首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this note a simple formula is given for the perturbation of the anomalistic period of a highly eccentric orbit due to the zonal harmonics. This perturbation depends essentially only on the semi-major axisa, the eccentricitye (or pericentre radius r =a(1-e)) and the latitude of the pericentre.  相似文献   

2.
The acceleration of the mean lunar longitude has a small effect on the periods of most terms in a Fourier expansion of the longitude. There are several planetary perturbation terms that have small amplitudes, but whose periods are close to the resonant period of the lunar libration in longitude. Some of these terms are moving toward resonance, some are moving away from resonance, and the periods of those terms that do not include the Delaunay variables in their arguments are not moving. Because of its acceleration of longitude, the Moon is receding from the Earth, so the magnitude of the restoring torque that the Earth exerts on the rotating Moon is gradually attenuating; thus resonance itself is moving, but at a much slower rate than the periods of the accelerating planetary perturbations. There are five planetary perturbation terms from the ELP-2000 Ephemeris (with amplitudes of 0.00001 or greater) that have passed through resonance in the past two million years. One of them is of special interest because it appears to be the excitation source of a supposed free libration in longitude that has been detected by the lunar laser ranging experiment. The amplitude of the term is only 0.00021 but it could be the source of the 1 amplitude free libration term if the viscoelastic properties of the Moon are similar to those of the Earth.  相似文献   

3.
In the present work we study the free convection flow past an impulsively started infinite, vertical porous limiting surface (e.g. of a star) which is subjected to a constant suction velocity, with heat sources when the free stream velocity oscillates in time about a constant mean. A perturbation solution is sought for obtaining the expressions of mean velocity and mean temperature. The results are compared with the corresponding ones without heat sources.  相似文献   

4.
The aim of this paper has been to study here specific forms of instabilities in circumstellar and circumplanetary dust ringlets in Keplerian rotation around a central gravitating mass without taking shear flow effects into consideration. Due to the presence of a central mass in the disk, an additional force term appears in the linearized equation of motion. Here we investigate the importance of such a term with respect to the onset of gravitational instabilities in both tangential and radial direction of ring-like substructures in the disk. In addition, we compare the instability tendencies of self-gravitating disks with those of fluid layers where perturbation effects are simply controlled by surface tension. In both cases, the material of the layer is treated as an incompressible inviscid fluid. This assumption, however, as shown from our study of the polytropy of dust gases, was proven to be correct for perturbation wavelengths comparable or larger than the thickness of the layer. From our general dispersion relations for symmetric and anti-symmetric perturbation modes, we can retain for the radial wave propagation the results of Lin and Shu, and Goldreich and Ward in the asymptotic case of an infinitely thin layer without shear flow. However, for the tangential waves we find a different stability criterion showing that the onset of the instability depends on the propagation direction. In the finite layer case, we derive much more general relations showing different instability ranges for bending wave modes and self-excited density wave modes pointing to local and global instability forms in ringlets.  相似文献   

5.
An effect of the solar wind on the motion of interplanetary dust particles is investigated. An equation of motion is derived. It is pointed out that the Pseudo-Poynting-Robertson effect (and its special case — a corpuscular drag) and the corpuscular sputtering represent in reality one and the same effect within the framework of special relativity. In this context perturbation equations of celestial mechanics are also discussed.  相似文献   

6.
Claim for periodicity in the crater formation rate is reinvestigated using a criterion proposed by Broadbent, and data sets of Rampino and Stothers and of Grieve are shown to satisfy the periodicity criterion (P 30 Myr).On the other hand, currently observed impactors are mainly asteroids, while long and short periodic comets whose fluxes may vary by external disturbances occupy only a small fraction. Using a Monte Carlo simulation, constraints are obtained for the dispersion Q(Myr) from an exact periodicity and for the periodic components (F tp) in the signals for their periodicity to be detected. It is found that for = 5, 6 and 7 Myr, F tp, would have to be 40% or greater, 60% or greater and 80% or greater, respectively. These constraints are used to discuss whether the giant molecular cloud perturbations can give rise to the periodicity in the impact events. The amplitude of the solar Z-motion need to be some 100pc for = 6 Myr, which requires the periodic component (SP and LP comets, if the former originate from the latter) to be 60%, while for = 7 Myr, the periodic component need to be 80%. The GMC perturbation model consistent with the periodicity appears to be the one where the amplitude is 100pc and the periodic component - 60% of the impactors. If SP comets mainly originate from a source such as the hypothetical Kuiper belt, the GMC perturbation would not be consistent with the periodicity.  相似文献   

7.
A simple matching technique is developed which allows us to compute the response of the solar envelope to perturbations which occur within the solar convective region, and in timescales of importance to climate. This technique is applied to perturbation of the convective efficiency (-mechanism), and of the non-gas component of the pressure in different regions of the convection zone (-mechanism). The results indicate that while either perturbation affects the solar luminosity, the -mechanism has almost no effect on the solar outer radius, regardless of the affected region, whereas the -mechanism produces radius changes which may be large if the location of perturbation is deep enough.  相似文献   

8.
Carl A. Rouse 《Solar physics》1987,110(2):211-235
Radial and nonradial oscillation equations without and with the gravitation perturbation (with and without the Cowling approximation, CA) are solved numerically using the profile from a more accurate high-Z core (HZC) solar model. This more accurate HZC model was generated with the CRAY X-MP/48 supercomputer at the San Diego Supercomputer Center. Frequencies of oscillation in the five-min band (5MB) and frequencies with period near 160 min are presented in tables and plotted in echelle diagrams. The model was generated by integrating the stellar structure equations from the center to he surface, as done in Rouse (1964), using a maximum space step, ;x m = 5 × 10–4, decreasing to 10–6 in the hydrogenionization zone just below the photosphere. Two subsets of space mesh points are used to calculate the oscillation frequencies, viz., one with a maximum space step of 5 × 10–3, decreasing to 10–6 with a total of 621 points (mesh 5I) and the other with a maximum space step of 2 × 10–3, with a total of 867 points (mesh 5J).With the surface boundary condition applied at x = 1.0, the l – 1 degree nonradial frequencies with CA and the l-degree frequencies without CA are in very good agreement with the frequency spacings for observed frequencies of oscillation labeled l = 1 to 5, but with the l – 1 frequencies with CA about 10 Hz or so less than the observations and the l frequencies without CA about 10 Hz or so greater than the observations. And for the Duvall and Harvey (1983) observations labeled l = 10 and l = 20, the l = 9 and l = 19 nonradial solutions with CA agree to about 5 Hz or less with the observations. Considering from the two preceeding papers in this series that increasing the density in the outer envelope and photosphere will increase the 5MB frequencies and applying the outer boundary condition at x > 1.0 will decrease the 5MB frequencies, the net affects of such changes could move one or the other set of frequencies closer to the observations — or require a slightly different model structure to obtain accurate agreements with the values of the observed frequencies throughout the 5MB.In either case, it is concluded that the first-order, radially-symmetric structure of the model outside the HZC is close to the structure of the real Sun. This is of fundamental importance because a real gas adiabatic temperature gradient (Rouse, 1964, 1971) is used in the outer convective region without free parameters.Other aspects of agreements and differences between radial and nonradial solutions, with CA and without CA are discussed. In particular, the l = 4, 6, 8, and 9 g-mode solutions with CA indicate that the observed 160.01 min period may be a common l-mode period of oscillation. More research is proposed.  相似文献   

9.
Frequencies of non-radial oscillation of polytropic models of stars, belonging to spherical harmonics of ordersl=1, 2 and 3, are evaluated, in a second approximation, by a variational method. Equilibrium configurations in the presence of toroidal magnetic fields are obtained numerically without any restriction on the field strength. The value of the ratio of the specific heats, , is assumed to be equal to 5/3 and only two polytropic indeces,n=1.5 and 3.0, are considered. It is found that a polytropic star stays stable for magnetic fields considerably stronger than expected from the results obtained by the weak field perturbation methods.  相似文献   

10.
In this paper of the series, the literal analytical expressions for the Fourier expansion of the Earth's spherical harmonic potential will be explored in terms of the sectorial variables j (i) introduced in Paper IV (Sharaf, 1982) to regularize the highly-oscillating perturbation force of some orbital systems.Now at the Department of Astronomy, King Abdulaziz University Jeddah, Saudi Arabia.  相似文献   

11.
We develop a formalism of the non-singular evaluation of the disturbing function and its derivatives with respect to the canonical variables. We apply this formalism to the case of the perturbed motion of a massless body orbiting the central body (Sun) with a period equal to that of the perturbing (planetary) body. This situation is known as the co-orbital motion, or equivalently, as the 1/1 mean motion commensurability. Jupiter's Trojan asteroids, Earth's co-orbital asteroids (e.g., (3753) Cruithne, (3362) Khufu), Mars' co-orbital asteroids (e.g., (5261) Eureka), and some Jupiter-family comets are examples of the co-orbital bodies in our solar system. Other examples are known in the satellite systems of the giant planets. Unlike the classical expansions of the disturbing function, our formalism is valid for any values of eccentricities and inclinations of the perturbed and perturbing body. The perturbation theory is used to compute the main features of the co-orbital dynamics in three approximations of the general three-body model: the planar-circular, planar-elliptic, and spatial-circular models. We develop a new perturbation scheme, which allows us to treat cases where the classical perturbation treatment fails. We show how the families of the tadpole, horseshoe, retrograde satellite and compound orbits vary with the eccentricity and inclination of the small body, and compute them also for the eccentricity of the perturbing body corresponding to a largely eccentric exoplanet's orbit.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

12.
Abstrakt The Kle search programme for minor planets using 0,63m Maksutov camera of Kle Observatory was begun in 1977 as a long-term project continuing up to the present day. The discovery frequency according to seasons in the year shows multiple differences between particular months.The comparison with the number of observing nights and obtained search plates; weather conditions and other influences will be discussed. The Kle minor planet discovery frequency also will be compared with the data base of all numbered minor planets.  相似文献   

13.
This paper deals with Hamiltonian perturbation theory for systems which, like Euler-Poinsot (the rigid body with a fixed point and no torques), are degenerate and do not possess a global system of action-angle coordinates. It turns out that the usual methods of perturbation theory, which are essentially local being based on the construction of normal forms within the domain of a local coordinate system, are not immediately usable to study perturbations of these systems, since degeneracy makes impossible to control that the system does not fall into a singularity of the coordinates. To overcome this difficulty, we develop a global formulation of Hamiltonian perturbation theory, in which the normal forms are globally defined on the phase space manifold. The key for this study lies in the geometry of the fibration by the invariant tori of an integrable degenerate Hamiltonian system, which is described by some generalizations of the Liouville-Arnol'd theorem and is reviewed in the paper. As an application, we provide a global formulation of Nekhoroshev's theorem on the stability for exponentially long times.  相似文献   

14.
The distribution of L absorption lines has been investigated in the fractal scheme. It is found that (1) the L absorption clouds distribute completely different from that of galaxies; (2) the L absorption clouds are anti-associated with galaxies and quasars. These results may imply that there are two kinds of objects formed by different processes of clustering. This is favourable for the cosmic-string theory on the formation of large-scale structure of the Universe. In the string model, the objects can be divided into two kinds according to their clustering with or without string loops as their initial density perturbation.On leave from the Center of Astrophysics, University of Science and Technology of China, Hefei, P.R. China. Y. Chu is a research fellow of Alexander von Humboldt-Foundation.  相似文献   

15.
Lie transforms and the Hamiltonization of non-Hamiltonian systems   总被引:1,自引:0,他引:1  
To develop the perturbation solution of the non-Hamiltonian system of differential equationsy=g(y, t; ), it is sufficient to obtain the perturbation solution of a Hamiltonian system represented by the HamiltonianK=Y·g(y, t; ) which is linear in the adjoint vectorY. This Hamiltonization allows the direct use of the perturbation methods already established for Hamiltonian systems. To demonstrate this fact, a Hamiltonian algorithm developed by this author and based on the Lie-Deprit transform is applied to the Hamiltonized system and is shown to be equivalent to the application of the non-Hamiltonian form of this same algorithm to the original non-Hamiltonian system.  相似文献   

16.
The three possible scalar products formed from the position-speed state vector lead to Stumpff's local invariants. The assumption of a distinguished axis (001) gives rise to the axial local invariantsz and under the rotations about this axis.-If a satellite moves in the field of a rotationally symmetric central body, then there will be an appropriate set of invariants for which a regular, non-linear system of differential equations holds. It can be used to derive recurrence relations for time series expansions and special perturbation methods, which are characterised by the occurrence of the scalar products of the perturbational acceleration with the position and speed vectors and (001).Presented at the Conference on Celestial Mechanics, Oberwolfach, Germany, August 17–23, 1969.  相似文献   

17.
In this paper of the series, the third step of the author's regularization approach will be started by establishing the expansions of the functionX n (r) (, ,u) in terms of the sectorial variables j (i) introduced in Paper IV (Sharaf, 1982) to regularize the highly-oscillating perturbation force of some orbital systems. The literal analytical expressions for the Fourier expansion of the function will be explored in terms of j (i) for anyn positive integer,r any real number whatever the types and the number of sectors forming the divisions situation of the elliptic orbits may be. The basic computational materials of the theory will also be given and for which the method of solution, the recurrence formulae, and the general computational sequence for the coefficients are considered.  相似文献   

18.
19.
Ballester  J. L.  Kleczek  J. 《Solar physics》1983,89(2):261-273
Two sequences of OSO-4 spectroheliograms in Mg x and Si xii obtained during October–November 1967 and covering the intervals of 83 and 22 hr, respectively, have been analyzed to reveal quasi-periodic oscillations of EUV flux from solar sources with a periodicity of 5–14 hr. The oscillation periods of the emission flux from local sources over sunspots and magnetic field enhancements in plages without spots have been investigated in correlation with characteristics of the respective AR and plages. The greatest periods (> 8 hr) are shown to be peculiar of small sunspots or sunspot groups at the initial or final stage of their development, whereas the smallest periods ( 5–6 hr) are observed in the case of large well-developed groups at the maximum stage of development. In quiet regions on the Sun and plages without spots, the oscillation periods are 6–8 hr. The surface areas in which the oscillations are synchronous and coincide in phase have typical dimensions of 1 in quiet and 1 to 5 in active regions. These areas form a spatial structure similar to the chromospheric network and supergranules. The characteristic lifetime of the structure elements is 1.5–2 days.  相似文献   

20.
We propose to measure the gravitational constantG by putting in an orbiting laboratory a known mass of very high density and by tracking the motion of a small test mass under the gravitational influence of the primary mass. We analyse the different sources of perturbation; the consideration of the Earth's gravity gradient leads us to conclude that, if the laboratory is in a low Earth orbit, we cannot get stable satellite-like orbits of the test mass, but we must study only a process of gravitational scattering. In order to maximize the time of interaction it is proposed to use the practical stability of a collinear equilibrium point of the system Earth-primary mass, by putting the test mass as close as possible to the stable manifold of an equilibrium point. This method will allow the determination of the value ofG within a few parts over 105, as shown by some computer simulations of the experiment taking into account also some unknown perturbation and random noise.Two main problems are involved in this experiment: (a) refined numerical methods are needed to take into account all significant perturbations and to extract the result aboutG from the experimental data; (b) during the motion of the test mass, the primary mass must always be free-falling inside the laboratory, so that this experiment needs a drag-free satellite technique of the same type which is necessary for high-precision gravimetric measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号