首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 581 毫秒
1.
Tectonic movements and climate changes are two main controllers on the development of landfrorm.In order to reconstruct the history of the evolution of the landform in the Fenhe drainage basin during middle-late Quaternary comprehensively,this paper has provided a variety of geomorphological and geologic evidences to discuss how tetonic movements and climate changes worked together to influence the landform processes,According to the features of the lacustrine and alluvial terraces in this drainage basin,it is deduced that it was the three tectonic uplifts that resulted in the three great lake-regressions with an extent of about 40-60 m and the formation of the three lacustrine terraces.The times when the tectonic uplifts took place are 0.76 MaBP,0.55 MaBP and 0.13 MaBP respectively,synchronous with the formation of paleosol units S8,S5 and S1 respectively.During the intervals between two tectonic uplifts when tectonic movement was very weak ,climate changes played a major role in the evolution of the paleolakes and caused frequent fluctuations of lake levels.The changes of the features of lacustrine sediment in the grabens show the extent of such fluctuations of lake level is about 2-3m.  相似文献   

2.
汾河流域地貌发育对构造运动和气候变化的响应   总被引:12,自引:0,他引:12  
自中更新世中晚期以来,由于构造运动及气候变化,在汾河流域系列盆地中无论是地貌还是沉积都出现了相应的变化。根据对系列盆地中普遍发育的三级冲湖积台地的成因分析,发现发生于0.76MaBP,0.55MaBP及0.13MaBP的3次大幅度区域构造抬升是导致古湖盆湖退,三级台地形成的根源,根据对太原盆地东南边缘的一台地-洪山台地湖积层的分析,发现在相邻两次构造抬升之间的构造相对稳定期,气候变化完全控制着湖盆的演化,由第四纪气候的干湿变化对象太原盆地这样大的湖盆,一般只引起不大于4.5m的湖面升降,与构造抬升引起的湖面变动相差甚大,作为影响河湖地貌发育的2个主导因素,构造运动是主要的,气候变化只是在构造稳定期才突出地显示其影响。  相似文献   

3.
贵州高原北部发育平缓丘丛和深切峰丛2种喀斯特地貌组合,保存于喀斯特山间盆地的河流阶地对区域地貌演化具有指示意义。本文根据阶地发育特征和光释光(OSL)测年,分析阶地形成的时代和动力,结合区域地质背景,探讨构造抬升和河流侵蚀对黔北喀斯特地貌演化的驱动作用。结果显示,绥阳盆地T1阶地时代18.8~8.2 ka,T2时代144.4~104.1 ka;旺草盆地T1年龄为5.5 ka,T2年龄为45.1 ka。绥阳盆地阶地以漫滩相沉积物为主,旺草盆地阶地则多切割了白云岩基岩。分析认为,气候条件影响了阶地的沉积过程,但差异性构造抬升应为区域河流阶地差异发育的主要因素。阶地测年显示,旺草盆地的河流平均下切速率明显高于绥阳盆地,表明芙蓉江流域构造抬升和河流下切强度明显高于洋川河。在差异性构造抬升和河流侵蚀综合作用下,北部大娄山区形成了深切的喀斯特峰丛-峡谷地貌,南部乌江中游流域则发育以平坦盆地和宽缓丘丛为主的地貌组合。  相似文献   

4.
中昆仑山区距今一万七千年以来湖面波动研究   总被引:3,自引:0,他引:3  
根据湖盆地貌、湖泊沉积物分析,本文指出:中昆仑山区的封闭湖泊17000年以来湖面在总体下降过程中,出现了3期相对高湖面,近期湖泊仍在收缩咸化,未来仍将继续达一趋势。  相似文献   

5.
The geomorphological evolution of the Northeastern Tibetan Plateau (NETP) could provide valuable information for reconstructing the tectonic movements of the region. And the considerable uplift and climatic changes at here, provide an opportunity for studying the impact of tectonic and monsoon climate on fluvial morphological development and sedimentary architecture of fluvial deposits. The development of peneplain-like surface and related landscape transition from basin filling to incision indicate an intense uplift event with morphological significance at around 10–17 Ma in the NETP. After that, incision into the peneplain was not continuous but a staircase of terraces, developed as a result of climatic influences. In spite of the generally persisting uplift of the whole region, the neighbouring tectonic blocks had different uplift rates, leading to a complicated fluvial response with accumulation terraces alternating with erosion terraces at a small spatial and temporal scale. The change in fluvial activity as a response to climatic impact is reflected in the general sedimentary sequence on the terraces from high-energy (braided) channel deposits (at full glacial) to lower-energy deposits of small channels (towards the end of the glacial), mostly separated by a rather sharp boundary from overlying flood-loams (at the glacial-interglacial transition) and overall soil formation (interglacial). Pronounced incision took place at the subsequent warm-cold transitions. In addition, it is hypothesized that in some strongly uplifted blocks energy thresholds could be crossed to allow terrace formation as a response to small climatic fluctuations (103–104 year timescale). Although studies of morpho-tectonic and geomorphological evolution of the NETP, improve understanding on the impacts of tectonic motions and monsoonal climate on fluvial processes, a number of aspects, such as the distribution and correlation of peneplain and the related morphological features, the extent and intensity of tectonic movements influencing the crossing of climatic thresholds, leading to terrace development, need to be studied further.  相似文献   

6.
Abstract We present here the initial results of a high-resolution (sparker) reflection seismic survey in Northern Lake Tanganyika, East African Rift system. We have combined these results with data from earlier multichannel reflection seismic and 5-kHz echosounding surveys. The combination of the three complementary seismic investigation methods has allowed us to propose a new scenario for the late Aliocene to Recent sedimentary evolution of the North Tanganyika Basin. Seismic sequences and regional tectonic information permit us to deduce the palaeotopography at the end of each stratigraphic sequence. The basin history comprises six phases interpreted to be responses to variations in regional tectonism and/or climate. Using the reflection seismic-radiocarbon method (RSRM), the minimum ages for the start of each phase (above each sequence boundary) are estimated to be: ?7.4 Ma, ? 1.1 Ma, ?393–363 ka, ?295–262 ka, ? 193–169 ka, ?40–35 ka. Corresponding lowstand lake elevations below present lake level for the last five phases are estimated to have been: ?650–700 m, ?350 m, ?350 m, ?250 m and ? 160 m, respectively. The latest phase from ?40–35 ka until the present can be subdivided into three subphases separated by two lowstand periods, dated at ?23 ka and ? 18 ka. From the late Miocene until the mid Pleistocene, large-scale patterns of sedimentation within the basin were primarily controlled by tectonism. In contrast, from the mid Pleistocene to the present, sedimentation in Lake Tanganyika seems to have responded dramatically to climatic changes as suggested by repeated patterns of lake level fluctuations. During this period, the basin infill history is characterized by the recurrent association of three types of deposits: ‘basin fill’ accumulations; lens-shaped ‘deep lacustrine fans’; and ‘sheet drape’ deposits. The successive low-lake-level fluctuations decreased in intensity with time as a consequence of rapid sedimentary filling under conditions of declining tectonic subsidence. The climate signal has thus been more pronounced in recent sedimentary phases as tectonic effects have waned.  相似文献   

7.
Tectono-sedimentary evolution of active extensional basins   总被引:28,自引:3,他引:25  
We present conceptual models for the tectono-sedimentary evolution of rift basins. Basin architecture depends upon a complex interaction between the three-dimensional evolution of basin linkage through fault propagation, the evolution of drainage and drainage catchments and the effects of changes in climate and sea/lake level. In particular, the processes of fault propagation, growth, linkage and death are major tectonic controls on basin architecture. Current theoretical and experimental models of fault linkage and the direction of fault growth can be tested using observational evidence from the earliest stages of rift development. Basin linkage by burial or breaching of crossover basement ridges is the dominant process whereby hydrologically closed rifts evolve into open ones. Nontectonic effects arising from climate, sea or lake level change are responsible for major changes in basin-scale sedimentation patterns. Major gaps in our understanding of rift basins remain because of current inadequacies in sediment, fault and landscape dating.  相似文献   

8.
The Annecy lacustrine depression lies in a tectonic transverse valley of structural origin, linking the present day towns of Annecy and Ugine and bounded by the Bauges and Bornes massifs. Only the last two major glacial periods are represented in the stratigraphic and geomorphic evidence from the area, but its successive glaciations that have been largely responsible for the form of the valley within which the present day lake lies. Of particular importance were the lobes of the Arve glacier, one shaping the depression from the south-east; the other from the north. The retreat of the glaciers left behind a more extensive precursor of the present day Lac d'Annecy, which latter constitutes the residual body of open water after lake level lowering, partial infilling and drainage diversions within the catchment. The drainage basin of the extended lake formed shortly after the last glacial maximum (LGM) in the region. Its extent can be determined from field sampling and coring and its elevation can be established at 460 m above present day sea level. The present day lake is more isolated, since the Fier river, to the north, no longer drains into it. To the southeast, the course of the Chaise river has also been diverted, leaving the lake's drainage basin reduced to half its post-LGM size. The major paleogeographical events in the Late-Quaternary evolution of the basin are described in chronological sequence.  相似文献   

9.
The southern foreland basin of the Pyrenees (Ebro basin) is an exorheic drainage basin since Late Miocene times. Remnants of an early exorheic Ebro drainage system are not preserved, but morphology provides evidence for the Pliocene–Quaternary drainage development. The incision history of the Ebro system is denoted by (i) extensive, low gradient pedimentation surfaces which are associated with the denudation of the southern Pyrenean piedmont around the Pliocene–Quaternary transition and (ii) deeply entrenched Quaternary river valleys. Presumably since the Middle Pleistocene fluvial incision intensified involving the formation of extensive terrace staircase in the Ebro basin. Terrace exposure dating in major Ebro tributary rivers indicates climate‐triggered terrace formation in response to glacial–interglacial climate and glacier fluctuations in the Pyrenean headwaters. The overall (semi)parallel longitudinal terrace profiles argue for progressive base level lowering for the whole Ebro drainage network. The landscape evolution model, TISC, is used to evaluate climatic, tectonic and base level scenarios for terrace staircase formation in the Ebro drainage system. Model simulations are compared with morpho‐climatic, tectonic and chronologic data. Results show that climatic fluctuations cause terrace formation, but the incision magnitudes and convergent terrace profiles predicted by this climate model scenario are not consistent with the (semi)parallel terraces in the Ebro basin. A model including previous (late Pliocene) uplift of the lower Ebro basin results in rapid base‐level lowering and erosion along the drainage network, small late stage incision magnitudes and terrace convergence, which are not in agreement with observations. Instead, continuous Quaternary uplift of both the Pyrenees and the Ebro foreland basin triggers (semi)parallel terrace staircase formation in southern Pyrenean tributary rivers in consistency with the observed longitudinal terrace profiles and Middle–Late Pleistocene incision magnitudes. Forward model simulations indicate that the present Ebro drainage system is actively incising, providing further evidence for uplift.  相似文献   

10.
There are a series of basins in the Fenwei Graben.Field survey found that there took place several paleolake regressions or intensive stream down-incisions in all basins during the Mid-Late Quaternary.The lowest and oldest paleosol/loess units overlying three of the lacustrine terraces or alluvial ones and some paleomagenetism data from the lacustrine sediment indicate that the onset times of three paleolake regressions or intensive stream down-incisions are synchronous with the formation of L_9,L_6 and L_2 respectively in the Weihe Basin,S_8,S_5 and S_1 respectively in the Linfen-Taiyuan-Xingding Basins,and L_8,L_5 and L_1 respectively in the Datong Basin.The difference in the onset time of each lake regressions or intensive stream down-incision in different basins reveals that the farther the basin is from the Tibetan Plateau,the later it took place.Taking these field facts and the former research results in terms of the regional tectonic movement into account,it is inferred that the tectonic movement of the Tibetan Plateau most probably controlled such geomorphological-sedimentary evolution in the graben.  相似文献   

11.
新疆主要尾闾湖演变的构造环境   总被引:5,自引:1,他引:5  
亚洲中部大地构造格局及地貌轮廓均以山盆体系为特征,所有封闭性盆地中都发育有尾闾湖。晚第三纪以来印度大陆与欧亚大陆强烈碰撞和右旋挤压,将板内构造激活并以冲断、走滑方式将早第三纪晚期准平原化的大部分山地和相关地段再次抬升,形成了现代亚洲中部的山盆体系,同时导致了湖盆的形成演化和湖泊的变迁。湖盆演化包括湖盆联合、分解、迁移和变形等。湖泊不仅随湖盆的构造演化而变迁,而且构造对水系的调控也直接影响湖泊的物理、化学、水文和生态特性。亚洲中部尾闾湖在新构造作用下的演变具有区域同步性和地域差异性。许多尾闾湖,如艾丁湖、艾比湖、玛纳斯湖等都明显受活动构造的影响。  相似文献   

12.
新疆玛纳斯湖变迁的气候和构造分析   总被引:12,自引:6,他引:6  
在卫星影像分析、野外调查的基础上,结合前人研究的资料研究,玛纳斯湖的气候演化背景和区域构造活动背景。然后从玛纳斯湖水面高低和空间位置两个方面讨论玛纳斯湖的演化历史。指出第四纪以来玛纳斯湖出现6次高湖面,经历古玛纳斯湖向北迁移-古玛纳斯湖盆形成-退缩-解体-衰竭的演化过程。  相似文献   

13.
14.
Lake sediments in the Ruhuhu Basin, Tanzania, and other East African basins have a similar facies evolution for particular time slices of the Permian and Lower Triassic. The Ruhuhu Basin exhibits three lacustrine phases related partly to climate and partly to tectonic setting. Two pre-rift lacustrine stages — post glacial and swampy lacustrine phases — are followed by major rifting in the Upper Permian. Postgacial lakes developed in pre-Karoo depressions were fed initially by meltwater and later by runoff and grounwater associated with climatic amelioration. The following swampy lacustrine episode developed from fluvial to lacustrine conditions with alternating clastic and organic input. Associated micritic carbonates and gypsum indicate high evaporation, and playa clay mineral associations provide evidence for poor drainage and saline, alkaline lake waters.The Upper Permian lake was characterized by fine clastics and biogenic carbonates. Facies include littoral clastics and turbidites, stromatolites, oolites and deeper water laminites. Early diagenetic cherts, chloritization and the absence of kaolinite indicate highly alkaline lake water during regressive phases. Stable isotopic evidence supports lake differentiation into hydrogeologically open and closed sub-basins.Two phases of rifting (Lower-Upper Permian; Upper Permian-Lower Triassic) are recognized in several Karoo basins. Rift evolution and lake formation are intimately related. The first rifting episode was characterized by local extension of depositional areas. Half-graben basinal asymmetry and permanent lacustrine conditions became established. The second episode was regional, and was characterized by further extension of depositional area, a basal unconformity, and a hiatus between the uppermost Permian and lowermost Triassic units. Climate was the main controlling factor during the Early Permian lake development, whereas structural constraints strongly influenced vertical and lateral facies development in the Late Permian/Early Triassic lakes.  相似文献   

15.
在sRTM-DEM数据的基础上,运用GIS空间分析技术,系统提取了格尔木河三级流域及部分二级流域地形参数和面积-高程积分值,探讨了面积-高程积分值的面积及空间依赖性,并对面积-高程积分值(HI)对构造活动性、岩性变化、冰川作用强度的指示意义进行了研究.研究表明:HI值具有面积依赖及空间依赖性;东昆南断裂(F4)-西大滩断裂(F3)以昆仑山口为界可以分为东西两部分,各自的活动性都是中间强往两边依次减小,东昆中断裂(F1)的活动性变化不大;岩性对HI影响表现出,侵入岩的抗侵蚀力最大,片岩的抗侵蚀力最小,碳酸盐岩组合的抗侵蚀力居中;冰川作用对地貌发育和侵蚀程度有改造作用,与只有古冰川发育或无古冰川流域比较,有现代冰川发育,古冰川作用遗迹广泛的流域,HI值较大并会出现U型谷.  相似文献   

16.
ABSTRACT Foreland basins form by lithospheric flexure under orogenic loading and are filled by surface transport of sediment. This work readdresses the interplay between these processes by integrating in a 3D numerical model: the mechanisms of thrust stacking, elastic flexural subsidence and sediment transport along the drainage network. The experiments show that both crustal tectonic deformation and vertical movements related to lithospheric flexure control and organise the basin-scale drainage pattern, competing with the nonlinear, unpredictable intrinsic nature of river network evolution. Drainage pattern characteristics are predicted that match those observed in many foreland basins, such as the axial drainage, the distal location of the main river within the basin, and the formation of large, long-lasting lacustrine systems. In areas where the river network is not well developed before the formation of the basin, these lithospheric flexural effects on drainage patterns may be enhanced by the role of the forebulge uplift as drainage divide. Inversely, fluvial transport modifies the flexural vertical movements differently than simpler transport models (e.g. diffusion): Rivers can drive erosion products far from a filled basin, amplifying the erosional rebound of both orogen and basin. The evolution of the sediment budget between orogen and basin is strongly dependent on this coupling between flexure and fluvial transport: Maximum sediment accumulations on the foreland are predicted for a narrow range of lithospheric elastic thickness between 15 and 40 km, coinciding with the T e values most commonly reported for foreland basins.  相似文献   

17.
There are a series of basins in the Fenwei Graben. Field survey found that there took place several paleolake regressions or intensive stream down-incisions in all basins during the Mid-Late Quaternary. The lowest and oldest paleosol/loess units overlying three of the lacustrine terraces or alluvial ones and some paleomagenetism data from the lacustrine sediment indicate that the onset times of three paleolake regressions or intensive stream down-incisions are synchronous with the formation of L9, L6 and L2 respectively in the Weihe Basin, S8, S5 and S1 respectively in the Linfen-Taiyuan-Xingding Basins, and L8, L5 and L1 respectively in the Datong Basin. The difference in the onset time of each lake regressions or intensive stream down-incision in different basins reveals that the farther the basin is from the Tibetan Plateau, the later it took place. Taking these field facts and the former research results in terms of the regional tectonic movement into account, it is inferred that the tectonic movement of the Tibetan Plateau most probably controlled such geomorphologicalsedimentary evolution in the graben.  相似文献   

18.
陕北洛河流域地貌演化阶段的定量分析   总被引:1,自引:0,他引:1  
郭娇  王伟  石建省 《干旱区地理》2015,38(6):1161-1168
根据洛河流域地貌南北纵向区域分布规律,并参考张宗祜先生(1986)编制的"中国黄土高原地貌类型图",将洛河流域由南至北依次划分为洛川黄土塬区、甘泉一志丹黄土梁状(为主)丘陵沟壑区及吴起黄土峁状(为主)丘陵沟壑区3个地貌区。借助于GIS的空间分析功能,对洛河流域3种不同地貌绘制了Strahler曲线,采用高程积分法、信息熵法、侵蚀积分值法进行计算。结果表明:3种地貌区均属于壮年期地貌发育数量特征值范围,说明洛河流域总体的发育状态已经开始进入壮年期,但不同地貌分区的发育阶段不尽相同;洛河流域不同地貌的面积-高程积分曲线的S值大小排列顺序为:吴起黄土峁状(为主)丘陵沟壑区< 洛川黄土塬区< 甘泉一志丹黄土梁状(为主)丘陵沟壑区,与理论情况不相符。分析认为,这可能是由于近年来洛川黄土塬区侵蚀强度增加对洛川黄土塬区的地貌发育产生了一定的影响。  相似文献   

19.
通过对位于苏北盆地中部的兴化XH-1孔350.08 m连续岩芯的古地磁测年,确定了年代地层序列.在此基础上,对钻孔沉积物进行了以粒度特征为重点,包括矿物组成、结构、沉积构造和沉积组合在内的综合岩相古地理分析,划分出8个沉积相和19个沉积亚相.并根据沉积相的组合特征,将苏北盆地3.20Ma以来的沉积环境演化划分为沉降盆地...  相似文献   

20.
中国花岗岩地貌的类型特征与演化   总被引:7,自引:1,他引:6  
在中国南方亚热带季风气候条件下, 自中、上新世以来的夷平面及其深厚的花岗岩风化壳在后期不同程度构造抬升-下切过程中, 造成许多中国特有的花岗岩地貌类型, 如黄山和三清山等处的花岗岩峰林、石林、造型石、风动石等。本文讨论了中国花岗岩风化壳和地貌的时空演化规律, 提出地貌发育年代与中、上新世广布的夷平面的密切关系, 以及在不同抬升背景下, 花岗岩地貌与风化壳的关系。并可据此推算不同山地的抬升幅度, 沿海仅抬升约200m, 向内地逐渐增大, 到南岭或大别山、伏牛山则达到约1600~2000 m。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号