首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The nonlinear propagation of Alfvén waves on open solar magnetic flux tubes is considered. The flux tubes are taken to be vertical and axisymmetric, and they are initially untwisted. The Alfvén waves are time-dependent axisymmetric twists. Their propagation into the chromosphere and corona is investigated by solving numerically a set of nonlinear time-dependent equations, which couple the Alfvén waves into motions parallel to the initial magnetic field (motion in the third coordinate direction is artificially suppressed). The principal conclusions are: (1) Alfvén waves can steepen into fast shocks in the chromosphere. These shocks can pass through the transition region into the corona, and heat the corona. (2) As the fast shocks pass through the transition region, they produce large-velocity pulses in the direction transverse to B o. The pulses typically have amplitudes of 60 km s–1 or so and durations of a few tens of seconds. Such features may have been observed, suggesting that the corona is in fact heated by fast shocks. (3) Alfvén waves exhibit a strong tendency to drive upward flows, with many of the properties of spicules. Spicules, and the observed corrugated nature of the transition region, may therefore be by-products of magnetic heating of the corona. (4) It is qualitatively suggested that Alfvén waves may heat the upper chromosphere indirectly by exerting time-dependent forces on the plasma, rather than by directly depositing heat into the plasma.  相似文献   

2.
The current-driven kinetic Alfvén instability is proposed as an anomalous transport mechanism for regions of concentrated, field-aligned currents in the solar corona. Anomalous magnetic diffusivity ( e f f 109cm2s–1), produced by kinetic Alfvén turbulence in the vicinity of the saturation level, provides fast magnetic energy release with a local inflow Alfvén Mach numberM in 0.1.  相似文献   

3.
E. Fürst 《Solar physics》1972,25(1):178-187
The heating of the solar plasma of those layers is considered where the microwave bursts are emitted. In a first step, we restrict ourselves to phenomena correlated with the so-called type II m bursts. Bursts of this kind are excited by shock-waves initiated near the optical flare region. These shock-waves spread out into the higher corona, and if the shock strength is sufficiently high, the microwave region is heated to 107 K. But this temperature is too low to explain the burst radiation. In this paper, it is shown that at plasma temperatures about 107 K a fairly high number of electrons is accelerated by Alfvén waves to equivalent kinetic temperatures of about 108 K. We assume that the Alfvén waves are generated near the sunspots, and, therefore, the accelerated electrons run along the magnetic-field lines into the microwave source lying between the two spots of an assumed dipole field. Within this source, the considered electrons thermalize and, after a short time, the source reaches temperatures of 5 × 107 K to 108 K.A plasma of this temperature with an electron density about 5 × 109 cm–3 and a magnetic induction of 300 G is optically thick even at frequencies about 10 GHz, because the gyromagnetic absorption is very high.  相似文献   

4.
We have modeled the solar coronal active loop heating by discrete Alfvén waves. Discrete Alfvén waves (DAW) are a new class of Alfvén waves which can be described by the two-fluid model with finite ion-cyclotron frequency, or the MHD model with plasma current along the magnetic field line as shown by Appert, Vaclavik, and Villar (1984). We have modeled the coronal loop as a semi-toroidal plasma with the major toroidal radius much larger than the plasma radius. We have shown that the absorption of discrete Alfvén waves by the plasma through viscosity can account for at least 30% of the coronal heating rate density of 10–4 J m–3 s–1.  相似文献   

5.
We discuss a solar flare microwave burst complex, which included a major structure consisting of some 13 spikes of 60 ms FWHM each, observed 21 May, 1984 at 90 GHz (3 mm). It was associated with a simultaneous very hard X-ray burst complex. We suggest that the individual spikes of both bursts were caused by the same electron population: the X-bursts by their bremsstrahlung, and the microwave bursts by their gyrosynchrotron emission. This latter conclusion is based on the evidence that the radio turnover frequency was 150 GHz. It follows that the emission sources were characterized by an electron density of about 1011 cm–3, a temperature of 5 × 108 K and a magnetic field of about 1400–2000 G. They had a size of about 350 km; if the energy release is caused by reconnection the sources of primary instability could have been smaller and in the form of thin sheets with reconnection speed at a fraction of the Alfvén velocity and burst-like energy injections of 1027 erg during about 50 ms each. The energized plasma knots lost their injection energy by saturated convective flux (collisionless conduction) in about 30 ms.  相似文献   

6.
The excitation and dissipation of global and surface Alfvén waves and their conversion into kinetic Alfvén waves have been analyzed for solar coronal loops using a cylindrical model of a magnetized plasma. Also the optimal conditions for coronal loop heating regimes with density of dissipated power 103 erg cm–3 s–1 by the new scheme named combined Alfvén wave resonance are found. Combined Alfvén wave heating regime appears when the global Alfvén wave is immersed into the Alfvén continuum with the condition of not-so-sharp distribution of axial current.Instituto de Matemática, Universidade Federal Fluminense, Niterói, RJ, Brazil  相似文献   

7.
Voitenko  Yuriy  Goossens  Marcel 《Solar physics》2002,206(2):285-313
We study a kinetic excitation mechanism for high-frequency dispersive Alfvén waves in the solar corona by magnetic reconnection events. The ion-cyclotron and Cerenkov kinetic effects are important for these waves which we call the ion-cyclotron kinetic Alfvén waves (IC KAWs). The plasma outflowing from the reconnection site sets up a neutralized proton beam in the surrounding plasma, providing free energy for the excitation of waves. The dependence of the phase velocity of the IC KAW on the parallel wavenumber is different from that on the perpendicular wavenumber. The phase velocity is an increasing function of the perpendicular wavenumber and overtakes the Alfvén velocity for sufficiently large values of k . However, the phase velocity is a decreasing function of k , and sufficiently large values of k result in a phase velocity below the Alfvén velocity. As a result, the IC KAWs can undergo the Cerenkov resonance with both super- and sub-Alfvénic particles, and for the waves to be excited the outflow velocity does not need to be super-Alfvénic, as for KAWs, but the beam/Alfvén velocity ratio can span a wide range of values. High growth rates of the order of 104 s–1 are found for the values of the plasma parameters typical for the low solar corona. The waves excited by (sub-)Alfvénic beams are damped mainly due to kinetic wave-particle interactions with ions at the cyclotron resonance (ion-cyclotron damping), and with ions and electrons at the Cerenkov resonance (Landau damping). Therefore, IC KAWs can heat the plasma species of the corona in both the parallel and perpendicular direction, giving rise to an anisotropic heating of the ions. The observational consequences of the processes under study are discussed.  相似文献   

8.
It has been shown that Alfvén waves can drive non-inductive current in solar coronal loops via collisional or collisionless damping. Assuming that all the coronal-loop density of dissipated wave power (W= 10–3 erg cm–3 s–1), which is necessary to keep the plasma hot, is due to Alfvén wave electron heating, we have estimated the axial current density driven by Alfvén waves to be jz 103–105 statA cm–2. This current can indeed support the quasi-stationary equilibrium and stability of coronal loops and create the poloidal magnetic field up to B 1–5 G.  相似文献   

9.
The propagation of Alfvén waves in a simple model of a sunspot is considered. The vertical structure near the center of the umbra is modelled realistically, but the horizontal structure is not considered. The full wave equation is solved, without recourse to the WKB approximation. Only wave propagation in the vicinity of the central field line in an axially symmetric spot is examined, and it is assumed that this field line is open. By taking wave reflections into account, we find that the observations of non-thermal motions near the temperature minimum (Beckers, 1976) and in the corona (Beckers and Schneeberger, 1977) are both consistent with an upward-propagating Alfvénic energy flux density of a few times 107 erg cm–2 s–1. This flux density is too small to cool the sunspot, but it is large enough to supply the energy requirements of the transition region and corona above a sunspot. This conclusion depends on the assumptions that the observed motions are indeed Alfvénic with periods near 180 s.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

10.
The propagation and interference of Alfvén waves in magnetic regions is studied. A multilayer approximation of the standard models of the solar atmosphere is used. In each layer, there is a linear law of temperature variation and a power law of Alfvén velocity variation. The analytical solutions of a wave equation are stitched at the layer boundaries. The low-frequency Alfvén waves (P > 1 s) are able to transfer the energy from sunspots into the corona by tunneling only. The chromosphere is not a resonance filter for the Alfvén waves. The interference and resonance of Alfvén waves are found to be important to wave propagation through the magnetic coronal arches. The transmission coefficient of Alfvén waves into the corona increases sharply on the resonance frequences. To take into account the wave absorption in the corona, a method of equivalent schemes is developed. The heating of a coronal arch by Alfvén waves is discussed.  相似文献   

11.
Ning  Zongjun  Fu  Qijun  Lu  Quankang 《Solar physics》2000,194(1):137-145
We present a special solar radio burst detected on 5 January 1994 using the multi-channel (50) spectrometer (1.0–2.0 GHz) of the Beijing Astronomical Observatory (BAO). Sadly, the whole event could not be recorded since it had a broader bandwidth than the limit range of the instrument. The important part was obtained, however. The event is composed of a normal drift type III burst on the lower frequency side and a reverse drift type III burst appearing almost simultaneously on the high side. We call the burst type III a burst pair. It is a typical characteristic of two type III bursts that they are morphologically symmetric about some frequency from 1.64 GHz to 1.78 GHz on the dynamic spectra records, which indicates that there are two different electron beams from the same acceleration region travelling simultaneously in opposite directions (upward and downward). A magnetic reconnection mode is a nice interpretation of type III burst pair since the plasma beta 0.01 is much less than 1 and the beams have velocity of about 1.07×108 cm s–1 after leaving the reconnection region if we assume that the ambient magnetic field strength is about 100 G.  相似文献   

12.
Campos  L.M.B.C.  Mendes  P.M.V.M. 《Solar physics》2000,191(2):257-280
The present paper concerns Alfvén waves, in a resistive and viscous atmosphere, under a steep temperature gradient (Section 1). The dissipative Alfvén wave equation is deduced assuming uniform vertical background magnetic field, and allowing for arbitrary profiles of Alfvén speed, and viscous and resistive diffusivities as functions of altitude (Section 2). A three-parameter family of temperature profiles, allowing for independent choice of initial and asymptotic temperature, and of initial temperature gradient, is used to re-write the wave equation, with the temperature as the independent variable, instead of altitude (Section 3). It is shown that, for the conditions prevailing in the solar transition region between the chromosphere and corona, two approximations of the dissipative wave equations may be considered, the simplest leading to solution in terms of Gaussian hypergeometric functions (Section 4). The exact analytical solution allows calculation of the (i) velocity and (ii) magnetic field perturbations, (iii) kinetic, (iv) magnetic and (v) total energy density, (vi) energy flux, (vii) rate-of-strain and (viii) electric current, and (ix) viscous, (x) resistive and (xi) total rate of dissipation (Section 5). These are plotted versus temperature, across the transition region from the chromosphere to the corona, for the quiet and active Sun (Section 6). The feasibility of heating of the transition region by dissipation of Alfvén waves is discussed (Section 7), by comparing empirical heating rates, with theoretical values for a range of physical conditions, including initial velocity perturbations 5 to 15 km s –1, background magnetic field 12 to 120 G, wave periods 60 to 300 s, thickness of the transition region 100 to 300 km, resistive and anomalous diffusivities to 100 and viscous and turbulent diffusivities to 100 . The conclusion is that dissipation of Alfvén waves is not an effective heating mechanism for the transition region and corona, although it may be for the chromosphere (see Campos and Mendes, 1995, and references therein).  相似文献   

13.
Ryutova  M.  Habbal  S.  Woo  R.  Tarbell  T. 《Solar physics》2001,200(1-2):213-234
We propose a mechanism for the formation of a magnetic energy avalanche based on highly dynamic phenomena within the ubiquitous small-scale network magnetic elements in the quiet photosphere. We suggest that this mechanism may provide constant mass and energy supply for the corona and fast wind. Constantly emerging from sub-surface layers, flux tubes collide and reconnect generating magneto-hydrodynamic shocks that experience strong gradient acceleration in the sharply stratified photosphere/chromosphere region. Acoustic and fast magnetosonic branches of these waves lead to heating and/or jet formation due to cumulative effects (Tarbell et al., 1999). The Alfvén waves generated by post-reconnection processes have quite a restricted range of parameters for shock formation, but their frequency, determined by the reconnection rate, may be high enough (0.1–2.5 s–1) to carry the energy into the corona. We also suggest that the primary energy source for the fast wind lies far below the coronal heights, and that the chromosphere and transition region flows and also radiative transient form the base of the fast wind. The continuous supply of emerging magnetic flux tubes provides a permanent energy production process capable of explaining the steady character of the fast wind and its energetics.  相似文献   

14.
D. J. Mullan 《Solar physics》1981,70(2):381-393
Thomas (1978) has shown that, if Alfvén waves exist in a sunspot umbra, they are normally reflected so strongly by the temperature minimum as to be essentially undetectable in the upper solar atmosphere. However, it is known that in many proton flares, chromospheric emission overlies the umbra of a sunspot, indicating that the transition region (TR) between chromosphere and corona in the umbral flux tube has moved down to lower altitudes. As a result of this lowering, umbral Alfvén waves have readier access to the corona: the coronal leakage depends exponentially on the altitude of the TR. We find that the Alfvén wave flux which leaks out of the umbra into the corona can exceed 107 ergs cm-2 s-1. A flux of this magnitude is expected to dissipate rapidly in the corona, thereby contributing to a positive feedback loop which ensures prolonged (1 hr) leakage of the umbral Alfvén waves into the corona. We propose that these Alfvén waves may contribute significantly to prolonged energization of proton flares in which umbral coverage occurs.  相似文献   

15.
The solar corona, modeled by a low-, resistive plasma slab, sustains MHD wave propagations due to footpoint motions in the photosphere. Simple test cases are undertaken to verify the code. Uniform, smooth and steep density, magnetic profile and driver are considered. The numerical simulations presented here focus on the evolution and properties of the Alfvén, fast and slow waves in coronal loops. The plasma responds to the footpoint motion by kink or sausage waves depending on the amount of shear in the magnetic field. The larger twist in the magnetic field of the loop introduces more fast-wave trapping and destroys initially developed sausage-like wave modes. The transition from sausage to kink waves does not depend much on the steep or smooth profile. The slow waves develop more complex fine structures, thus accounting for several local extrema in the perturbed velocity profiles in the loop. Appearance of the remnants of the ideal singularities characteristic of ideal plasma is the prominent feature of this study. The Alfvén wave which produces remnants of the ideal x –1 singularity, reminiscent of Alfvén resonance at the loop edges, becomes less pronounced for larger twist. Larger shear in the magnetic field makes the development of pseudo-singularity less prominent in case of a steep profile than that in case of a smooth profile. The twist also causes heating at the edges, associated with the resonance and the phase mixing of the Alfvén and slow waves, to slowly shift to layers inside the slab corresponding to peaks in the magnetic field strength. In addition, increasing the twist leads to a higher heating rate of the loop. Remnants of the ideal log ¦x¦ singularity are observed for fast waves for larger twist. For slow waves they are absent when the plasma experiences large twist in a short time. The steep profiles do not favour the creation of pseudo-singularities as easily as in the smooth case.  相似文献   

16.
D. L. Croom 《Solar physics》1970,15(2):414-423
The results of 2 1/2 years (July 1967 – December 1969) monitoring of solar radio bursts at 71 GHz ( = 4.2 mm) at the Radio and Space Research Station, Slough are presented. During this period only seven events were positively identified as 71 GHz bursts. One of these events (6 July, 1968) is among the largest solar bursts ever recorded anywhere in the microwave-millimetre wave band (47000 × 10–22Wm–2Hz–1), and the associated magnetic field may possibly have exceeded 7200 G. Another event (27 March, 1969) has demonstrated that bursts at 71 GHz can be both intense (4700 × 10–22Wm–2Hz–1) and complex. On other occasions, the absence of any detectable event at 71 GHz helps to define the high frequency spectrum of the burst, this being an important factor in determining the initial energy distribution of the electrons ejected by the associated flare. On one such occasion (21 March, 1969) the derived energy distribution index is 8, in contrast with the more usual values of 2–4.1969–1970 NCR-OAR Senior Post-Doctoral Research Associate at Air Force Cambridge Research Laboratories, L. G. Hanscom Field, Bedford, Mass., U.S.A.  相似文献   

17.
A source mechanism for the generation of shear Alfvén waves in the low solar corona is suggested. It is attributed to newly created ions associated with the ionization of neutral atoms in the chromosphere – corona transition region. In the present discussion attention is mainly paid to the excitation of shear Alfvén waves rather than compressional Alfvén waves, i.e., fast and slow magnetosonic waves. A kinetic instability, which amplifies Alfvén waves propagating in an arbitrary direction, due to the newborn ions, is studied. In the present analysis heavy ion species are emphasized.  相似文献   

18.
An impulsive burst of 100–400 keV solar X-rays associated with a small solar flare was observed on October 10, 1970 with a large area scintillator aboard a balloon floating at an altitude of 4.2 g cm-2 above the Earth's surface. The X-ray burst was also observed simultaneously in 10–80 keV range by the OGO-5 satellite and in 8–20 Å range by the SOLRAD-9 satellite. The impulsive X-ray emission reached its maximum at 1643 UT at which time the differential photon spectrum in 20–80 keV range was of the form 2.3 × 104 E -3.2 photons cm-2 s-1 keV-1 at 1 AU. The event is attributed to a H-subflare located approximately at S13, E88 on the solar disc. The spectral characteristics of this event are examined in the light of the earlier X-ray observations of small solar flares.  相似文献   

19.
The hairy ball model of coronal magnetic fields has a spherical source surface separating potential and radial magnetic fields. In the present model the source surface is chosen such that the wind speed equals the Alfvénic speed at selected points on the source surface. Results have been obtained for a dipole base field and an isothermal corona.Proceedings of the 14th ESLAB Symposium on Physics of Solar Variations, 16–19 September 1980, Scheveningen, The Netherlands.  相似文献   

20.
We report the imaging observations of a slowly moving type IV burst associated with a filament eruption. This event was preceded by weak type III burst activity and was accompanied by a quasi-stationary continuum that persisted for several hours. The starting times and speeds of moving type IV burst and the erupting filament are nearly the same, implying a close physical relation between the two. The moving type IV burst is interpreted as gyrosynchrotron emission from a plasmoid containing a magnetic field of 1–2 G and nonthermal electrons of density 105–106 cm–3 with a relatively low average energy of 50 keV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号