首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ordinary Cokriging Revisited   总被引:12,自引:0,他引:12  
This paper sets up the relations between simple cokriging and ordinary cokriging with one or several unbiasedness constraints. Differences between cokriging variants are related to differences between models adopted for the means of primary and secondary variables. Because it is not necessary for the secondary data weights to sum to zero, ordinary cokriging with a single unbiasedness constraint gives a larger weight to the secondary information while reducing the occurrence of negative weights. Also the weights provided by such cokriging systems written in terms of covariances or correlograms are not related linearly, hence the estimates are different. The prediction performances of cokriging estimators are assessed using an environmental dataset that includes concentrations of five heavy metals at 359 locations. Analysis of reestimation scores at 100 test locations shows that kriging and cokriging perform equally when the primary and secondary variables are sampled at the same locations. When the secondary information is available at the estimated location, one gains little by retaining other distant secondary data in the estimation.  相似文献   

2.
Comparison of kriging techniques in a space-time context   总被引:1,自引:0,他引:1  
Space-time processes constitute a particular class, requiring suitable tools in order to predict values in time and space, such as a space-time variogram or covariance function. The space-time co-variance function is defined and linked to the Linear Model of Coregionalization under second-order space-time stationarity. Simple and ordinary space-time kriging systems are compared to simple and ordinary cokriging and their differences for unbiasedness conditions are underlined. The ordinary space-time kriging estimation then is applied to simulated data. Prediction variances and prediction errors are compared with those for ordinary kriging and cokriging under different unbiasedness conditions using a cross-validation. The results show that space-time kriging tend to produce lower prediction variances and prediction errors that kriging and cokriging.  相似文献   

3.
This paper compares the performance of four algorithms (full indicator cokriging. adjacent cutoffs indicator cokriging, multiple indicator kriging, median indicator kriging) for modeling conditional cumulative distribution functions (ccdf).The latter three algorithms are approximations to the theoretically better full indicator cokriging in the sense that they disregard cross-covariances between some indicator variables or they consider that all covariances are proportional to the same function. Comparative performance is assessed using a reference soil data set that includes 2649 locations at which both topsoil copper and cobalt were measured. For all practical purposes, indicator cokriging does not perform better than the other simpler algorithms which involve less variogram modeling effort and smaller computational cost. Furthermore, the number of order relation deviations is found to be higher for cokriging algorithms, especially when constraints on the kriging weights are applied.  相似文献   

4.
Three approaches for estimating the hydraulic conductivity (K) of the Trifa aquifer, Morocco were investigated: (1) kriging of the K values obtained from pumping tests, (2) cokriging of the pumping test data with electrical resistivity data as a secondary variable, and (3) cokriging of the pumping test data with the slope of the water table. Gauss-transformed values of the variables are used because they provide more robust variograms and transformed values of the primary and secondary variables show correlations higher than the raw values, which is beneficial in cokriging. In cokriging with electrical resistivity, two zones are considered since the geological deposits are different from the north to the south of the aquifer, which is reflected in different correlations between the variables. Comparison of the three approaches is based mainly on the estimation errors, and to a lesser degree on the cross-validations of the corresponding variogram models and general considerations, like the measurements’ reliability and aquifer make-up. The best-estimated K is given by cokriging with the slope of the water table and is therefore preferred for further use in groundwater flow modeling. Thus, electrical resistivity or the slope of the water table can both be used as secondary variables to estimate K, especially in heterogeneous aquifers with lateral variations in lithology, as is the case of the Trifa aquifer.  相似文献   

5.
Under the intrinsic coregionalization model if both primary and secondary measurements are available at all sample locations, the conventional geostatistical wisdom is that cokriging provides exactly the same solution as univariate kriging on the primary process alone. However, recent eamples have been given where nonzero secondary cokriging weights have accurred under this spatial dependence structure. This note identifies the conditions under which secondary information is useful under the assumption of intrinsic coregionalization. An illustration is given using a dataset of plutonium and americium concentrations collected from a region of the Nevada Test Site.  相似文献   

6.
Environmental studies require multivariate data such as chemical concentrations with space-time coordinates. There are two general conditions related to such data: the existence of correlations among the coregionalized variables and the differences in numbers of data which occur because of insufficient data caused by measurement error or bad weather conditions. This study proposes geostatistical techniques for space-time multivariate modeling that take into consideration these correlations and data absences. These techniques consist of suitable modeling of semivariograms and cross-semivariograms for quantifying correlation structures among multivariables and of extending standardized ordinary cokriging. The tensor product cubic smoothing surface method is used for space-time semivariogram modeling. These methods are applied to the chemical component data of the Ariake Sea, a typical closed sea in southwest Japan. In order to clarify environmental changes in the Ariake Sea, the concentration data of four nutritive salts (NO2–N, NO3–N, NH4–N, and PO4–P) at 38 stations over 25 years are used as environmental indicators. For each of the kinds of data, there are spaces and times for which there is no data available. The effectiveness of the modeling of space-time semivariograms and the high estimation capability of the extended cokriging are demonstrated by cross-validation. Compared with ordinary kriging for a single variable, multivariate space-time standardized ordinary cokriging can provide a more detailed concentration map of nutritive salts and while elucidating their temporal changes over sparsely spaced data areas. In the space-time models by ordinary kriging, on the other hand, smooth trends are obvious.  相似文献   

7.
Large cokriging systems arise in many situations and are difficult to handle in practice. Simplifications such as simple kriging, strictly collocated and multicollocated cokriging are often used and models under which such simplifications are, in fact, equivalent to cokriging have recently received attention. In this paper, a two-dimensional second-order stationary random process with known mean is considered and the redundancy of certain components of the data at certain locations vis-à-vis the solution to the simple cokriging system is examined. Conditions for the simple cokriging weights of these components at these locations are set to zero. The conditions generalise the notion of the autokrigeability coefficient and can, in principle, be applied to any data configuration. In specific sampling situations such as the isotopic and certain heterotropic configurations, models under which simple kriging, strictly collocated, multicollocated and dislocated cokriging are equivalent to simple cokriging are readily identified and results already available in the literature are obtained. These are readily identified and the results are already available in the literature. The advantage of the approach presented here is that it can be applied to any data configuration for analysis of permissible simplifications in simple cokriging.  相似文献   

8.
There exist many secondary data that must be considered in in reservoir characterization for resource assessment and performance forecasting. These include multiple seismic attributes, geological trends and structural controls. It is essential that all secondary data be accounted for with the precision warranted by that data type. Cokriging is the standard technique in geostatistics to account for multiple data types. The most common variant of cokriging in petroleum geostatistics is collocated cokriging. Implementations of collocated cokriging are often limited to a single secondary variable. Practitioners often choose the most correlated or most relevant secondary variable. Improved models would be constructed if multiple variables were accounted for simultaneously. This paper presents a novel approach to (1) merge all secondary data into a single super secondary variable, then (2) implement collocated cokriging with the single variable. The preprocessing step is straightforward and no major changes are required in the standard implementation of collocated cokriging. The theoretical validity of this approach is proven, that is, the results are proven to be identical to a “full” approach using all multiple secondary variables simultaneously.  相似文献   

9.
Comparison of approaches to spatial estimation in a bivariate context   总被引:6,自引:0,他引:6  
The problem of estimating a regionalized variable in the presence of other secondary variables is encountered in spatial investigations. Given a context in which the secondary variable is known everywhere (or can be estimated with great precision), different estimation methods are compared: regression, regression with residual simple kriging, kriging, simple kriging with a mean obtained by regression, kriging with an external drift, and cokriging. The study focuses on 19 pairs of regionalized variables from five different datasets representing different domains (geochemical, environmental, geotechnical). The methods are compared by cross-validation using the mean absolute error as criterion. For correlations between the principal and secondary variable under 0.4, similar results are obtained using kriging and cokriging, and these methods are superior slightly to the other approaches in terms of minimizing estimation error. For correlations greater than 0.4, cokriging generally performs better than other methods, with a reduction in mean absolute errors that can reach 46% when there is a high degree of correlation between the variables. Kriging with an external drift or kriging the residuals of a regression (SKR) are almost as precise as cokriging.  相似文献   

10.
Cokriging allows the use of data on correlated variables to be used to enhance the estimation of a primary variable or more generally to enhance the estimation of all variables. In the first case, known as the undersampled case, it allows data on an auxiliary variable to be used to make up for an insufficient amount of data. Original formulations required that there be sufficiently many locations where data is available for both variables. The pseudo-cross-variogram, introduced by Clark et al. (1989), allows computing a related empirical spatial function in order to model the function, which can then be used in the cokriging equations in lieu of the cross-variogram. A number of questions left unanswered by Clark et al. are resolved, such as the availability of valid models, an appropriate definition of positive-definiteness, and the relationship of the pseudo-cross-variogram to the usual cross-variogram. The latter is important for modeling this function.  相似文献   

11.
Multivariable spatial prediction   总被引:1,自引:0,他引:1  
For spatial prediction, it has been usual to predict one variable at a time, with the predictor using data from the same type of variable (kriging) or using additional data from auxiliary variables (cokriging). Optimal predictors can be expressed in terms of covariance functions or variograms. In earth science applications, it is often desirable to predict the joint spatial abundance of variables. A review of cokriging shows that a new cross-variogram allows optimal prediction without any symmetry condition on the covariance function. A bivariate model shows that cokriging with previously used cross-variograms can result in inferior prediction. The simultaneous spatial prediction of several variables, based on the new cross-variogram, is then developed. Multivariable spatial prediction yields the mean-squared prediction error matrix, and so allows the construction of multivariate prediction regions. Relationships between cross-variograms, between single-variable and multivariable spatial prediction, and between generalized least squares estimation and spatial prediction are also given.  相似文献   

12.
《Mathematical Geology》1997,29(6):779-799
Generalized cross-covariances describe the linear relationships between spatial variables observed at different locations. They are invariant under translation of the locations for any intrinsic processes, they determine the cokriging predictors without additional assumptions and they are unique up to linear functions. If the model is stationary, that is if the variograms are bounded, they correspond to the stationary cross-covariances. Under some symmetry condition they are equal to minus the usual cross-variogram. We present a method to estimate these generalized cross-covariances from data observed at arbitrary sampling locations. In particular we do not require that all variables are observed at the same points. For fitting a linear coregionalization model we combine this new method with a standard algorithm which ensures positive definite coregionalization matrices. We study the behavior of the method both by computing variances exactly and by simulating from various models.  相似文献   

13.
In karst areas, accurately measuring and managing the spatial variability of soil water content (SWC) is very critical in settling numerous issues such as karst rocky desertification, ecosystem reconstruction, etc. In these areas, SWC exhibits strong spatial dependence, and it is a time and labor consuming procedure to measure its spatial variability. Therefore, estimation of this kind of soil property at an acceptable level of accuracy is of great significance. This study was conducted to evaluate and compare the spatial estimation of SWC by using ordinary kriging (OK) and cokriging (COK) methods with prime terrain variables, tending to predict SWC using limited available sample data for a 2,363.7 km2 study area in Mashan County, Guangxi Zhuang Autonomous Region, Southwest China. The measured SWC ranged from 3.36 to 26.69 %, with a mean of 17.34 %. The correlation analysis between SWC and prime terrain variables indicated that SWC showed significantly positive correlation with elevation (r is 0.46, P < 0.01), and significantly negative correlation with slope (r is ?0.30, P < 0.01); however, SWC was not significantly correlated with aspect in the study area. Therefore, elevation and slope were used as auxiliary data together for SWC prediction using COK method, and mean error (ME) and root mean square error were adopted to validate the prediction of SWC by these methods. Results indicated that COK with prime terrain variables data was superior to OK with relative improvement of 28.52 % in the case of limited available data, and also revealed that such elevation and slope data have the potential to improve the precision and reliability of SWC prediction as useful auxiliary variables.  相似文献   

14.
Two different Markov models for cross-covariance and coregionalization modeling are proposed and compared in cokriging and stochastic simulation modes. The newly introduced Markov model 2 performs better in cases where the secondary data are defined on a larger support volume than the primary variable being estimated or simulated. Incorrect adoption of the more traditional Markov model 1 may result in cokriging estimated maps that are artificially too close to the secondary data map and in simulated realizations with too high nugget effect.  相似文献   

15.
A tripartite earthquake response spectrum exhibits peak values of acceleration, velocity, and displacement in concert, each as a function of natural frequency of vibration. Because cokriging is a regionalized variable technique for multiple variable estimation, it was employed to jointly estimate peak values of acceleration, velocity, and displacement through a frequency discretization process. The objective of this application was to develop a technique for estimation of response spectra at uninstrumented locations. Because magnitudes of the three response variables differed, these data were normalized prior to cokriging. This process simply involved dividing each type of variable by its maximum value for a given frequency; hence, values of each type of variable ranged between zero and one. This allowed better accuracy in developing cross-variograms. Cokriging proved to be an efficient and accurate technique to use for the estimation of tripartite response spectra.  相似文献   

16.
On Some Simplifications of Cokriging Neighborhood   总被引:2,自引:0,他引:2  
Choosing the cokriging neighborhood is often difficult. A poor choice, ignoring influent data, can result in a loss of information as well as in artifacts in simulations based on cokriging. Then it is convenient to use if possible, or to refer to models that lead to simplified cokriging neighborhood. We essentially consider the case of two stationary variables, a target variable and an auxiliary one. By examining possible simplifications, we set up a list of models (essentially models with residuals) that, in general or under specific configurations, lead to simplifications of cokriging neighborhood. Collocated, dislocated, and other types of neighborhood are identified, that are optimal in some models and configurations. Possible extensions to cokriging with unknown means, and to more variables, are included.  相似文献   

17.
This paper presents a regionalized method for the estimation of a favorability function through generalization of all relevant variables (explanatory and target) into random functions. The new method allows the use of cross-covariance functions in addition to ordinary covariances for extracting spatial joint information, which is virtually overlooked in the conventional analyses. The optimal weights for a favorability equation are derived from solving a generalized eigen-system established by the maximization of covariances between a favorability function and the principal components of a set of pre-selected target variables. Various correlation coefficients may be computed to assist in interpretation of the favorability estimates. Both favorability functions and correlation coefficients may be estimated for a point or a block. The regionalized favorability theory can be compared to cokriging in that both use the sample-sample covariances to account for the sample-sample relations and the point-sample covariances to account for the point-sample configurations. The new technique is demonstrated on a test case study, which involves the integration of geochemical, airborne-geophysical, and structural data sets for the target selection of hydrothermal gold-silver deposits.  相似文献   

18.
A multivariate geostatistics (cokriging) is used for regional analysis and prediction of rainfall throughout the southwest region of Saudi Arabia. Elevation is intruded as a covariant factor in order to bring topographic influences into the methodology. Sixty-three representative weather stations are selected for a 21-year period covering different microclimate conditions. Results show that on an annual basis, there is no significant change using elevation. On the seasonal basis, the cokriging method gave more information about rainfall occurrence values, its accuracy related to the degree of correlation between elevation and rainfall by season. The prediction of spring and winter rainfall was improved owing to the importance of orographic processes, while the summer season was not affected within its monsoon climatology. In addition, fall season shows inverse and weak correlation of elevation with rainfall. Cross-validation and cokriging variances are also used for more accuracy of rainfall regional estimation. Moreover, even though the correlation is not significant, the isohyet values of cokriged estimates provided more information on rainfall changes with elevation. Finally, adding more secondary variables in addition to elevation could improve the accuracy of cokriging estimates.  相似文献   

19.
稳健协同克立格因子分析及其在化探中的应用   总被引:5,自引:0,他引:5  
余先川  王世称 《地球科学》1998,23(2):171-174
稳健协同克立格因子分析集稳健统计、协同克立格和因子分析的优点于一体,可同时研究多个变量不同方向的结构差异及变化性,用该方法研究次生晕指示的结构特征可在一定程度反映原生晕的特征,揭示其深层次信息.对团结沟金矿区次生晕分析表明:在矿产预测中矿床原生晕组合标志并不适用于次生晕及分散流的研究,本方法对大(中)比例尺次生晕、分散流与原生晕的信息转换和关联有独到之处.  相似文献   

20.
 Spatial and temporal behavior of hydrochemical parameters in groundwater can be studied using tools provided by geostatistics. The cross-variogram can be used to measure the spatial increments between observations at two given times as a function of distance (spatial structure). Taking into account the existence of such a spatial structure, two different data sets (sampled at two different times), representing concentrations of the same hydrochemical parameter, can be analyzed by cokriging in order to reduce the uncertainty of the estimation. In particular, if one of the two data sets is a subset of the other (that is, an undersampled set), cokriging allows us to study the spatial distribution of the hydrochemical parameter at that time, while also considering the statistical characteristics of the full data set established at a different time. This paper presents an application of cokriging by using temporal subsets to study the spatial distribution of nitrate concentration in the aquifer of the Lucca Plain, central Italy. Three data sets of nitrate concentration in groundwater were collected during three different periods in 1991. The first set was from 47 wells, but the second and the third are undersampled and represent 28 and 27 wells, respectively. Comparing the result of cokriging with ordinary kriging showed an improvement of the uncertainty in terms of reducing the estimation variance. The application of cokriging to the undersampled data sets reduced the uncertainty in estimating nitrate concentration and at the same time decreased the cost of the field sampling and laboratory analysis. Received: 23 July 1997 · Accepted: 31 March 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号