首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Compositional data analysis was performed on chemical compositions of martian surface materials in order to unravel scenarios of past and present weathering and to evaluate the role of meteoritic accumulation. The observed chemical variability is analyzed by means of principal component analysis. Potential reservoirs that may have contributed primary material to soil formation are assessed. Chemical alteration in the course of in situ weathering is described in terms of alteration vectors that link the compositions of fresh rocks and their weathering crusts. The interplay of localized chemical alteration and global scale re-distribution and mixing of fines material is documented through the identification of different soil forming branches. These branches emanate from distinct compositional domains, which comprise basaltic and basalt-andesitic primary materials, and they converge to a global dust composition, which represents the product of chemical and physical disintegration and subsequent global mixing. Mass balance considerations applied to localized weathering phenomena are in line with findings from experimental acid-sulfate weathering on olivine-bearing basalts and the persistence of secondary silica in evaporitic rocks. In addition the composition and oxidation state of involved volcanic gases is deduced. Our findings corroborate the past activity of volcanic exhalation products in combination with liquid water. We conclude that average martian crust is dominated by basaltic materials at its topmost level and that the amount of meteoritic accumulation may contribute about 6 wt% to the martian fines. From the meteoritic contribution minimum soil formation rates of 60±20 cm/Gyr are derived. Sequestration of atmospheric oxygen during weathering of primary materials may account for the oxygen deficiency of the martian atmosphere. A 4-14-m-thick layer of oxidized martian fines may account for the estimated deficit of 1.7×1018 mol O2 in the martian atmosphere depending on the primary oxidation state of volatile volcanic emanations.  相似文献   

2.
The author carried out a study of pulverised cosmic matter extracted from the soil at the fall locality of the Sikhote Alin iron meteorite shower. Three forms of dust were distinguishable: meteoritic, sharp-angled, irregular particles from the break-up of the meteorite; meteoric, spherical, magnetic particles from ablation; and micro meteorites. Meteoritic and meteoric dust was also discovered in the soil of the regions of fall of the Boguslavka and Yardymly iron meteorites. Experiments made by the author for the purpose of obtaining artificial meteoric dust from meteoritic matter of various types have shown that the meteoric dust obtained from stony meteorites is composed of spherules similar to those extracted from the soil in the areas of fall of the Sikhote Alin, Boguslavka and Yardymly iron meteorites. Cosmic dust, the particles of which are usually called micrometeorites, due to their small size, are not subjected to the influence of temperature as they pass through the Earth's atmosphere and they reach the Earth's surface unaltered. It is proposed that meteoric and cosmic dust comprises the largest part of the cosmic matter falling onto the Earth:  相似文献   

3.
Impact events have played a central role in the life of meteorites. They compacted and lithified the dust from which meteorites are made; produced shock minerals, shock melting, and shock blackening of meteoritic minerals on their parent bodies; turned their parent bodies into rubble; and dispersed at least some pieces of this rubble, sending them to Earth as meteorites. Thus, as well as owing their very existence to the occurrence of catastrophic disruptions, meteorites contain physical ground truth concerning the impact and disruption environment of the solar system. Reviewing these aspects of the impact-meteorite connection, we conclude that impacts severe enough to disrupt asteroids were rare in the earliest stages of the solar nebula, when meteorite parent bodies accreted and were lithified. Likewise, though catastrophic disruptions clearly have occurred over the past several billion years, the small number of exposure events seen in the meteoritic cosmic ray age record indicates that such disruptions at these times also were rare. However, catastrophic disruptions must have been very prevalent during the first billion years of the solar system, resulting in the widespread asteroid macroporosity inferred from the comparison of asteroid bulk densities to meteorite grain densities.  相似文献   

4.
The occurrence and visibility of meteoroid impacts on the moon as seen from the earth were little more than speculation prior to November 1999. The best evidence of present-day impact activity came from the seismic experiments left on the Moon during the Apollo era. Past systematic attempts at earth-based observations to document lunar impacts revealed nothing conclusive. However, during the Leonid storms of 1999 and 2001, lunar impact events were for the first time confirmed by multiple independent observers. A total of 15 meteoritic impact flash events have been verified during these storms, with an additional 12 unconfirmed but likely events awaiting confirmation. Estimates of the mass of these meteoroids range from less than one gram for the faintest flashes to more than 10 kg for the brightest observed flash. The fraction of visible light to total energy produced by these events, a quantity known as luminous efficiency, averages about 0.001 for the established events. The confirmation of lunar meteoritic events on the Moon opens a new avenue in lunar and planetary research, one which could help bridge the gap between atmospheric sampling of the smallest components of meteoroid streams and interplanetary debris to the larger scale objects accessible to ground-based telescopes.  相似文献   

5.
Basaltic micrometeorites (MMs) derived from HED‐like parent bodies have been found among particles collected from the Antarctic and from Arctic glaciers and are to date the only achondritic particles reported among cosmic dust. The majority of Antarctic basaltic particles are completely melted cosmic spherules with only one unmelted particle recognized from the region. This paper investigates the entry heating of basaltic MMs in order to predict the relative abundances of unmelted to melted basaltic particles and to evaluate how mineralogical differences in precursor materials influence the final products of atmospheric entry collected on the Earth's surface. Thermodynamic modeling is used to simulate the melting behavior of particles with compositions corresponding to eucrites, diogenites, and ordinary chondrites in order to evaluate degree of partial melting and to make a comparison between the behavior of chondritic particles that dominate the terrestrial dust flux and basaltic micrometeroids. The results of 120,000 simulations were compiled to predict relative abundances and indicate that the phase relations of precursor materials are crucial in determining the relative abundances of particle types. Diogenite and ordinary chondrite materials exhibit similar behavior, although diogenite precursors are more likely to form cosmic spherules under similar entry parameters. Eucrite particles, however, are much more likely to melt due to their lower liquidus temperatures and small temperature interval of partial melting. Eucrite MMs, therefore, usually form completely molten cosmic spherules except at particle diameters <100 μm. The low abundance of unmelted basaltic MMs compared with spherules, if statistically valid, is also shown to be inconsistent with a low velocity population (12 km s?1) and is more compatible with higher velocities which may suggest a near‐Earth asteroid source dominates the current dust production of basaltic MMs.  相似文献   

6.
The heliocentric radial distribution of the flux of hyperbolic cosmic dust particles, as measured by the Pioneer 8 and 9 spacecraft, is closely related to the radial variation of the spatial density of source or “parent” meteoroids. Within the limits of the experimental and theoretical uncertainties the spatial density of parent meteoroids, as deduced from the hyperbolic cosmic dust data, is found to be increasing with increasing heliocentric distance in the neighborhood of one a.u. Other recent experimental evidence confirms this result. The new results also suggest that the ratio of the areal density of submicron sized craters to the areal density of millimeter sized craters will be less on the north-south faces of lunar rocks than on the east-west faces of the same rocks. The changeinratio is not as large as previously thought, however. Finally it is noted that the solar system is not presently contributing significant amounts of dust to the interstellar medium though it may once have done so.  相似文献   

7.
Analytical studies are reported here for two cosmogenic effects due to low energy particles in extraterrestrial samples:
  1. Formation of latent chemically etchable tracks in crystalline materials due to solid state damage as a result of ionisation losses suffered by multicharged cosmic ray nuclei, and
  2. Production of low threshold isotopes due to nuclear interactions of solar cosmic ray particles.
The present analytical treatment is different from those previously reported and is more directly applicable to recent studies of low energy cosmogenic effects in meteorites and in lunar samples. We consider irradiation of ellipsoidal rocks in space and on the Moon. In the latter case, different irradiation geometries corresponding to different burials in the regolith are also considered. It is shown that results of irradiation of an object on the surface of a parent body differ from that of an object in free space in more complex manner than a uniform reduction by a factor of two due to the change over from 2π to 4π irradiation. Isocontours for ‘tracks’ or ‘isotopes’ are found to be markedly different in the two cases. Thus, the irradiation geometry must be explicitly taken into account in interpreting low-energy cosmogenic effects in lunar rocks. Simultaneous analyses of tracks and radioisotopes of different half-lives should allow one to establish principal irradiation geometries both for meteorites and lunar samples.  相似文献   

8.
The internal strain due to the tidal force in the proximity of a tide-generating body (in the present case, the Moon) is calculated according to the Lord Kelvin theory of Earth tides. The conditions for which uniform elastic sphere possessing a definite tensile strength is crushed near the surface of the Moon is investigated. The state of internal stress is almost independent of the value of elastic constants. Many lunar features, such as twin craters, craterous walled plains of irregular forms, compound craters, may be explained by fission of the meteoritic material before impact.  相似文献   

9.
Neutrino production of radio Cherenkov signals in the Moon is the object of radio telescope observations. Depending on the energy range and detection parameters, the dominant contribution to the neutrino signal may come from interactions of the neutrino on the Moon facing the telescope, rather than neutrinos that have traversed a portion of the Moon. Using the approximate analytic expression of the effective lunar aperture from a recent paper by Gayley, Mutel and Jaeger, we evaluate the background from cosmic ray interactions in the lunar regolith. We also consider the modifications to the effective lunar aperture from generic non-standard model neutrino interactions. A background to neutrino signals are radio Cherenkov signals from cosmic ray interactions. For cosmogenic neutrino fluxes, neutrino signals will be difficult to observe because of low neutrino flux at the high energy end and large cosmic ray background in the lower energy range considered here. We show that lunar radio detection of neutrino interactions is best suited to constrain or measure neutrinos from astrophysical sources and probe non-standard neutrino-nucleon interactions such as microscopic black hole production.  相似文献   

10.
Abstract— Detailed investigations of the microimpact phenomena on Australasian microtektites from four samples from the Central Indian Basin reveal an array of features, such as very low-velocity captured droplets, welded projectiles, angular fragments and dust, craters generated by projectiles defining an oblique trajectory, high-velocity “pitless” craters, and the conventional hypervelocity craters with well-defined central pits and radial and concentric cracks—found commonly on lunar surface materials. The microimpacts are a consequence of interparticle collisions within the ejecta plume (as suggested by their chemistry) subsequent to a major impact and, therefore, reveal processes inherent in an impact-generated plume. All the impact phenomena observed here have taken place while the targets and projectiles were in flight and are therefore secondary impacts in lunar terms. However, some of the resultant features are analogous to lunar micro-craters attributed to primary impacts by cosmic dust. Therefore, ballistic sedimentation on the Moon is likely to contain plume collisional debris as well.  相似文献   

11.
Henri E. Mitler 《Icarus》1973,20(1):54-71
This article is a critical summary of the solar-system aspects of a meeting held in August 1972. The purpose of the meeting was to review work done sonce the 1967 Paris meeting on the Origin of the Elements.The principal topics discussed were element abundances; the structure and composition of comets, of the terrestrial and the outer planets, of the Moon, of exospheric dust, and of meteorites; planetary atmospheres; evidence for a protosolar magnetic field from remanent meteorite magnetism, abiotic synthesis of organic molecules; nucleosynthesis; solar cosmic rays; and meteorite ages.The principal results were these: There have been a number of significant changes in the estimated solar abundances—especially D, He, B, and Fe. A great deal of progress has been made in our understanding of the temperature and pressure conditions in the protosolar nebula during planetary formation, and of the condensation of solids in it. It is believed that the bulk chemistry of the terrestrial planets is now understood on the basis of equilibrium (slow) cooling of the nebula. Their atmospheres are consistent with this model, and that of Jupiter, with inhomogeneous accretion. The structure of Jupiter is also better understood. There is disagreement on the deep structure and composition of the Moon, though of course an enormous amount has been learned, especially about the surface layers. Not so much progress has been made in understanding comets.  相似文献   

12.
The possibility is discussed of using the latitude-dependent cutoff in the intensity and flux of cosmic ray particles reaching the surface of a planet to investigate ancient magnetic fields in the Moon, Mars and the Earth. In the last case, the method could provide a validity test for conventional palaeomagnetism.  相似文献   

13.
Laboratory experiments show that albedoes as low as those on the Moon can be produced by vacuum vitrification and associated chemical fractionation of ordinary terrestrial basaltic material. Vitrification is established as an unequivocal process that can account for the low albedo and apparent local darkening with age of the lunar surface. The spectral reflectance curves of glass powders are significantly different than those of the parent rock mineralogy; thus, the presence of ubiquitous glass in lunar surface material complicates compositional determinations by interpretation of spectral reflectance curves. Vitrification of rocks on the Moon may highly modify the chemical composition of the resulting glass; thus, glass fragments found in lunar fines cannot be assumed to represent bulk parent rock material. Progressive impact vitrification of lunar surface material throughout the Moon's history may have led to a fine-grain, opaque, refractory-rich material we call ultimate glass. This unidentified and, at this point, hypothetical component may exist in dark regolith material; if found, it may be a useful indicator of regolith maturity.Paper dedicated to Prof. Harold C. Urey on the occasion of his 80th birthday on 29 April 1973.  相似文献   

14.
Confirmed observations of meteoroids from the Leonid stream impacting the Moon in 1999 and 2001 have opened up new opportunities in observational and theoretical astronomy. These opportunities could help bridge the gap between the ground-based (atmospheric) sampling of the smallest meteoroids and the larger objects observable with ground-based telescopes. The Moon provides a laboratory for the study of hypervelocity impacts, with collision velocities not yet possible in ground-based laboratories. Development of automatic detection software removes the time-intensive activity of laboriously reviewing data for impact event signatures, freeing the observer to engage in other activities. The dynamics of professional-amateur astronomer collaboration have the promise of advancing the study of lunar meteoritic phenomenon considerably. These three factors will assist greatly in the development of a systematic, comprehensive program for monitoring the Moon for meteoroid impacts and determining the physical nature of these impacts.  相似文献   

15.
Three types of igneous rocks, all ultimately related to basaltic liquids, appear to be common on the lunar surface. They are: (1) iron-rich mare basalts, (2) U-, REE-, and Al-rich basalts (KREEP), and (3) plagioclase-rich or anorthositic rocks. All three rock types are depleted in elements more volatile than sodium and in the siderophile elements when relative element abundances are compared with those of carbonaceous chondrites. The chemistry and age relationships of these rocks suggest that they are derived from a feldspathic, refractory element-rich interior that becomes more pyroxenitic; that is, iron/magnesium-rich; with depth.It is suggested that the deeper parts of the lunar interior tend toward chondritic element abundances. The radial variation in mineralogy and bulk chemical composition inferred from the surface chemistry is probably a primitive feature of the Moon that reflects the accretion of refractory elementenriched materials late in the formation of the body.  相似文献   

16.
We identified 104 unique rock targets belonging to the olivine-rich Adirondack class using Mini-TES data. Rare rocks on the West Spur of the Columbia Hills and on the plains east of the Hills also belong to this class. We present evidence that Adirondack-class basaltic lavas may have had their origin at Apollinaris Tholus. Linear modeling of Adirondack-class rock spectra shows only minor variations in mineralogy and the primary phases identified are consistent with olivine basalt having an average olivine composition of ~Fo45. We used factor analysis and target transformation to identify variability within a single class of rocks for the first time, and we find that olivine abundance varies independently of a basaltic matrix. A spectral component previously attributed to downwelling radiance is proposed here to be attributable to optically thin dust on rocks, which has a greater effect on Mini-TES spectra than previously recognized, but can explain the sloping continuum observed in Adirondack-class rock spectra as well as the apparent distortion of an olivine absorption. Spectral mixing is not completely linear, leading to the overestimation of sulfate and olivine fractions and the underestimation of plagioclase feldspar, although linear mixing appears to successfully replicate the majority of the observed signal. Published TES spectra of low albedo, low dust cover, olivine-bearing materials do not exhibit the spectral telltales of non-linear behavior, probably because orbital spectra represent mostly mobile regolith that has not accumulated a sufficient dust cover over ~3 × 6 km areas.  相似文献   

17.
Mare regolith is fragmental debris of variable thickness that lies upon fractured bedrock. Its origin by impact comminution of primarily local basaltic rocks is widely accepted, but the consequences of such an origin are not appreciated fully. This investigation uses results obtained in an earlier Monte Carlo study by Oberbecket al. (1973) to shed light on those consequences by evaluating regolith growth and mixing as a function of time. Results reported are for average cases and must be used with caution. Each small area of the lunar surface has experienced a unique history and results based on averages may have no application to specific cases. Consideration of average processes is useful, nevertheless, when this limitation is kept in mind. The study demonstrates that regolith growth is self regulated and has the same trend and nearly the same terminal growth rates whatever the history of bombardment: rapid initial accumulation followed by diminishing rates of growth. Mixing and all other processes investigated are growth regulated. Mixing increases as growth slows, but never to the extent that the regolith is homogenized. Because the average regolith is never homogenized, products of growth regulated processes are preserved in the stratigraphy. Differences in material properties are to be expected in vertical sections of the regolith, therefore, but this model is not sufficiently refined to permit prediction of all possible trends. It does indicate, however, that deeper levels contain thinner depositional units, lesser quantities of meteoritic and exotic components, and more debris derived from shallow levels in the mare basalts than material in near surface layers. Additionally, neutron fluence production is regulated by the growth process, but because rates of growth do not differ much over the last aeon, whatever the total age or early bombardment history, values of surface fluence may be similar in many areas whatever their age.  相似文献   

18.
Various lines of evidence indicate that permanent magnetization of lunar rocks, acquired during the early history of the Moon, is responsible for the weak (tens of gammas) and patchy magnetic field found at the surface of the Moon. It would be necessary to invoke a core dynamo (with all its important implications) in order to account for the inducing fieldB of not less than 103 in which lunar rocks acquired their stable permanent magnetization if no other source ofB can be found. In this connection we point out that the magnetic effects of high-velocity meteoroid impacts have not yet been ruled out. Indeed, according to rough calculations these effects might not be negligible and detailed studies would be worth carrying out. Shock waves followed by rarefaction waves would spread out into the body of the Moon from the area of impact, first demagnetizing any material shock-heated above the Curie temperature and then, as the material cools rapidly during the passage of the rarefaction wave, re-magnetizing the material to an intensity determined by the background fieldB. The main source ofB would be the pulse of electric current generated by magneto-hydrodynamic interaction between the electrically-conducting ejecta from the explosion and the weak ambient interplanetary magnetic field.This impact dynamo hypothesis also has possible implications concerning the magnetism of meteorites.  相似文献   

19.
It is pointed out that the observed moments of inertia of the Moon, disclosed by its librations, are influenced mainly by the distribution of mass in the outer zone in which the lithostatic pressure is less than 10 kb (i.e., in the outer shell not more than 200 km deep); and a conspicuous departure of such moments from those expected in hydrostatic equilibrium disclosed that these layers could never have been fluid. In the same way, the actual shape of the lunar surface cannot represent a solidified surface of a fluid, petrified at any distance from the Earth.The shape of the Moon, and differences of its moments of inertia must reflect the way in which the initial process of cold accretion fell short of producing a globe with strictly spherically-symmetrical stratification of material; and has nothing to do with tides - present or fossil. Such melting or lava flows as may have occurred at the Moon's surface from time to time must have remained localized, and without much effect on the dynamical properties of the Moon. A global ocean of molten magma some 200 km in depth (postulated sometimes to provide a reservoir in which the differentiation of elements exhibited by surface rocks could have taken place) at any time in the past is incompatible with the dynamical evidence on the motion of the Moon about its center of gravity.Bellcomm, Inc., 955 L'Enfant Plaza North, S.W. Washington, D.C. 20024, U.S.A.  相似文献   

20.
Abstract— The complete (or near complete) differentiation of a chondritic parent body is believed to result in an object with an Fe-Ni core, a thick olivine-dominated mantle and a thin plagioclase/pyroxene crust. Compositional groupings of iron meteorites give direct evidence that at least 60 chondritic parent bodies have been differentiated and subsequently destroyed. A long standing problem has been that our meteorite collections, and apparently our asteroid observations as well, show a great absence of olivine-dominated metal-free mantle material. While the basaltic achondrites (HED meteorites) represent metal-free pyroxene-dominated crustal samples, the isotopic and geochemical evidence implies that this class is derived from only one parent body (perhaps Vesta). Thus the meteoritic (and perhaps astronomical) evidence also suggests a great absence of crustal material resulting from the collisional disruption of numerous parent bodies. One explanation for the rarity of olivine-dominated metal-free and basaltic asteroids that fits all the available evidence is that all differentiated parent bodies, with the exception of Vesta, were either disrupted or had their crusts and mantles stripped very early in the age of the solar system. The resulting basaltic and olivine-dominated metal-free fragments were continually broken down until their sizes dropped at least below our current astronomical measurement limit (~5–10 km for inner-belt objects) and perhaps completely comminuted such that meteorite samples are no longer delivered. Because of their greater strengths and longer survival time in interplanetary space, only the iron and the stony-iron meteorites remain as the final tracers of this differentiation and collisional history. However, other scenarios remain plausible such as those which invoke “space weathering” processes that effectively disguise the distinctive basaltic and olivine spectra of possible remnant crustal and mantle material within the main asteroid belt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号