首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
缓冲/回填材料——砂-膨润土混合物研究进展   总被引:1,自引:0,他引:1  
叶为民  王琼  陈永贵  陈宝 《铀矿地质》2010,26(2):95-100
砂-膨润土混合物已被很多核能国家选为核废物地质处置库中理想的缓冲/回填材料。膨润土中加入砂可提高热传导系数和强度,维持适当的膨胀力,使其工程上易于处理并节省成本;但同时会导致其阻水能力和自愈性减弱。研究表明,影响砂-膨润土混合物以上各性质的主要因素为:砂/膨润土配合比、初始含水量、干密度等,它们综合决定着砂/膨润土最优配合比的选取。石英砂对混合物的渗透性、热传导性、强度等的影响,最优配合比选取,以及非饱和状态下吸力变化对混合物渗透性的影响等,应该是今后一段时间内砂-膨润土混合物研究的重点。  相似文献   

2.
饱和膨润土及其与砂混合物的压缩变形特性   总被引:1,自引:0,他引:1  
孙文静  孙德安  孟德林 《岩土力学》2009,30(11):3249-3255
对用不同制样方法得到的饱和膨润土及其与砂混合物进行了压缩试验。试验结果表明,饱和膨润土的压缩曲线呈双线性,不同于普通黏土的压缩曲线。压缩试验中量测了侧向应力,由此得到的饱和膨润土的静止侧向压力系数值较一般黏土的数值要大。对膨润土与砂混合物的击实样进行了由非饱和到饱和状态的浸水试验,并得出试验过程中侧向应力的变化规律。由于浸水饱和的试样和抽真空饱和的试样在较高压力时压缩曲线趋于一致,可采用快速抽真空饱和的方法进行试验研究,以缩短非饱和混合物击实样浸水饱和所需时间。引入骨架孔隙比的概念,用来判断膨润土与砂混合物中砂骨架是否形成,得出影响混合物压缩特性的决定因素。  相似文献   

3.
首先对斑脱土衬里(粘土-斑脱土、砂-斑脱土) 进行变水头实验, 得粘土-斑脱土的渗透系数为6.0×10-9~3.0×10-8cm/s, 砂-斑脱土的渗透系数为1.0×10-9~3.0×10-9cm/s.从防渗角度分析, 2种斑脱土混合物均适合作垃圾填埋场的底层衬里.然后对斑脱土衬里进行持水与水迁移实验, 评价斑脱土衬里水的迁移特性.以水迁移实验为基础, 模拟斑脱土衬里与地基5种不同含水量的条件, 对斑脱土衬里进行直接剪切实验, 测定斑脱土衬里的剪切强度及斑脱土衬里与地基接触面的剪切强度.再对斑脱土衬里进行三轴固结不排水实验, 测定其总剪切强度与有效剪切强度.实验结果表明: 地下水具有很大的潜力从地基流向斑脱土衬里, 从而大大提高斑脱土衬里的含水量; 随着含水量的增加, 粘土-斑脱土、砂-斑脱土衬里的抗剪强度逐渐减小.根据实验所获得的抗剪强度参数, 选择日本山谷型垃圾填埋场典型剖面, 对山谷型垃圾填埋场进行稳定性评价.结果表明: 对于角度小于20°的缓倾角山谷型垃圾填埋场, 使用粘土-斑脱土、砂-斑脱土作为底层衬里是稳定的.因此, 2种斑脱土混合物适合作山谷型垃圾填埋场的底层衬里.   相似文献   

4.
砂-膨润土混合屏障材料渗透性影响因素研究   总被引:2,自引:0,他引:2  
膨润土因具有渗透性低、阳离子交换能力高等优点被认为是最适合高放废物深地质处置库中屏障系统的缓冲材料,工程实践发现随着水化过程的进行,纯高压实膨润土强度不断降低,并最终影响到工程屏障系统功能的发挥。针对这一问题,在膨润土中加入一定比例的石英砂,可以有效地提高工程屏障的热传导特性、压实性、力学强度和长期稳定性,降低工程造价。本文研究了影响砂-膨润土混合物渗透性的主要因素,包括膨润土含量、粒径分布、含水量和干密度、压实方法以及膨润土类型等。结果表明,砂土混合物渗透性主要受膨润土的渗透性控制,渗透系数随着膨润土含量和干密度的增加而减小,当膨润土含量超过某一界限值后,继续增加膨润土含量对降低渗透系数的作用有限;细颗粒和级配良好的混合物渗透系数小,当土体内部发生渗透侵蚀将增大渗透系数;最优含水量条件下压实得到的渗透系数最低,高于最优含水量压实得到的渗透系数比低于最优含水量压实得到的渗透系数要小。  相似文献   

5.
The objective of this study was to evaluate the effect of water-cement ratio and cement content on the hydraulic behavior of soil–cement–bentonite (SCB) and soil–bentonite (SB) mixtures permeated with water and diesel oil, to assist with the design of vertical cutoff walls constructed with those mixtures. The experimental program included unconfined compression tests, hydraulic conductivity tests and X-ray diffraction analysis. The test results indicated changes in hydraulic conductivity take place due to the variation of the water-cement ratio and permeant fluid. The hydraulic conductivity of the SB mixtures permeated with diesel oil was higher than the hydraulic conductivity of the same samples permeated with water. X-ray diffraction analyses suggest that this might be due to the decrease in double layer thickness and increase of seepage pore space imparted by diesel oil permeation. Conversely, Portland cement addition increased the hydraulic conductivity of the SCB specimens permeated with water, whereas subsequent diesel oil permeation reduced the hydraulic conductivity of the SCB specimens; this might be due to the relatively lower impact imparted by diesel permeation on the double layer characteristics of the bentonite stabilized with Portland cement.  相似文献   

6.
Data are reported on the shrinkage and desiccation cracking exhibited by bentonite-enhanced sand mixtures (BES) upon air-drying. Mixtures containing 10 and 20% bentonite by dry weight, compacted at moisture contents ranging from 8 to 32%, were investigated. Hydraulic conductivity data for BES specimens saturated and tested immediately after compaction, and for similar specimens that had no visible damage after air-drying, are also presented.

All the mixtures exhibited volumetric shrinkage upon air-drying with the amount of shrinkage increasing with increasing moisture content during compaction. At any initial moisture content mixtures containing 20% bentonite shrink more than those containing 10% bentonite, but the shrinkage is insensitive to the compactive effort. Compacted beds of BES containing 10 and 20% bentonite exhibit no visible desiccation cracking as the top surface is dried when compacted at 15 and 14% moisture content, respectively, and only minor cracking when compacted at initial moisture contents of 20 and 15%, respectively. For the range of mixtures tested, it appears that cracking only occurs when BES undergoes more than about 4% volumetric shrinkage when air-dried. The saturated hydraulic conductivity of intact BES specimens is unaffected by a drying episode prior to testing.  相似文献   


7.
In this study, an investigation was performed to determine if lime-stabilized sand–bentonite mixtures are appropriate for the construction of sanitary landfills liners. For this aim, the hydraulic conductivity tests were conducted in the laboratory on sand–bentonite mixtures and lime-stabilized sand–bentonite mixtures to evaluate the effect of wetting–drying cycles. The hydraulic conductivity tests were performed to see if their hydraulic conductivities are affected by wetting–drying cycles. First series of specimens have been prepared as a mixture of sand and bentonite only. In the first series of specimens, sand was mixed with bentonite in proportions of 20, 30, 40, and 50 %. In the second series of the specimens, lime in proportions of 1, 2 and 3 % by weight was added to the mixtures of sand–bentonite in proportions of 20, 30, 40, and 50 %. From the results of the tests, it was observed that while optimum water content increased, maximum dry density decreased with addition of lime to the sand–bentonite mixtures. Generally, the hydraulic conductivity increased with the addition of lime to the mixtures but at low percentages of lime (1–2 %), however, slight decreases in k were recorded. It was also observed that the wetting–drying cycles on the permeability test indicate cure effect on specimens with addition of lime which resulted in decreased the hydraulic conductivity.  相似文献   

8.
Pollution of the environment due to leakage from waste repositories is a well-known and wide spread problem. Emphasis has therefore been put on design of liners for such repositories, focusing on hydraulic conductivity and its variation with time, liner composition, water content, compaction etc. The paper addresses the hydraulic conductivity of sand/bentonite mixtures, especially the variation of the hydraulic conductivity as a function of bentonite content, compaction and degree of saturation. In order to better understand the variation of the hydraulic conductivity of a sand–bentonite mixture a new parameter k 1 has been proposed. The parameter reflects the amount of bentonite per pore volume and can easily be calculated based on the amount of bentonite and the dry density of the soil mixture. Thereby, the hydraulic conductivity can be predicted as a function of different degres of compaction. This method can be used for engineering purposes to predict the hydraulic conductivity at an early stage of a design to get an idea of the required design and hence, cost.  相似文献   

9.
高放废物地质处置库缓冲/回填材料的重要作用之一是传导和散失高放废物衰变热,在膨润土中添加石英砂、石墨、花岗岩岩屑等导热性能较好的添加剂是提高缓冲/回填材料导热性能的主要方法。选用北山花岗岩岩屑为添加剂,与高庙子钠基膨润土GMZ01组成混合材料,制备不同含水率、不同密度的试样。使用Hot Disk TPS2500s热常数分析仪测定样品的导热系数,分析其与花岗岩岩屑含量、干密度、饱和度等参数的关系,并运用多种混合物热传导模型分析预测导热系数。研究结果表明,花岗岩岩屑能够有效提高缓冲/回填材料的导热性能,混合材料的导热系数分别与其饱和度、气体体积存在线性关系;Maxwell方程能够较好预测北山花岗岩岩屑-膨润土混合材料的导热系数。  相似文献   

10.
Compacted soil–bentonite liners, consisting of a sandy soil mixed with bentonite as backfill, are used extensively as engineered barriers for contaminant containment. This paper studies the valorization of local materials containing calcareous sand, tuff obtained from Laghouat region (in the South Algeria), to associate with bentonite in order to improve their hydraulic characteristics for use as landfill liner material. Firstly, a geotechnical characterization of mixtures chooses from a fixed percentage to 10% bentonite and different percentages of calcareous sand and tuff so that they are complementary to 90% by not 10%. Thereafter, the determination of saturated hydraulic conductivity at falling-head permeability (Kv) and oedometer (Kid, indirect Measure) tests of all compacted mixtures at Optimum Normal Proctor have been carried out using both permeates by tap water and a landfill leachate in order to simulate long-term conditions. The results showed that the saturated hydraulic conductivity of tap water is relatively lower than the one saturated by leachate in the falling-head test, unlike the oedometer test. The B10CS20T70 mixture has satisfied the hydraulic conductivity criterion of bottom barriers (i.e. water permeated: kv20° = 1.97 × 10?9 and kid from 7 × 10?9 to 1.83 × 10?10 < 10?9m/s; leachate permeated: kv20° = 2.91 × 10?9 and kid from 7 × 10?9 at 1.44 × 10?10 < 10?9 m/s). Finally, a comparison between direct measurements of the saturated hydraulic conductivity by triaxial (Kd) test and oedometer test (Kid) in the range of effective stress applied 100–800 kPa led to propose equations of correlations between these two methods. In conclusion, adopted formulation B10CS20T70 perfectly meets the regulatory requirements in force and constitutes an economic product based on available local materials for engineers barriers.  相似文献   

11.
Acidic groundwater resulting from the poorly planned use of acid sulfate soils has become a major environmental issue in coastal Australia over the last several years. Use of permeable reactive barriers (PRBs) designed to generate alkalinity by promoting sulfate reduction has recently become popular as an alternative solution to this problem. However, recent studies have also revealed that the long-term performance of such PRBs can be significantly undermined by chemical precipitation and clogging of pore space, which would decrease the buffer capacity and hydraulic conductivity of the reactive material. This study seeks to explore the feasibility of using bentonite in addition to lime and fly ash to form mixtures with a high buffer capacity and permeability that would enable groundwater flow through PRBs over a substantial period of time. A series of laboratory experiments, including buffer capacity and leaching tests, were performed on different mixtures of fly ash with lime and bentonite using acidic fluids of low pH. It was found that the ability of such mixtures to neutralize acidic fluids was mostly controlled by the content of lime. Laboratory data also showed that an addition of bentonite to lime—fly ash mixtures could decrease the buffer capacity of soil. Compaction tests indicated that the presence of bentonite would increase the dry density of mixtures at the optimum moisture content. A series of hydraulic conductivity tests were carried out to study changes in the coefficient of permeability of lime—fly ash mixtures with different contents of bentonite permeated with acidic liquids. The obtained results revealed that the coefficient of permeability of the specimens tended to increase over a period of time, likely due to the changes in the diffuse double layer of bentonite particles.  相似文献   

12.
土壤饱和导水率的多尺度预测模型与转换关系   总被引:1,自引:0,他引:1       下载免费PDF全文
运用联合多重分形方法研究不同土层土壤饱和导水率与土壤基本物理特性的多尺度相关性,建立不同土层土壤饱和导水率的多尺度预测模型,构建不同土层土壤饱和导水率之间的转换关系。结果表明:不同土层土壤饱和导水率与土壤基本物理特性的相关程度排序不同;在单一尺度和多尺度上,0~20 cm土层土壤饱和导水率与土壤基本物理特性的相关程度排序相同,20~40 cm土层土壤饱和导水率与土壤基本物理特性的相关程度排序不同;土壤饱和导水率多尺度预测模型的预测精度较高,0~20 cm土层和20~40 cm土层拟合值的均方根误差分别为0.035 0和0.029 0;0~20 cm土层和20~40 cm土层土壤饱和导水率转换关系的计算精度较高,拟合值的均方根误差为0.037 5。  相似文献   

13.
The candidate backfill materials for the repositories of low- and intermediate-level radioactive wastes consist of three components: crushed rock aggregate, finely ground rock aggregate and bentonite. The hydraulic conductivity of mixtures with 15% of sodium bentonite is approximately 5 · 10-9m/s based on the laboratory tests. The sweling potential for the same material varies between 20 and 60 kPa depending mainly on the salinity of the groundwater.  相似文献   

14.

Buffer/backfill material is an important engineering barrier in a deep geological repository of high-level radioactive waste (HLW). Its thermo-hydro-mechanical (THM) performance is very important for the safe and stable operation of the HLW repository system. Natural graphite powder mixed with sodium bentonite forms a buffer/backfill material that can dissipate heat quickly and provide strong isolation. In this paper, the THM characteristics of bentonite–sand–graphite–polypropylene fiber (BSGF) mixtures, used as a buffer/backfill material, were studied through a series of laboratory tests. The influence of graphite and polypropylene fiber contents on thermal conductivity, swelling pressure, hydraulic conductivity, and strength properties of BSGF mixtures with different sand contents was analyzed. Experimental results indicated that the graphite content, the maximum graphite mesh number, and the initial dry density of bentonite–graphite mixtures influenced the thermal conductivity of bentonite–graphite mixtures. The addition of polypropylene fiber was found to enhance the shear strength and inhibit cracking without significantly affecting the expansivity, permeability, and thermal conductivity of the BSGF mixtures. This study provides a new buffer/backfill material that can improve the stability, functionality, and thermal efficiency of the HLW repository.

  相似文献   

15.
The hydraulic conductivity represents an important indicator parameter in the generation and redistribution of excess pore pressure of sand–silt mixture soil deposits during earthquakes. This paper aims to determine the relationship between the undrained shear strength (liquefaction resistance) and the saturated hydraulic conductivity of the sand–silt mixtures and how much they are affected by the percentage of low plastic fines (finer than 0.074 mm) and void ratio of the soil. The results of flexible wall permeameter and undrained monotonic triaxial tests carried out on samples reconstituted from Chlef river sand with 0, 10, 20, 30, 40, and 50 % non-plastic silt at an effective confining pressure of 100 kPa and two initial relative densities (D r = 20, 91 %) are presented and discussed. It was found that the undrained shear strength (liquefaction resistance) can be correlated to the fines content, intergranular void ratio and saturated hydraulic conductivity. The results obtained from this study reveal that the saturated hydraulic conductivity (k sat) of the sand mixed with 50 % low plastic fines can be, in average, four orders of magnitude smaller than that of the clean sand. The results show also that the global void ratio could not be used as a pertinent parameter to explain the undrained shear strength and saturated hydraulic conductivity response of the sand–silt mixtures.  相似文献   

16.
以颗粒状和粉末状膨润土防水毯(GCLs)为对象,运用GDS (global digital systems)全自动渗透仪开展渗透试验,研究CaCl_2溶液作用下GCLs渗透性能的温度效应,初步探讨其机理。试验表明:当水化液为0.05mol/L的CaCl_2溶液时,两种GCLs渗透系数随温度升高呈现增大趋势;当水化液为去离子水时,颗粒状GCL渗透系数随温度升高而减小,粉末状GCL渗透系数随温度升高而增大。去离子水情况下,膨润土吸附结合水量随温度升高而减小;CaCl_2溶液作用下,吸附结合水量较去离子水情况大幅降低。当CaCl_2溶液浓度一定时,膨润土膨胀指数随温度升高而略有增大;当温度一定时,膨润土膨胀指数随CaCl_2溶液浓度升高而显著减小。以去离子水进行试验时:颗粒状和粉末状GCLs渗透系数随温度的变化主要影响因素为凝胶态蒙脱石数量,其次为流体黏滞系数和吸附结合水量;颗粒状GCLs膨润土孔隙结构越不均匀,凝胶态蒙脱石数量的影响就越显著,导致渗透系数随温度升高而减小、固有渗透率随温度升高显著降低。以CaCl_2溶液进行试验时,两种GCLs渗透系数随温度变化的主要受流体黏滞系数和吸附结合水量的影响,而受凝胶态蒙脱石数量的影响较小。孔隙溶液性质、温度和膨润土类型均对GCLs的防渗性能具有重要影响。  相似文献   

17.
As one of the most important properties of compacted bentonite used as buffer/backfill materials, hydraulic conductivity is influenced by various factors including temperature, microstructure and suction (or degree of saturation), etc. Based on the readily available results of both temperature-controlled water-retention tests and unsaturated infiltration tests under confined (constant volume) conditions, influences of temperature and microstructure variations on unsaturated hydraulic conductivity of the compacted Gaomiaozi (GMZ01) bentonite were analyzed. Then, a revised unsaturated hydraulic conductivity model considering temperature effects and microstructure changes was developed. With this proposed model, prediction and comparison were made on the unsaturated hydraulic conductivity of the compacted GMZ01 bentonite at 20 °C. Results show that water-retention capacity of compacted GMZ01 bentonite decreases as temperature increases and the degree of the temperature influence depends on suction. Under confined conditions, influence of hydration on microstructure of compacted GMZ01 bentonite depends on pore size. The proposed model can well describe the variations of unsaturated hydraulic conductivity with suction at different temperatures. However, further improvement of the proposed model is needed to account for the phenomenon of inter-aggregate pores clogging that occurred at the initial stage of hydration of compacted GMZ01 bentonite under confined conditions.  相似文献   

18.
密实砂-膨润土混合物膨胀特性的试验研究   总被引:10,自引:7,他引:3  
王志俭  刘泉声 《岩土力学》2000,21(4):331-334
密实砂-膨润土混合物作为高放废料地质处置的缓冲材料,人们来越来关心它的性质。通过大量的试验,研究了密实砂-膨润土的膨胀特性,阐明了其膨胀过程和方式,得出了一步有意义的结论。  相似文献   

19.
Geochemical study of clays used as barriers in landfills   总被引:1,自引:0,他引:1  
This is a hydraulic and geochemical study on 2 materials: natural clay (AN) and a regenerated material made up of a sand-bentonite (SB) mixture. The hydraulic part allowed us to conclude that a 10% industrial bentonite content mixed with sand offers hydraulic properties that are similar to those of AN material and are lower than the required standards. The geochemical properties of both AN and SB matrixes are comparable with those of some of the synthetic leachates studied. Furthermore, the Langmuir model helped us to identify the adsorption capacities of both matrixes with the following selectivities: Pb > Cu > Cd > Zn.  相似文献   

20.
Liu  Zhang-Rong  Cui  Yu-Jun  Ye  Wei-Min  Chen  Bao  Wang  Qiong  Chen  Yong-Gui 《Acta Geotechnica》2020,15(10):2865-2875

Bentonite pellet mixtures are considered as one of the candidate sealing materials for deep geological disposals of radioactive waste. One of the particularities of this material is the initial heterogeneous distribution of pellets and porosity within the mixture, leading to complex hydro-mechanical behaviour. In this paper, the hydro-mechanical properties of GMZ bentonite pellet mixtures were investigated in the laboratory by carrying out water retention tests on pellet mixtures under constant-volume condition and single pellets under free swelling condition, as well as a infiltration test on a column specimen of pellet mixture. In the infiltration test, the relative humidity and radial swelling pressure were monitored at five heights, the axial swelling pressure was also recorded. The instantaneous profile method was applied to determine the unsaturated hydraulic conductivities. Results show that, in high suction range (>?10 MPa) the water retention curve of pellet mixture under constant-volume condition was comparable to that of a single pellet under free swelling condition, while in low suction range (<?10 MPa) the latter exhibits a much higher water retention capacity. Due to clogging of large pores, the unsaturated hydraulic conductivity decreases as suction decreases to around 25 MPa. However, with further suction decrease, the hydraulic conductivity increases continuously until the value at saturated state, as in the case of most unsaturated soils. The radial swelling pressure at different heights develops with local sudden increase and decrease, which was attributed to local rearrangement of pellets upon wetting. By contrast, as the axial swelling pressure was measured on the global surface of the specimen, it develops in a more regular fashion.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号