首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper,an updated vegetation map of the permafrost zone in the Qinghai-Tibet Plateau(QTP) was delineated.The vegetation map model was extracted from vegetation sampling with remote sensing(RS) datasets by decision tree method.The spatial resolution of the map is 1 km×1 km,and in it the alpine swamp meadow is firstly distinguished in the high-altitude areas.The results showed that the total vegetated area in the permafrost zone of the QTP is 1,201,751 km~2.In the vegetated region,50,260 km~2 is the areas of alpine swamp meadow,583,909 km~2 for alpine meadow,332,754 km~2 for alpine steppe,and 234,828 km~2 for alpine desert.This updated vegetation map in permafrost zone of QTP could provide more details about the distribution of alpine vegetation types for studying the vegetation mechanisms in the land surface processes of highaltitude areas.  相似文献   

2.
Alpine grassland soils on Qinghai-Tibet Plateau store approximately 33.5 Pg of organic carbon(C) at 0–0.75 m depth and play an important role in the global carbon cycle.We investigated soil organic C(SOC),water-soluble organic C(WSOC),easily oxidizable organic C(EOC),humic C fractions,aggregate-associated C,aggregate stability,and humic acid(HA) composition along an east-west transect across Qinghai-Tibet Plateau,and explored their spatial patterns and controlling factors.The contents of SOC,WSOC,EOC,humic C fractions and aggregate-associated C,the proportions of macroaggregates(2-0.25) and micro-aggregates(0.25-0.053 mm),and the aggregate stability indices all increased in the order alpine desert alpine steppe alpine meadow.The alkyl C,O-alkyl C,and aliphatic C/aromatic C ratio of HA increased as alpine desert alpine meadow alpine steppe,and the trends were reverse for the aromatic C and HB/HI ratio.Mean annual precipitation and aboveground biomass weresignificantly correlated with the contents of SOC and its fractions,the proportions of macro- and microaggregates,and the aggregate stability indices along this transect.Among all these C fractions,SOC content and aggregate stability were more closely associated with humic C and silt and clay sized C in comparison with WSOC,EOC,and macro- and microaggregate C.The results suggested that alpine meadow soils containing higher SOC exhibited high soil aggregation and aggregate stability.Mean annual precipitation should be the main climate factor controlling the spatial patterns of SOC,soil aggregation,and aggregate stability in this region.The resistant and stable C fractions rather than labile C fractions are the major determinant of SOC stocks and aggregate stability.  相似文献   

3.
Owing to the joint effects of ecosystem fragility,anthropogenic disturbance and climate change,alpine grasslands(alpine meadow,alpine steppe and alpine desert)have experienced serious degradation during the past several decades.Grasslands degradation has severely affected the delivery of ecosystem multifunctionality(EMF)and services,and then threatens the livelihood of local herdsmen and ecological security of China.However,we still lack comprehensive insights about the effects of degradation and climatic factors on EMF of alpine grasslands,especially for alpine desert ecosystem.Therefore,we applied a large-scale field investigation to answer this question.Our results suggested grassland degradation significantly decreased the belowground ecosystem multifunctionality(BEMF)and EMF of alpine grasslands and aboveground ecosystem multifunctionality(AEMF)of alpine meadow,while did not reduce the AEMF of alpine steppe and desert.Except for the insignificant difference between degraded steppe and degraded desert in AEMF,the alpine meadow showed the highest AEMF,BEMF and EMF,alpine steppe ranked the second and alpine desert was the lowest.AEMF,BEMF and EMF of health alpine grasslands were strongly affected by mean annual precipitation(MAP)(19%-51%)and mean annual temperature(MAT)(9%-36%),while those of degraded meadow and degraded desert were not impacted by precipitation and temperature.AEMF and BEMF showed a synergistic relationship in healthy alpine grasslands(12%-28%),but not in degraded grasslands.Our findings emphasized the urgency of implementing the feasible ecological restoration project to mitigate the negative influences of grassland degradation on EMF of alpine ecosystems.  相似文献   

4.
Accurate estimate of soil carbon storage is essential to reveal the role of soil in global carbon cycle. However, there is large uncertainty on the estimation of soil organic carbon (SOC) storage in grassland among previous studies, and the study on soil inorganic carbon (SIC) is still lack. We surveyed 153 sites during plant peak growing season and estimated SOC and SIC for temperate desert, temperate steppe, alpine steppe, steppe meadow, alpine meadow and swamp, which covered main grassland in the Qinghai Plateau during 2011 to 2012. The results showed that the vertical and spatial distributions of SOC and SIC varied by grassland types. The SOC amount mainly decreased from southeast to northwest, whereas the SIC amount increased from southeast to northwest. The magnitude of SOC amount in the top 50 cm across grassland types ranked by: swamp > alpine meadow > steppe meadow > temperate steppe > alpine steppe > temperate desert, while the SIC amount showed an opposite order. There was a great deal of variation in proportion of SOC and SIC among different grassland types (from 55.17 to 94.59 for SOC and 5.14 to 44.83 for SIC). The total SOC and SIC storage was 5.78 Pg and 1.37 Pg, respectively, in the top 50 cm of soil in Qinghai Province. The mixed linear model revealed that grassland types was the predominant factor in spatial variations of SOC amount while grassland types and soil pH accounted for those of SIC amount. Our results suggested that the community shift of alpine meadow towards alpine grassland induced by climate warming would decrease carbon sequestration capacity by 6.0 kg C m2.  相似文献   

5.
The temporal dynamics of the biomass, as well as the carbon (C), nitrogen (N), phosphorus (P) concentrations and accumulation contents, in aboveand below-ground vegetation components were determined in the alpine steppe vegetation of Northern Tibet during the growing season of 2010. The highest levels of total biomass (311.68 g m−2), total C (115.95 g m−2), total N (2.60 g m−2), and total P (0.90 g m−2) accumulation contents were obtained in August in 2010. Further, biomass and nutrient stocks in the below-ground components were higher than those of the above-ground components. The dominant species viz., Stipa purpurea and Carex moorcrofti had lower biomass and C, N, P accumulations than the companion species which including Oxytropis. spp., Artemisia capillaris Thunb., Aster tataricus L., and so on.  相似文献   

6.
高寒区植被变化一直是气候和生态学领域关注的热点问题。本研究基于MODIS NDVI数据计算的植被覆盖度数据和高分辨率气象数据,分析了青海湖流域2001-2017年植被覆盖度分布格局及动态变化,探讨了其对气候变化、人类活动和冻土退化的响应。结果表明:① 近十几年青海湖流域植被覆盖度整体表现为增加趋势,不同植被类型增幅存在差异性,草地增幅最大,达到6.1%/10a,其它植被类型增幅在2%~3%/10a之间;② 流域局部地区仍存在植被退化现象,研究期植被退化面积表现为先增加后减小的变化趋势。2006-2011年重度退化区集中在青海湖东岸,2011-2017年重度退化区集中在流域的西北部,这些区域是青海湖流域荒漠分布区,植被覆盖度较低,是今后生态恢复需重点关注的区域;③ 气候变化是流域植被覆盖度变化的主导因素,气候变化对青海湖流域主要植被类型覆盖度变化的贡献率为84.21%,对草原、草甸和灌丛植被覆盖度变化的贡献率分别为81.84%、87.47%和75.96%;④ 人类活动对流域主要植被类型覆盖度变化的贡献率为15.79%,对草原、草甸和灌丛植被覆盖度变化的贡献率分别为18.16%、12.53%和24.04%,环青海湖地区人类活动对植被恢复有促进效应,在青海湖流域北部部分地区人类活动的破坏力度仍大于建设力度;⑤ 冻土退化对青海湖流域草甸和灌丛植被覆盖度变化影响很小,主要影响草原植被覆盖度变化,冻土退化造成草原植被覆盖度增长速率减小了1.2%/10a。  相似文献   

7.
The Yalu Tsangpo River basin is a typical semi-arid and cold region in the Qinghai-Tibet Plateau, where significant climate change has been detected in the past decades. The objective of this paper is to demonstrate how the regional vegetation, especially the typical plant types, responds to the climate changes. In this study, the model of gravity center has been firstly introduced to analyze the spatial-temporal relationship between NDVI and climate factors considering the time-lag effect. The results show that the vegetation grown has been positively influenced by the rainfall and precipitation both in moving tracks of gravity center and time-lag effect especially for the growing season during the past thirteen years. The herbs and shrubs are inclined to be influenced by the change of rainfall and temperature, which is indicated by larger positive correlation coefficients at the 0.05 confidence level and shorter lagging time. For the soil moisture, the significantly negative relationship of NDV-PDI indicates that the growth and productivity of the vegetation are closely related to the short-term soil water, with the correlation coefficients reaching the maximum value of o.81 at Lag 0-1. Among the typicalvegetation types of plateau, the shrubs of low mountain, steppe and meadow are more sensitive to the change of soil moisture with coefficients of -0.95, -0.93, -0.92, respectively. These findings reveal that the spatial and temporal heterogeneity between NDVI and climatic factors are of great ecological significance and practical value for the protection of eco-environment in Qinghai-Tibet Plateau.  相似文献   

8.
The change trends of air temperature,precipitation and evaporation from 1999 to 2008 shows that the climate in the Qinghai-Tibet Plateau permafrost region had become warmer.The analysis of the systematic active-layer data monitoring network along the Qinghai-Tibet Highway indicated that the active-layer thickness had been increasing and the soil temperature was rising.The soil temperature was rising in winter but not at the end of spring or during the entire summer.With thickening and warming of the active layer,the liquid water content of the active layer had an obvious downward migration and liquid water content in the top horizons decreased,but in the deeper horizons it increased.  相似文献   

9.
Seasonal snow is one of the most important influences on the development and distribution of permafrost and the hydrothermal regime in surface soil. Alpine meadow, which constitutes the main land type in permafrost regions of the Qinghai-Tibet Plateau, was selected to study the influence of seasonal snow on the temperature and moisture in active soil layers under different vegetation coverage. Monitoring sites for soil moisture and temperature were constructed to observe the hydrothermal processes in active soil layers under different vegetation cover with seasonal snow cover variation for three years from 2010 to 2012. Differences in soil temperature and moisture in areas of diverse vegetation coverage with varying levels of snow cover were analyzed using active soil layer water and temperature indices. The results indicated that snow cover greatly influenced the hydrothermal dynamics of the active soil layer in alpine meadows. In the snow manipulation experiment with a snow depth greater than 15 cm, the snow cover postponed both the freeze-fall and thawrise onset times of soil temperature and moisture in alpine LC (lower vegetation coverage) meadows and of soil moisture in alpine HC (higher vegetation coverage) meadows; however, the opposite response occurred for soil temperatures of alpine HC meadows,where the entire melting period was extended by advancing the thaw-rise and delaying the freeze-fall onset time of the soil temperature. Snow cover resulted in a decreased amplitude and rate of variation in soil temperature, for both alpine HC meadows and alpine LC meadows, whereas the distinct influence of snow cover on the amplitude and rate of soil moisture variation occurred at different soil layers with different vegetation coverages. Snow cover increased the soil moisture of alpine grasslands during thawing periods. The results confirmed that the annual hydrothermal dynamics of active layers in permafrost were subject to the synergistic actions of both snow cover and vegetation coverage.  相似文献   

10.
BASIC FEATURES OF FOREST STEPPE IN THE LOESS PLATEAU OF CHINA   总被引:2,自引:0,他引:2  
BASICFEATURESOFFORESTSTEPPEINTHELOESSPLATEAUOFCHINA¥ZhuZhicheng(朱志诚)(DepartmentofBiology.NorthwestUniversity,Xian710069,PRC)A...  相似文献   

11.
The distribution and variations of permafrost in the Xidatan region, the northern permafrost boundary of the Qinghai-Tibet Plateau, were examined and analyzed using ground penetrating radar(GPR), borehole drilling, and thermal monitoring data. Results from GPR profiles together with borehole verification indicate that the lowest elevation limit of permafrost occurrence is 4369 m above sea level in 2012. Compared to previous studies, the maximal rise of permafrost limit is 28 m from 1975 to 2012. The total area of permafrost in the study region has been decreased by 13.8%. One of the two previously existed permafrost islands has disappeared and second one has reduced by 76% in area during the past ~40 years. In addition, the ground temperature in the Xidatan region has increased from 2012 to 2016, with a mean warming rate of ~0.004℃ a~(-1) and ~0.003℃ a~(-1) at the depths of 6 and 15 m, respectively. The rising of permafrost limit in the Xidatan region is mainly due to globalwarming. However, some non-climatic factors such as hydrologic processes and anthropic disturbances have also induced permafrost degradation. If the air temperature continues to increase, the northern permafrost boundary in the Qinghai-Tibet Plateau may continue rising in the future.  相似文献   

12.
Due to the Tibetan Plateau's unique high altitude and low temperature climate conditions,the region's alpine steppe ecosystem is highly fragile and is suffering from severe degradation under the stress of increasing population,overgrazing,and climate change.The soil stoichiometry,a crucial part of ecological stoichiometry,provides a fundamental approach for understanding ecosystem processes by examining the relative proportions and balance of the three elements.Understanding the impact of degradation on the soil stoichiometry is vital for conservation and management in the alpine steppe on the Tibetan Plateau.This study aims to examine the response of soil stoichiometry to degradation and explore the underlying biotic and abiotic mechanisms in the alpine steppe.We conducted a field survey in a sequent degraded alpine steppe with seven levels inNorthern Tibet.The plant species,aboveground biomass,and physical and chemical soil properties such as the moisture content,temperature,pH,compactness,total carbon(C),total nitrogen(N),and total phosphorus(P)were measured and recorded.The results showed that the contents of soil C/N,C/P,and N/P consistently decreased along intensifying degradation gradients.Using regression analysis and a structural equation model(SEM),we found that the C/N,C/P,and N/P ratios were positively affected by the soil compactness,soil moisture content and species richness of graminoids but negatively affected by soil pH and the proportion of aboveground biomass of forbs.The soil temperature had a negative effect on the C/N ratio but showed positive effect on the C/P and N/P ratios.The current study shows that degradation-induced changes in abiotic and biotic conditions such as soil warming and drying,which accelerated the soil organic carbon mineralization,as well as the increase in the proportion of forbs,whichwere difficult to decompose and input less organic carbon into soil,resulted in the decreases in soil C/N,C/P,and N/P contents to a great extent.Our results provide a sound basis for sustainable conservation and management of the alpine steppe.  相似文献   

13.
Based on the field investigation in August 2001 and August 2002, digital China Vegetation Map in 2001 and Qinghai-Xizang(Tibet) Plateau Vegetation Regionalization Map in 1996, vegetation characteristics along two sides of Qinghai-Xizang highway and railway are studied in this paper. Meanwhile, the impact of Qinghai-Xizang highway and railway constructions on the vegetation types are analyzed using ARCVIEW. ARC/1NFO and PATCH ANALYSIS. It was found that: 1) Qinghai-Xizang highway and railway span 9 latitudes, 12 longitudes and 6 physical geographic regions (East Qinghai and Qilian mountain steppe region, Qaidam mountain desert region,South Qinghai-Xizang alpine meadow steppe region. Qiangtang alpine steppe region, Golog-Nagqu alpine shrubmeadow region and South Xizang mountain shrub steppe region); 2) the construction of Qinghai-Xizang highway and railway destroyed natural vegetation and landscape, especially in 50m-wide buffer regions along both sides of the roads, it was estimated that the net primary productivity deceased by about 30 504.62t/a and the gross biomass deceased by 432 919.25-1 436 104.3t. The losing primary productivity accounted for 5.70% of the annual primary productivity within lkm-wide buffer regions (535 005.07-535 740.11t/a), and only 0.80%-0.89% of that within 10km-wide buffer regions (3 408 950.45-3 810 480.92t/a). The losing gross biomass was about 9.47%-17.06% of the gross biomass within lkm-wide buffer regions (7 502 971.85-25 488 342.71t), and only 1.47%-2.94% of that within 10km-wide buffer regions (43 615 065.35-164 150 665.37t).  相似文献   

14.
Based on data from 22 sample plots and applying the Canonical Correspondence Analysis (CCA),this paper discusses the vegetation-environment relationships between the northern slope of Karlik Mountain and Naomaohu Basin,which is situated in the easternmost end of the Tianshan Mountains,Xinjiang Uygur Autonomous Region,China.For the zonal vegetation,community diversity of mountain vegetation is higher than that of the desert vegetation due to environmental factors.The CCA ordination diagram revealed that the composition and distribution of vegetation types are mainly determined by altitude,soil pH and soil salt content.With increasing elevation,the soil pH and total salt content decrease but the contents of soil organic matter,soil water,total nitrogen and total phosphorus increase gradually.In the CCA ordination diagrams,the sample plots and main species can be divided into five types according to their adaptations to the environmental factors.Type I is composed of desert vegetation distributed on the low mountains,hills,plains and deserts below an elevation of 1900 m;type II is distributed in the mountain and desert ecotone with an elevation of 1900-2300 m,and includes steppe desert,desert steppe and wetland meadow;type III is very simply composed of only salinized meadow;type IV is distributed above an elevation of 2300 m,containing mountain steppe,meadow steppe,subalpine meadow and alpine meadow;type V only contains salinized meadow.The results show that with increasing elevation,species combination changes from the xerophytic shrubs,semi-shrubs and herbs distributed in the low altitude zone with arid climate to the cold-tolerant perennial herbs growing in the high altitudinal zone with cold climate.  相似文献   

15.
Permafrost is one of the key components of terrestrial ecosystem in cold regions. In the context of climate change, few studies have investigated resilience of social ecological system(SER) from the perspective of permafrost that restricts the hydrothermal condition of alpine grassland ecosystem. In this paper, based on the structural dynamics, we developed the numerical model for the SER in the permafrost regions of the source of Yangtze and Yellow Rivers, analyzed the spatial-temporal characteristics and sensitivity of the SER, and estimated the effect of permafrost change on the SER. The results indicate that: 1) the SER has an increasing trend, especially after 1997, which is the joint effect of precipitation, temperature, NPP and ecological conservation projects; 2) the SER shows the spatial feature of high in southeast and low in northwest,which is consistent with the variation trends of high southeast and low northwest for the precipitation, temperature and NPP, and low southeast and high northwest for the altitude; 3) the high sensitive regions of SER to the permafrost change have gradually transited from the island distribution to zonal and planar distribution since 1980, moreover, the sensitive degree has gradually reduced; relatively, the sensitivity has high value in the north and south, and low value in the south and east; 4) the thickness of permafrost active layer shows a highly negative correlation with the SER. The contribution rate of permafrost change to the SER is-4.3%, that is, once the thickness of permafrost active layer increases 1 unit, the SER would decrease 0.04 units.  相似文献   

16.
Frozen ground degradation under a warming climate profoundly influences the growth of alpine vegetation in the source region of the Qinghai-Tibet Plateau. This study investigated spatiotemporal variations in the frozen ground distribution, the active layer thickness(ALT) of permafrost(PF) soil and the soil freeze depth(SFD) in seasonally frozen soil from 1980 to 2018 using the temperature at the top of permafrost(TTOP) model and Stefan equation. We compared the effects of these variations on vegetation growth among different frozen ground types and vegetation types in the source region of the Yellow River(SRYR). The results showed that approximately half of the PF area(20.37% of the SRYR) was projected to degrade into seasonally frozen ground(SFG) during the past four decades; furthermore, the areal average ALT increased by 3.47 cm/yr, and the areal average SFD decreased by 0.93 cm/yr from 1980 to 2018. Accordingly, the growing season Normalized Difference Vegetation Index(NDVI) presented an increasing trend of 0.002/10 yr, and the increase rate and proportion of areas with NDVI increase were largest in the transition zone where PF degraded to SFG(the PF to SFG zone). A correlation analysis indicated that variations in ALT and SFD in the SRYR were significantly correlated with increases of NDVI in the growing season. However, a rapid decrease in SFD(-1.4 cm/10 yr) could have reduced the soil moisture and, thus, decreased the NDVI. The NDVI for most vegetation types exhibited a significant positive correlation with ALT and a negative correlation with SFD. However, the steppe NDVI exhibited a significant negative correlation with the SFD in the PF to SFG zone but a positive correlation in the SFG zone, which was mainly limited by water condition because of different change rates of the SFD.  相似文献   

17.
A synthesis of Holocene pollen records from the Tibetan Plateau shows the history of vegetation and climatic changes during the Holocene. Palynological evidences from 24 cores/sections have been compiled and show that the vegetation shifted from subalpine/alpine conifer forest to subalpine/alpine evergreen sclerophyllous forest in the southeastern part of the plateau; from alpine steppe to alpine desert in the central, western and northern part; and from alpine meadow to alpine steppe in the eastern and southern plateau regions during the Holocene. These records show that increases in precipitation began about 9 ka from the southeast, and a wide ranging level of increased humidity developed over the entire of the plateau around 8-7 ka, followed by aridity from 6 ka and a continuous drying over the plateau after 4-3 ka. The changes in Holocene climates of the plateau can be interpreted qualitatively as a response to orbital forcing and its secondary effects on the Indian Monsoon which expanded northwards  相似文献   

18.
The distribution of borehole temperature at four high-altitude alpine glaciers was investigated. The result shows that the temperature ranges from -13.4℃ to -1.84℃, indicating the glaciers are cold throughout the boreholes. The negative gradient (i.e., the temperature decreasing with the increasing of depth) due to the advection of ice and climate warming, and the negative gradient moving downwards relates to climate warming, are probably responsible for the observed minimum temperature moving to lower depth in boreholes of the Gyabrag glacier and Miaoergou glacier compared to the previously investigated continental ice core borehole temperature in West China. The borehole temperature at 10m depth ranges from -8.0℃ in the Gyabrag glacier in the central Himalayas to -12.9℃ in the Tsabagarav glacier in the Altai range. The borehole temperature at 10 m depth is 3-4 degrees higher than the calculated mean annual air temperature on the surface of the glaciers and the higher 10 m depth temperature is mainly caused by the production of latent heat due to melt-water percolation and refreezing. The basal temperature is far below the melting point, indicating that the glaciers are frozen to bedrock. The very low temperature gradients near the bedrock suggest that the influence of geothermal flux and ice flow on basal temperature is very weak. The low temperature and small velocity of ice flow of glaciers are beneficial for preservation of the chemical and isotopic information in ice cores.  相似文献   

19.
Precipitation is a potential factor that significantly affects plant nutrient pools by influencing biomass sizes and nutrient concentrations. However, few studies have explicitly dissected carbon(C), nitrogen(N) and phosphorus(P) pools between above- and belowground biomass at the community level along a precipitation gradient. We conducted a transect(approx. 1300 km long) study of Stipa purpurea community in alpine steppe on the Tibet Plateau of China to test the variation of N pool of aboveground biomass/N pool of belowground biomass(AB/BB N) and P pool of aboveground biomass/P pool of belowground biomass(AB/BB P) along a precipitation gradient. The proportion of aboveground biomass decreased significantly from mesic to drier sites. Along the belt transect, the plant N concentration was relatively stable; thus, AB/BB N increased with moisture due to the major influences by above- and belowground biomass allocation. However, P concentration of aboveground biomass decreased significantly with increasing precipitation and AB/BB P did not vary with aridity because of the offset effect of the P concentration and biomass allocation. Precipitation gradients do decouple the N and P pool of a S. purpurea community along a precipitation gradient in alpine steppe. The decreasing of N:P in aboveground biomass in drier regions may indicate much stronger N limitation in more arid area.  相似文献   

20.
The correlation between mean surface air temperature and altitude is analyzed in this paper based on the annual and monthly mean surface air temperature data from 106 weather stations over the period 1961–2003 across the Qinghai-Tibet Plateau. The results show that temperature variations not only depend on altitude but also latitude, and there is a gradual decrease in temperature with the increasing altitude and latitude. The overall trend for the vertical temperature lapse rate for the whole plateau is approximately linear. Three methods, namely multivariate composite analysis, simple correlation and traditional stepwise regression, were applied to analyze these three correlations. The results assessed with the first method are well matched to those with the latter two methods. The apparent mean annual near-surface lapse rate is −4.8 °C /km and the latitudinal effect is −0.87 °C /olatitude. In summer, the altitude influences the temperature variations more significantly with a July lapse rate of -4.3°C /km and the effect of latitude is only −0.28°C /olatitude. In winter, the reverse happens. The temperature decrease is mainly due to the increase in latitude. The mean January lapse rate is −5.0°C /km, while the effect of latitude is −1.51°C /olatitude. Comparative analysis for pairs of adjacent stations shows that at a small spatial scale the difference in altitude is the dominant factor affecting differences in mean annual near-surface air temperature, aided to some extent by differences of latitude. In contrast, the lapse rate in a small area is greater than the overall mean value for the Qinghai-Tibet Plateau (5 to 13°C /km). An increasing trend has been detected for the surface lapse rate with increases in altitude. The temperature difference has obvious seasonal variations, and the trends for the southern group of stations (south of 33° latitude) and for the more northerly group are opposite, mainly because of the differences in seasonal variation at low altitudes. For yearly changes, the temperature for high-altitude stations occurs earlier clearly. Temperature datasets at high altitude stations are well-correlated, and those in Nanjing were lagged for 1 year but less for contemporaneous correlations. The slope of linear trendline of temperature change for available years is clearly related to altitude, and the amplitude of temperature variation is enlarged by high altitude. The change effect in near-surface lapse rate at the varying altitude is approximately 1.0°C /km on the rate of warming over a hundred-year period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号