogging of cement or at least mineral assemblage conservation and slowing of carbonation progress could occur in near-well zones where slight water flow occurs e.g. in the vicinity of caprock shales.  相似文献   

7.
The Hg distribution and some mineralogical-geochemical features of bottom sediments up to a depth of 10 m in the Deryugin Basin showed that the high and anomalous Hg contents in the Holocene deposits are confined to a spreading riftogenic structure and separate fluid vents within it. The accumulations of Hg in the the sediments were caused by its fluxes from gas and low-temperature hydrothermal vents under favorable oceanological conditions in the Holocene. The two mainly responsible for the high and anomalous Hg contents are infiltration (fluxes of hydrothermal or gas fluids from the sedimentary cover) and plume (Hg precipitation from water plumes with certain hydrochemical conditions forming above endogenous sources). The infiltration anomalies of Hg were revealed in the following environments: (1) near gas vents on the northeastern Sakhalin slope, where high Hg contents are associated only with Se and were caused by the accumulation of gases ascending from beneath the gas hydrate layer; (2) in the area of inferred occasionally operating low-temperature hydrothermal seeps in the central part of the Deryugin Basin, in which massive barite chimneys, hydrothermal Fe-Mn crusts, and anomalous contents of Mn, Ba, Zn, and Ni in sediments develop.  相似文献   

8.
Zonal distribution of seepage hydrocarbon-induced altereb carbonates over oil/gas reservoirs is a common phenomenon observed in the field.The authors considered that the continuous production of CO2 within the “alteration chimney ”gives rise to a significant difference in physical and chemical properties between its interior and the surrounding country rocks.And it is this difference that has promoted the erosion and precipitation of carbonates,thus leading to the zonal distribution of seepage hydrocarbon-induced altered carbonates over oil/gas reservoirs.This may be a reasonable interpretation of the phenomenon described above.  相似文献   

9.
The Neogene Guantao formation in the Beitang sag in the Bohai Bay Basin (BBB) of North China, a Mesozoic–Cenozoic sedimentary basin of continental origin, has been chosen as a candidate for a pilot field test of CO2 sequestration. Hydrogeological and geochemical investigations have been carried out to assess its suitability, taking advantage of many existing geothermal wells drilled to 2000 m or greater depths. Water samples from 25 wells and drill cores of three sections of the Guantao formation were collected for measurements of mineralogy, water chemistry and isotopes (δ18O, δD, δ13C, 14C). Formation temperature estimated by chemical geothermometry is in the range of 60–80 °C. Geochemical modeling of water–rock–CO2 interaction predicts a strong geochemical response to CO2 injection. Besides the elevated porosity (33.6–38.7%) and high permeability (1150–1980 mD) of the Ng-III formation and a favorable reservoir–caprock combination, it is also found that the formation contains carbonates that will react with CO2 after injection. The low salinity (TDS < 1.6 g/L) offers high CO2 solubility. The 14C age of the formation water indicates a quasi-closed saline aquifer system over large time scales, the lateral sealing mechanism for CO2 sequestration requires further investigation. The CO2 storage capacity of the Guantao formation within the Beitang sag is estimated to be 17.03 Mt, assuming pure solubility trapping.  相似文献   

10.
We propose a simple pressure test that can be used in the field to determine the effective permeability of existing wellbores. Such tests are motivated by the need to understand and quantify leakage risks associated with geological storage of CO2 in mature sedimentary basins. If CO2 is injected into a deep geological formation, and the resulting CO2 plume encounters a wellbore, leakage may occur through various pathways in the “disturbed zone” surrounding the well casing. The effective permeability of this composite zone, on the outside of the well casing, is an important parameter for models of leakage. However, the data that exist on this key parameter do not exist in the open literature, and therefore specific field tests need to be done in order to reduce the uncertainty inherent in the leakage estimates. The test designed and analyzed herein is designed to measure effective wellbore permeability within a low-permeability caprock, bounded above and below by permeable reservoirs, by pressurizing the reservoir below and measuring the response in the reservoir above. Alternatively, a modified test can be performed within the caprock without directly contacting the reservoirs above and below. We use numerical simulation to relate pressure response to effective well permeability and then evaluate the range of detection of the effective permeability based on instrument measurement error and limits on fracture pressure. These results can guide field experiments associated with site characterization and leakage analysis.  相似文献   

11.
This work was motivated by considerations of potential leakage pathways for CO2 injected into deep geological formations for the purpose of carbon sequestration. Because existing wells represent a potentially important leakage pathway, a spatial analysis of wells that penetrate a deep aquifer in the Alberta Basin was performed and various statistical measures to quantify the spatial distribution of these wells were presented. The data indicate spatial clustering of wells, due to oil and gas production activities. The data also indicate that the number of wells that could be impacted by CO2 injection, as defined by the spread of an injected CO2 plume, varies from several hundred in high well-density areas to about 20 in low-density areas. These results may be applied to other mature continental sedimentary basins in North America and elsewhere, where detailed information on well location and status may not be available.  相似文献   

12.
Deep saline aquifers still remain a significant option for the disposal of large amounts of CO2 from the atmosphere as a means of mitigating global climate change. The small scale Carbon Capture and Sequestration demonstration project in Ordos Basin, China, operated by the Shenhua Group, is the only one of its kind in Asia, to put the multilayer injection technology into practice. This paper aims at studying the influence of temperature, injection rate and horizontal boundary effects on CO2 plume transport in saline formation layers at different depths and thicknesses, focusing on the variations in CO2 gas saturation and mass fraction of dissolved CO2 in the formation of brine in the plume’s radial three-dimensional field around the injection point, and interlayer communication between the aquifer and its confining beds of relatively lower permeability. The study uses the ECO2N module of TOUGH2 to simulate flow and pressure configurations in response to small-scale CO2 injection into multilayer saline aquifers. The modelling domain involves a complex multilayer reservoir–caprock system, comprising of a sequence of sandstone aquifers and sealing units of mudstone and siltstone layers extending from the Permian Shanxi to the Upper Triassic Liujiagou formation systems in the Ordos Basin. Simulation results indicate that CO2 injected for storage into deep saline aquifers cause a significant pressure perturbation in the geological system that may require a long duration in the post-injection period to establish new pressure equilibrium. The multilayer simultaneous injection scheme exhibits mutual interference with the intervening sealing layers, especially when the injection layers are very close to each other and the corresponding sealing layers are thin. The study further reveals that injection rate and temperature are the most significant factors for determining the lateral and vertical extent that the CO2 plume reaches and which phase and amount will exist at a particular time during and after the injection. In general, a large number of factors may influence the CO2–water fluid flow system considering the complexity in the real geologic sequence and structural configurations. Therefore, optimization of a CO2 injection scheme still requires pursuance of further studies.  相似文献   

13.
Identification of the source of CO2 in natural reservoirs and development of physical models to account for the migration and interaction of this CO2 with the groundwater is essential for developing a quantitative understanding of the long term storage potential of CO2 in the subsurface. We present the results of 57 noble gas determinations in CO2 rich fields (>82%) from three natural reservoirs to the east of the Colorado Plateau uplift province, USA (Bravo Dome, NM., Sheep Mountain, CO. and McCallum Dome, CO.), and from two reservoirs from within the uplift area (St. John’s Dome, AZ., and McElmo Dome, CO.). We demonstrate that all fields have CO2/3He ratios consistent with a dominantly magmatic source. The most recent volcanics in the province date from 8 to 10 ka and are associated with the Bravo Dome field. The oldest magmatic activity dates from 42 to 70 Ma and is associated with the McElmo Dome field, located in the tectonically stable centre of the Colorado Plateau: CO2 can be stored within the subsurface on a millennia timescale.The manner and extent of contact of the CO2 phase with the groundwater system is a critical parameter in using these systems as natural analogues for geological storage of anthropogenic CO2. We show that coherent fractionation of groundwater 20Ne/36Ar with crustal radiogenic noble gases (4He, 21Ne, 40Ar) is explained by a two stage re-dissolution model: Stage 1: Magmatic CO2 injection into the groundwater system strips dissolved air-derived noble gases (ASW) and accumulated crustal/radiogenic noble gas by CO2/water phase partitioning. The CO2 containing the groundwater stripped gases provides the first reservoir fluid charge. Subsequent charges of CO2 provide no more ASW or crustal noble gases, and serve only to dilute the original ASW and crustal noble gas rich CO2. Reservoir scale preservation of concentration gradients in ASW-derived noble gases thus provide CO2 filling direction. This is seen in the Bravo Dome and St. John’s Dome fields. Stage 2: The noble gases re-dissolve into any available gas stripped groundwater. This is modeled as a Rayleigh distillation process and enables us to quantify for each sample: (1) the volume of groundwater originally ‘stripped’ on reservoir filling; and (2) the volume of groundwater involved in subsequent interaction. The original water volume that is gas stripped varies from as low as 0.0005 cm3 groundwater/cm3 gas (STP) in one Bravo Dome sample, to 2.56 cm3 groundwater/cm3 gas (STP) in a St. John’s Dome sample. Subsequent gas/groundwater equilibration varies within all fields, each showing a similar range, from zero to ∼100 cm3 water/cm3 gas (at reservoir pressure and temperature).  相似文献   

14.
《Applied Geochemistry》1998,13(5):631-642
A new method for the determination of dissolved gas species in natural waters is presented. The method is suitable for field operations and ensures the preservation of the sample until analysis in the laboratory. This method is based on the equilibrium partition of gases between a liquid and a gaseous phase after the introduction of host gas. The host gas used depends on the gas species to be determined and on the technical features of the gas chromatograph. In this work pure Ar has been used. After shaking the sample for 5 min, a portion of gas was taken for gas chromatography analysis. From the concentration of gases in the gaseous phase and taking into account the partitioning coefficients of the various species, it is possible to derive the quantity of dissolved gases per litre of water and the partial pressures of the various gas species in equilibrium with water. This method has been applied to several samples of thermal water from Vulcano island. Helium and CO2 partial pressures of analysed samples were appreciably higher than those typical of waters in equilibrium with the atmosphere, thus indicating processes of interaction between the volcanic gases and groundwaters.  相似文献   

15.
Fe isotopes are a potential tool for tracing the biogeochemical redox cycle of Fe in the ocean. Specifically, it is hypothesized that Fe isotopes could enable estimation of the contributions from multiple Fe sources to the dissolved Fe budget, an issue that has received much attention in recent years. The first priority however, is to understand any Fe isotope fractionation processes that may occur as Fe enters the ocean, resulting in modification of original source compositions. In this study, we have investigated the Fe inputs from a basalt-hosted, deep-sea hydrothermal system and the fractionation processes that occur as the hot, chemically reduced and acidic vent fluids mix with cold, oxygen-rich seawater.The samples collected were both end-member vent fluids taken from hydrothermal chimneys, and rising buoyant plume samples collected directly above the same vents at 5°S, Mid-Atlantic Ridge. Our analyzes of these samples reveal that, for the particulate Fe species within the buoyant plume, 25% of the Fe is precipitated as Fe-sulfides. The isotope fractionation caused by the formation of these Fe-sulfides is δFe(II)–FeS = +0.60 ± 0.12‰.The source isotope composition for the buoyant plume samples collected above the Red Lion vents is calculated to be −0.29 ± 0.05‰. This is identical to the value measured in end-member vent fluids collected from the underlying “Tannenbaum” chimney. The resulting isotope compositions of the Fe-sulfide and Fe-oxyhydroxide species in this buoyant plume are −0.89 ± 0.11‰ and −0.19 ± 0.09‰, respectively. From mass balance calculations, we have been able to calculate the isotope composition of the dissolved Fe fraction, and hypothesize that the isotope composition of any stabilised dissolved Fe species exported to the surrounding ocean may be heavier than the original vent fluid. Such species would be expected to travel some distance from areas of hydrothermal venting and, hence, contribute to not only the dissolved Fe budget of the deep-ocean but also it’s dissolved Fe isotope signature.  相似文献   

16.
Capture and geological sequestration of CO2 from energy production is proposed to help mitigate climate change caused by anthropogenic emissions of CO2 and other greenhouse gases. Performance goals set by the US Department of Energy for CO2 storage permanence include retention of at least 99% of injected CO2 which requires detailed assessments of each potential storage site’s geologic system, including reservoir(s) and seal(s). The objective of this study was to review relevant basin-wide physical and chemical characteristics of geological seals considered for saline reservoir CO2 sequestration in the United States. Results showed that the seal strata can exhibit substantial heterogeneity in the composition, structural, and fluid transport characteristics on a basin scale. Analysis of available field and wellbore core data reveal several common inter-basin features of the seals, including the occurrence of quartz, dolomite, illite, calcite, and glauconite minerals along with structural features containing fractures, faults, and salt structures. In certain localities within the examined basins, some seal strata also serve as source rock for oil and gas production and can be subject to salt intrusions. The regional features identified in this study can help guide modeling, laboratory, and field studies needed to assess local seal performances within the examined basins.  相似文献   

17.
This paper reviews various coal seam gas (CSG) models that have been developed for the Sydney Basin, and provides an alternative interpretation for gas composition layering and deep-seated CO2 origins. Open file CSG wells, supplemented by mine-scale information, were used to examine trends in gas content and composition at locations from the margin to the centre of the basin. Regionally available hydrochemistry data and interpretations of hydrodynamics were incorporated with conventional petroleum well data on porosity and permeability. The synthesised gas and groundwater model presented in this paper suggests that meteoric water flow under hydrostatic pressure transports methanogenic consortia into the subsurface and that water chemistry evolves during migration from calcium-rich freshwaters in inland recharge areas towards sodium-rich brackish water down-gradient and with depth. Groundwater chemistry changes result in the dissolution and precipitation of minerals as well as affecting the behaviour of dissolved gases such as CO2. Mixing of carbonate-rich waters with waters of significantly different chemistries at depth causes the liberation of CO2 gas from the solution that is adsorbed into the coal matrix in hydrodynamically closed terrains. In more open systems, excess CO2 in the groundwater (carried as bicarbonate) may lead to precipitation of calcite in the host strata. As a result, areas in the central and eastern parts of the basin do not host spatially extensive CO2 gas accumulations but experience more widespread calcite mineralisation, with gas compositions dominated by hydrocarbons, including wet gases. Basin boundary areas (commonly topographic and/or structural highs) in the northern, western and southern parts of the basin commonly contain CO2-rich gases at depth. This deep-seated CO2-rich gas is generally thought to derive from local to continental scale magmatic intrusions, but could also be the product of carbonate dissolution or acetate fermentation.  相似文献   

18.
Carbon dioxide (CO2) has been injected in the subsurface permeable formations as a means to cut atmospheric CO2 emissions and/or enhance oil recovery (EOR). It is important to constrain the boundaries of the CO2 plume in the target formation and/or other formations hosting the CO2 migrated from the target formation. Monitoring methods and technologies to assess the CO2 plume boundaries over time within a reservoir of interest are required. Previously introduced methods and technologies on pressure monitoring to detect the extent of the CO2 plume require at least two wells, i.e. pulser and observation wells. We introduce pressure transient technique requiring single well only. Single well pressure transient testing (drawdown/buildup/injection/falloff) is widely used to determine reservoir properties and wellbore conditions. Pressure diagnostic plots are used to identify different flow regimes and determine the reservoir/well characteristics. We propose a method to determine the plume extent for a constant rate pressure transient test at a single well outside the CO2 plume. Due to the significant contrast between mobility and storativity of the CO2 and native fluids (oil or brine), the CO2 boundary causes deviation in the pressure diagnostic response from that corresponding to previously identified heterogeneities. Using the superposition principle, we develop a relationship between the deviation time and the plume boundary. We demonstrate the applicability of the proposed method using numerically generated synthetic data corresponding to homogeneous, heterogeneous, and anisotropic cases to evaluate its potential and limitations. We discuss ways to identify and overcome the potential limitations for application of the method in the field.  相似文献   

19.
Geological sequestration of CO2 into depleted hydrocarbon reserviors or saline aquifers presents the enormous potential to reduce greenhouse gas emission from fossil fuels. However, it may give rise to a complicated coupling physical and chemical process. One of the processes is the hydro-mechanical impact of CO2 injection. During the injection project, the increase of pore pressures of storing formations can induce the instability, which finally results in a catastrophic failure of disposal sites. This paper focuses mainly on the role of CO2-saturated water in the fracturing behavior of rocks. To investigate how much the dissolved CO2 can influence the pore pressure change of rocks, acoustic emission (AE) experiments were performed on sandstone and granite samples under triaxial conditions. The main innovation of this paper is to propose a time dependent porosity method to simulate the abrupt failure process, which is observed in the laboratory and induced by the pore pressure change due to the volume dilatancy of rocks, using a finite element scheme associated with two-phase characteristics. The results successfully explained the phenomena obtained in the physical experiments.  相似文献   

20.
郭栋 《物探与化探》2008,32(3):283-287
CO2气藏由于其物理、化学性质的特殊性,CO2气勘探与烃类气既有相同又有区别,综合应用多种资料和多种技术方法是识别CO2气(层)藏的有效手段。利用区域地质分析、地球物理和地球化学勘探方法综合评价非烃气的分布,提出钻探目标,通过非烃色谱测量法和红外线CO2气体浓度测量法实现CO2气层钻井现场动态检测,利用气体色谱检测相关录井参数资料、核测井密度中子孔隙度差值综合解释CO2气层,有效地识别CO2气。主要介绍CO2气藏综合勘探技术的关键的新技术方法,如地球化学方法、录井和测井综合识别的关键技术方法等。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号