首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Modification of a turbulent flow upstream of a change in surface roughness has been studied by means of a stream function-vorticity model.A flow reduction is found upstream of a step change in surface roughness when a fluid flows from a smooth onto a rough surface. Above that layer and above the region of flow reduction downstream of a smooth-rough transition, a flow acceleration is observed. Similar flow modification can be seen at a rough-smooth transition with the exception that flow reduction and flow acceleration are reversed. Within a fetch of –500 < x/z 0< + 500 (z 0 is the maximum roughness length, the roughness transition is located at x/z 0 = 0), flow reduction (flow acceleration) upstream of a roughness transition is one order of magnitude smaller than the flow reduction (flow acceleration) downstream of a smooth-rough (rough-smooth) transition. The flow acceleration (flow reduction) above that layer is two orders of magnitude.The internal boundary layer (IBL) for horizontal mean velocity extends to roughly 300z 0 upstream of a roughness transition, whereas the IBL for turbulent shear stress as well as the distortion of flow equilibrium extend almost twice as far. For the friction velocity, an undershooting (overshooting) with respect to upstream equilibrium is predicted which precedes overshooting (undershooting) over new equilibrium just behind a roughness transition.The flow modification over a finite fetch of modified roughness is weaker than over a corresponding fetch downstream of a single step change in roughness and the flow stays closer to upstream equilibrium. Even in front of the first roughness change of a finite fetch of modified roughness, a distortion of flow equilibrium due to the second, downwind roughness change can be observed.  相似文献   

2.
The statistics of turbulent flow across a forest edge have been examined using large-eddy simulation, and results compared with field and wind-tunnel observations. The moorland-to-forest transition is characterized by flow deceleration in the streamwise direction, upward distortion of the mean flow, formation of a high pressure zone immediately in front of the edge, suppression of the standard deviations and covariance of velocity components, and enhancement of velocity skewnesses. For the selected forest density, it is observed that the maximum distortion angle is about 8 degrees from the horizontal. Instead of approaching a downwind equilibrium state in a monotonic manner, turbulence (standard deviations and covariances of velocity components) and mean streamwise velocity undershoot in the transition zone behind the edge. Evolution of flow statistics clearly reveals the growth of an internal boundary layer, and the establishment of an equilibrium layer downwind of the edge. It is evident that lower-order moments generally adjust more quickly over the new rough surface than do higher-order moments. We also show that the streamwise velocity standard deviation at canopy height starts its recovery over the rough surface sooner than does the vertical velocity standard deviation, but completes full adjustment later than the latter. Despite the limited domain size upstream of the edge, large-eddy simulation has successfully reproduced turbulent statistics in good agreement with field and wind-tunnel measurements.  相似文献   

3.
Wind profiles,momentum fluxes and roughness lengths at Cabauw revisited   总被引:1,自引:1,他引:1  
We describe the results of an experiment focusing on wind speed and momentum fluxes in the atmospheric boundary layer up to 200 m. The measurements were conducted in 1996 at the Cabauw site in the Netherlands. Momentum fluxes are measured using the K-Gill Propeller Vane. Estimates of the roughness length are derived using various techniques from the wind speed and flux measurements, and the observed differences are explained by considering the source area of the meteorological parameters. A clear rough-to-smooth transition is found in the wind speed profiles at Cabauw. The internal boundary layer reaches the lowest k-vane (20 m) only in the south-west direction where the obstacle-free fetch is about 2 km. The internal boundary layer is also reflected in the roughness lengths derived from the wind speed profiles. The lower part of the profile (< 40 m) is not in equilibrium and no reliable roughness analysis can be given. The upper part of the profile can be linked to a large-scale roughness length. Roughness lengths derived from the horizontal wind speed variance and gustiness have large footprints and therefore represent a large-scale average roughness. The drag coefficient is more locally determined but still represents a large-scale roughness length when it is measured above the local internal boundary layer. The roughness length at inhomogeneous sites can therefore be determined best from drag coefficient measurements just above the local internal boundary layers directly, or indirectly from horizontal wind speed variance or gustiness. In addition, the momentum and heat fluxes along the tower are analysed and these show significant variation with height related to stability and possibly surface heterogeneity. It appears that the dimensionless wind speed gradients scale well with local fluxes for the variety of conditions considered, including the unstable cases.  相似文献   

4.
We have conducted large-eddy simulations (LES) of the atmospheric boundary layer with surface heat flux variations on a spatial scale comparable to the boundary layer depth.We first ran a simulation with a horizontally homogeneous heat flux. In general the results are similar to those of previous large-eddy simulations. The model simulates a field of convective eddies having approximately the correct velocity and spatial scales, and with the crucial property that kinetic energy is transported vigorously upwards through the middle levels. However, the resolved temperature variance is only about half what is observed in the laboratory or the atmosphere. This deficiency — which is shared by many other large-eddy simulations — has dynamic implications, particularly in the pressure/temperature interaction terms of the heat flux budget. Recent simulations by other workers at much higher resolution than ours appear to be more realistic in this respect.The surface heat flux perturbations were one-dimensional and sinusoidal with a wavelength equal to 1.3 times the boundary-layer depth. The mean wind was zero. Results were averaged over several simulations and over time. There is a mean circulation, with ascent over the heat flux maxima (vertical velocity ~0.1w *) and descent over the heat flux minima. Turbulence is consistently stronger over the heat flux maxima. The horizontal velocity variance components (calculated with respect to the horizontal average) become unequal, implying that convective eddies are elongated parallel to the surface heat flux perturbations.A consideration of the budgets for temperature and velocity suggests several simplifying concepts.The research reported in this paper was conducted while the first author was on study leave at Colorado State University.  相似文献   

5.
Currently no expression for the equilibrium depth of the turbulent stably-stratified boundary layer is available that accounts for the combined effects of rotation, surface buoyancy flux and static stability in the free flow. Various expressions proposed to date are reviewed in the light of what is meant by the stable boundary layer. Two major definitions are thoroughly discussed. The first emphasises turbulence and specifies the boundary layer as a continuously and vigorously turbulent layer adjacent to the surface. The second specifies the boundary layer in terms of the mean velocity profile, e.g. by the proximity of the actual velocity to the geostrophic velocity. It is shown that the expressions based on the second definition are relevant to the Ekman layer and portray the depth of the turbulence in the intermediate regimes, when the effects of static stability and rotation essentially interfere. Limiting asymptotic regimes dominated by either stratification or rotation are examined using the energy considerations. As a result, a simple equation for the depth of the equilibrium stable boundary layer is developed. It is valid throughout the range of stability conditions and remains in force in the limits of a perfectly neutral layer subjected to rotation and a rotation-free boundary layer dominated by surface buoyancy flux or stable density stratification at its outer edge. Dimensionless coefficients are estimated using data from observations and large-eddy simulations. Well-known and widely used formulae proposed earlier by Zilitinkevich and by Pollard, Rhines and Thompson are shown to be characteristic of the above interference regimes, when the effects of rotation and static stability (due to either surface buoyancy flux, or stratification at the outer edge of the boundary layer) are roughly equally important.  相似文献   

6.
Turbulence measurements taken at a Swedish lake are analyzed. Although the measurements took place over a relatively large lake with several km of undisturbed fetch, the turbulence structure was found to be highly influenced by the surrounding land during daytime. Variance spectra of both horizontal velocity and scalars during both unstable and stable stratification displayed a low frequency peak. The energy at lower frequencies showed a daily variation, increasing in the morning and decreasing in the afternoon. This behaviour is explained by spectral lag, where the low frequency energy due to large eddies that originate from the convective boundary layer above the surrounding land. When the air is advected over the lake the small eddies rapidly equilibrate with the new surface forcing. However, the large eddies remain for an appreciable distance and influence the turbulence in the developing lake boundary layer. The variances of the horizontal velocity and scalars are increased by these large eddies, while the turbulent fluxes are mainly unaffected. The drag coefficient, Stanton number and Dalton number used to parametrize the momentum flux, heat flux and latent heat flux respectively all compare well with current parametrizations developed for open sea conditions. The diurnal cycle of the partial pressure of methane, $p\mathrm{CH}_{4}$ , observed at this site is closely related to the diurnal cycle of the lake-air methane flux. An idealized two-dimensional model simulation of the boundary layer at a lake site indicates that the strong response of $p\mathrm{CH}_{4}$ to the surface methane flux is due to the shallow internal boundary layer that develops above the lake, allowing methane to accumulate in a relatively small volume.  相似文献   

7.
A stochastic trajectory model was used to estimate scalar fluxfootprints in neutral stabilityfor canopies of varying leaf area distributions andleaf area indices. An analytical second-order closure model wasused to predict mean wind speed, second moments and the dissipationrate of turbulent kinetic energy within a forest canopy.The influence of source vertical profile on the flux footprint wasexamined. The fetch is longer for surface sourcesthan for sources at higher levels in the canopy. In order tomeasure all the flux components, and thus the total flux, with adesired accuracy, sources were located at the forest floor in thefootprint function estimation. The footprint functions werecalculated for five observation levels above the canopy top. Itwas found that at low observation heights both canopy density andcanopy structure affect the fetch. The higher abovethe canopy top the flux is measured, the more pronounced is the effectof the canopy structure. The forest fetch for flux measurements isstrongly dependent on the required accuracy: The 90% flux fetchis greater by a factor of two or more compared to the 75% fetch. Theupwind distance contributing 75% of flux is as large as 45 timesthe difference between canopy height and the observation heightabove the canopy top, being even larger for low observationlevels.  相似文献   

8.
Boundary-Layer Adjustment Over Small-Scale Changes of Surface Heat Flux   总被引:1,自引:0,他引:1  
Four months of eddy correlation data collected over a grass field and a nearby sage brush community are analyzed to examine the adjustment of the boundary-layer structure as it flows from the heated brush to the snow-covered grass. The grass site includes a 34-m tower with seven levels of eddy correlation data. The midday heat flux over the snow-covered grass and bare ground surfaces is often downward particularly with melting conditions, while the corresponding heat flux over the brush is almost always upward. For most of these cases, a stable internal boundary layer over the snow is well defined in terms of vertical profiles of the buoyancy flux over the snow-covered grass. The stable internal boundary layer is generally embedded within a deeper layer of flux divergence corresponding to increasing upward heat flux with height above the internal boundary layer. With thin snow cover, the surface heat flux over the grass is weak upward due to heating of grass protruding above the snow so that the flow adjusts to a decrease of the upward surface heat flux in the downwind direction. This common case of an adjusting boundary layer contrasts with the formation of an internal boundary layer due to a change of sign of the surface heat in flux the downwind direction. The adjustment of the boundary layer to the decrease of the surface heat flux leads to vertical divergence of the upward heat flux in contrast to the usual heated boundary layer over homogeneous surfaces. The consequences of the cooling due to the vertical divergence of the heat flux are discussed in terms of the heat budget of the adjusting and internal boundary layers.  相似文献   

9.
Abstract

Airborne measurements in the atmospheric boundary layer (ABL) above the marginal ice zone (MIZ) on the Newfoundland Shelf reveal strong lateral variations in mean wind, temperature and the vertical fluxes of heat and momentum under conditions of cold, off‐ice wind. Flux measurements in (and near) the surface layer indicate that the neutral 10‐m drag coefficient depends on ice concentration, ranging from 2 × 10‐3 at 10% coverage to 5 × 10‐3 at 90%. Furthermore, cross‐ice‐edge transects consistently show increasing wind speed, temperature and heat flux in the off‐ice direction, but the momentum flux may either increase or decrease, depending on the relative importance of surface buoyancy flux and roughness. For the conditions encountered in this experiment, it appears surface wave maturity does not have a significant influence on the drag coefficient in fetch‐limited regimes near the ice edge.  相似文献   

10.
We investigate dispersion in the evening-transition boundary layer using large-eddy simulation (LES). In the LES, a particle model traces pollutant paths using a combination of the resolved flow velocities and a random displacement model to represent subgrid-scale motions. The LES is forced with both a sudden switch-off of the surface heat flux and also a more gradual observed evolution. The LES shows ‘lofting’ of plumes from near-surface releases in the pre-transition convective boundary layer; it also shows the subsequent ‘trapping’ of releases in the post-transition near-surface stable boundary layer and residual layer above. Given the paucity of observations for pollution dispersion in evening transitions, the LES proves a useful reference. We then use the LES to test and improve a one-dimensional Lagrangian Stochastic Model (LSM) such as is often used in practical dispersion studies. The LSM used here includes both time-varying and skewed turbulence statistics. It is forced with the vertical velocity variance, skewness and dissipation from the LES for particle releases at various heights and times in the evening transition. The LSM plume spreads are significantly larger than those from the LES in the post-transition stable boundary-layer trapping regime. The forcing from the LES was thus insufficient to constrain the plume evolution, and inclusion of the significant stratification effects was required. In the so-called modified LSM, a correction to the vertical velocity variance was included to represent the effect of stable stratification and the consequent presence of wave-like motions. The modified LSM shows improved trapping of particles in the post-transition stable boundary layer.  相似文献   

11.
The influence of surface heterogeneities extends vertically within the atmospheric surface layer to the so-called blending height, causing changes in the fluxes of momentum and scalars. Inside this region the turbulence structure cannot be treated as horizontally homogeneous; it is highly dependent on the local surface roughness, the buoyancy and the horizontal scale of heterogeneity. The present study analyzes the change in scalar flux induced by the presence of a large wind farm installed across a heterogeneously rough surface. The change in the internal atmospheric boundary-layer structure due to the large wind farm is decomposed and the change in the overall surface scalar flux is assessed. The equilibrium length scale characteristic of surface roughness transitions is found to be determined by the relative position of the smooth-to-rough transition and the wind turbines. It is shown that the change induced by large wind farms on the scalar flux is of the same order of magnitude as the adjustment they naturally undergo due to surface patchiness.  相似文献   

12.
Downward fluxes of turbulent kinetic energy have been frequently observed in the air layer just above plant canopies. In order to investigate the mechanism for such downward transport, analysis of observational data is attempted. Height-dependency of turbulent kinetic energy flux and turbulence statistics including higher order moments is represented as a function of a non-dimensional height z/H, where z is an observational height and H an average height of plant canopies. Downward fluxes and non-Gaussianity of wind velocity fluctuations are predominant just above plant canopies and decrease with increasing height. The downward flux is closely related to the high intensity of turbulence and the non-Gaussianity of wind velocity fluctuations, especially with a positive skewness in the longitudinal wind and a negative skewness in the vertical wind. The analysis method of conditional sampling and averaging is applied to the present observations. The results show that the predominance of the intermittent inrush phase over the intermittent ejection phase leads to the above-mentioned non-Gaussianity. Finally, a simple explanation is given in order to interpret the turbulent flow structure in the air layer near the plant canopies, which is associated with the downward energy transport process.  相似文献   

13.
Water-flume experiments are conducted to study the structure of turbulent flow within and above a sparse model canopy consisting of two rigid canopies of different heights. This difference in height specifies a two-dimensional step change from a rough to a rougher surface, as opposed to a smooth-to-rough transition. Despite the fact that the flow is in transition from a rough to a rougher surface, the thickness of the internal boundary layer scales as x 4/5, consistent with smooth-to-rough boundary layer adjustment studies, where x is the downstream distance from the step change. However, the analogy with smooth-to-rough transitions no longer holds when the flow inside the canopy and near the canopy top is considered. Results show that the step change in surface roughness significantly increases turbulence intensities and shear stress. In particular, there is an adjustment of the mean horizontal velocity and shear stress as the flow passes over the rougher canopy, so that their vertical profiles adjust to give maximum values at the top of this canopy. We also observe that the magnitude and shape of the inflection in the mean horizontal velocity profile is significantly affected by the transition. The horizontal and vertical turbulence spectra compare well with Kolmogorov’s theory, although a small deviation at high frequencies is observed in the horizontal spectrum within the canopy. Here, for relatively low leaf area index, shear is found to be a more effective mechanism for momentum transfer through the canopy structure than vortex shedding.  相似文献   

14.
This paper reports on measurements of sensible and latent heat and CO2 fluxes made over an irrigated potato field, growing next to a patch of desert. The study was conducted using two eddy correlation systems. One measurement system was located within the equilibrium boundary layer 800 m downwind from the edge of the potato field. The other measurement system was mobile and was placed at various downwind positions to probe the horizontal transition of vertical scalar fluxes. Latent (LE) and sensible (H) heat fluxes, measured at 4 m above the surface, exhibited marked variations with downwind distance over the field. Only after the fetch to height ratio exceeded 75 to 1 didLE andH become invariant with downwind distance. When latent and sensible heat fluxes were measured upwind of this threshold, significant advection of humidity-deficit occurred, causing a vertical flux divergence ofH andLE.The measured fluxes of momentum, heat, and moisture were compared with predictions from a second-order closure two-dimensional atmospheric boundary layer model. There is good agreement between measurements and model predictions. A soil-plant-atmosphere model was used to examine nonlinear feedbacks between humidity-deficits, stomatal conductance and evaporation. Data interpretation with this model revealed that the advection of hot dry air did not enhance surface evaporation rates near the upwind edge of the potato field, because of negative feedbacks among stomatal conductance, humidity-deficits, andLE. This finding is consistent with results from several recent studies.  相似文献   

15.
The flux of sensible heat from the land surface is related to the average rate of dissipation of temperature fluctuations in the atmospheric surface layer through the temperature variance budget equation. In many cases it is desirable to estimate the heat flux from measurement or inference of the dissipation rate. Here we study how the dissipation rate scales with atmospheric stability, using three inertial range methods to calculate the dissipation rate: power spectra, second order structure functions, and third order structure functions. Experimental data are analyzed from a pair of field experiments, during which turbulent fluctuations of velocity and temperature were measured over a broad range of neutral and unstable atmospheric flows. It is shown that the temperature dissipation rate scales with a single convective power law continuously from near-neutral to strongly unstable stratification. The dissipation scaling is found to nearly match production in the near-neutral region, but to be consistently lower than production in the more convective regimes. The convective scaling is shown to offer a simplified means of computing sensible heat flux from the dissipation rate of temperature variance.Also at Johns Hopkins University, Baltimore, MarylandAlso at Los Alamos National Laboratory, Los Alamos, New Mexico.  相似文献   

16.
17.
Abstract

The effects of small‐scale surface inhomogeneities on the turbulence structure in the convective boundary layer are investigated using a high‐resolution large‐eddy simulation model. Surface heat flux variations are sinusoidal and two‐dimensional, dividing the total domain into a checkerboard‐like pattern of surface hot spots with a 500‐m wavelength in the x and y directions, or 1/4 of the domain size. The selected wind speeds were 1 and 4 m s‐l, respectively. As a comparison, a simulation of the turbulence structure was performed over a homogeneous surface.

When the wind speed is light, surface heat flux variations influence the horizontally averaged turbulence statistics, including the higher moments despite the small characteristic length of the surface perturbation. Stronger mean wind speeds weaken the effects of inhomogeneous surface conditions on the turbulence structure in the convective boundary layer.

Results from conditional sampling show that when the mean wind speed is small, weak mean circulations occur, with updraft branches above the high heat flux regions and down‐draft branches above the low heat flux regions. The inhomogeneous surface induces significant differences in the turbulence statistics between the high and low heat flux regions. However, the effect of the surface perturbations weaken rapidly when the mean wind speed increases. This research has implications in the explanation of the large‐scale variability commonly encountered in aircraft observations of atmospheric turbulence.  相似文献   

18.
We examine daily (morning–afternoon) transitions in the atmospheric boundary layer based on large-eddy simulations. Under consideration are the effects of the stratification at the top of the mixed layer and of the wind shear. The results describe the transitory behaviour of temperature and wind velocity, their second moments, the boundary-layer height Z m (defined by the maximum of the potential temperature gradient) and its standard deviation σ m , the mixed-layer height z i (defined by the minimum of the potential temperature flux), entrainment velocity W e, and the entrainment flux H i . The entrainment flux and the entrainment velocity are found to lag slightly in time with respect to the surface temperature flux. The simulations imply that the atmospheric values of velocity variances, measured at various instants during the daytime, and normalized in terms of the actual convective scale w*, are not expected to collapse to a single curve, but to produce a significant scatter of observational points. The measured values of the temperature variance, normalized in terms of the actual convective scale Θ*, are expected to form a single curve in the mixed layer, and to exhibit a considerable scatter in the interfacial layer.  相似文献   

19.
Flux Footprint Simulation Downwind of a Forest Edge   总被引:2,自引:2,他引:0  
Surface fluxes, originating from forest patches, are commonly calculated from atmospheric flux measurements at some height above that patch using a correction for flux arising from upwind surfaces. Footprint models have been developed to calculate such a correction. These models commonly assume homogeneous turbulence, resulting in a simulated atmospheric flux equal to the average surface flux in the footprint area. However, atmospheric scalar fluxes downwind of a forest edge have been observed to exceed surface fluxes in the footprint area. Variations in atmospheric turbulence downwind of the forest edge, as simulated with an E – model, can explain enhanced atmospheric scalar fluxes. This E – model is used to calculate the footprint of atmospheric measurements downwind of a forest edge. Atmospheric fluxes appear mainly enhanced as a result of a stronger sensitivity to fluxes from the upwind surface. A sensitivity analysis shows that the fetch over forest, necessary to reach equilibrium between atmospheric fluxes and surface fluxes, tends to be longer for scalar fluxes as compared to momentum fluxes. With increasing forest density, atmospheric fluxes deviate even more strongly from surface fluxes, but over shorter fetches. It is concluded that scalar fluxes over forests are commonly affected by inhomogeneous turbulence over large fetches downwind of an edge. It is recommended to take horizontal variations in turbulence into account when the footprint is calculated for atmospheric flux measurements downwind of a forest edge. The spatially integrated footprint is recommended to describe the ratio between the atmospheric flux and the average surface flux in the footprint.  相似文献   

20.
This paper examines the effect of non-stationarity of the wind on similarity of the eddy diffusivities for heat and vapour within a stable layer at the bottom of an internal boundary layer formed downwind of a dry-to-wet transition. First, we present some experimental data taken above a rice crop downwind of very extensive dry range lands at Warrawidgee, NSW, Australia. These data establish that periods of higher wind speed were associated with periods of higher saturation deficit in the canopy of the rice crop, and lower Bowen ratio. It is shown that Bowen ratios calculated for 30-second sub-intervals varied three-fold within a single 20-minute averaging period. Thus periods of higher wind speed corresponded to periods of higher moisture flux and smaller sensible heat flux.An idealized situation is then analysed theoretically. It is assumed that the time scale of the slow variations of the wind is long compared with the surface-layer time scale and that fetch is sufficient that the air near the ground is in continuous equilibrium with the surface. Using a two-scale Reynolds decomposition of the fluctuating wind and scalar variables into active and inactive components, it is shown that unsteadiness can lead to an eddy diffusivity for saturation deficit, calculated as the ratio of average flux to average gradient, that is larger than that for total energy calculated in a similar way. Using this ratio to calculate the ratio of diffusivities for temperature and humidity, KT/Kq, it is found that the latter can be much larger than one if the Bowen ratio is small and negative. Despite this, assuming KT = Kq and using the Bowen ratio method to calculate surface energy fluxes will usually incur only minor errors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号