首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 2-D density modeling of the sublatitudinal deep seismic sounding profile in the Tsushima Basin (Sea of Japan) was performed. The available data allow us to presume that the opening of the Tsushima Basin took place under conditions of an anomalously heated mantle that fostered emplacement of mantle material into the basinal crust and basin/continental margin transition zone of the Korean Peninsula attended by formation of the oceanic crust. The increased (relative to the normal oceanic crust) thickness of the basinal crust was conditioned by the accumulation of a large amount of terrigenous material and volcanogenic rocks in the upper part of the crust and underplating of mantle material in the crustal base.  相似文献   

2.
地壳深俯冲与富钾火山岩成因   总被引:8,自引:1,他引:8  
富钾火山岩是一类兼具壳幔双重地球化学特征的特殊岩石组合 ,它们不可能由亏损或原始地幔所派生 ,成岩过程中必须有地壳物质的参与 ,将地壳物质引入富钾火山岩成岩过程的主要动力机制即是深俯冲作用。洋壳和陆壳均可以通过俯冲进入地幔 ,俯冲地壳物质析出流体对地幔岩石的交代作用是导致富钾火山岩具特殊地球化学特征的主要原因。根据对大别—苏鲁造山带南北两侧晚中生代富钾火山岩的实例研究 ,表明该区火山岩的形成均受到了俯冲洋壳析出流体的交代作用 ,但造山带北侧富钾火山岩的形成还叠加了俯冲的扬子陆壳析出流体的交代作用 ,是多次富集事件综合作用的结果。文中还对富钾火山岩成因研究中值得进一步深入探索的问题进行了讨论。  相似文献   

3.
The results of the geochemical studies of the Late Oligocene-Pleistocene volcanic rocks that accompanied the formation of the deep-water basins of the Seas of Japan and Okhotsk are presented. These rocks have an initially mantle origin that is a derivative of a single source—spinel perodotites. They formed as a result of the partial melting of secondary plumes located in the head part of the major mantle plume. This plume rose very closely to the surface in the area of the Japanese (Central) basin, where the marginal-sea basaltoids with chemical properties of HIMU (OIB) sources were established. The continental lithosphere (the upper mantle and the crust) was involved in the magma formation in the area of the Kuril basin and the Vityaz Ridge at the earliest rifting stage in the Late Oligocene-Early Miocene and at the final stage in the Pliocene-Pleistocene.  相似文献   

4.
大别造山带南坡晚白垩世玄武岩源区地幔特征   总被引:9,自引:1,他引:9  
大别造山带南坡中生代断陷盆地中出露大量晚白垩世碱性玄武岩类。因岩浆受结晶分异和陆壳混染影响微弱,其成分基本可代表本区原生玄武岩浆。在微量元素原始地幔标准化蛛网图上,本区玄武岩具有地壳富集组分Pb、K、Rb、Ba等的正异常和Nb、P、Hf等高场强元素的负异常。同位素和微量元素特征显示,玄武岩浆来自亏损地幔(DM)和富集地幔(EM+EM)混合源区。玄武岩源区地幔中Pb的富集和Nb、P、Hf等的亏损基本可由中国东部亏损地幔与榴辉岩的混合获得,由此揭示富集地幔端元组成特征可能与晚白垩世前造山带根部榴辉岩拆沉并参与地幔再循环有关。  相似文献   

5.
The results of study of the deep sources of volcanic rocks from the Sea of Japan and the Philippine Sea with continental and oceanic basements, respectively, are presented. This problem is considered with the example of alkaline volcanic rocks of the Middle Miocene to Pliocene complex of the Sea of Japan and the Eocene–Oligocene Urdaneta Plateau of the Philippine Sea. The rocks have a similar geochemistry typical of OIBs, which indicates their deep (plume) origin. The presence of the Oligocene calc-alkaline volcanic rocks, which were formed prior to the marginal sea volcanism in the Sea of Japan, however, is the main difference in volcanism of the Sea of Japan from that of the Urdaneta Plateau, and this is explained by the different basements of these seas.  相似文献   

6.
Petrographic and geochemical studies showed that the Oligocene-Early Miocene volcaniclastic rocks from the southern part of the Sea of Japan are ascribed to the high-potassium aluminous rocks of the subalkaline volcanic series of active continental margins. A comparative analysis revealed the spatiotemporal relation of Oligocene-Early Miocene subaerial volcanism of the Sea of Japan with Late Cretaceous and Eocene-Early Miocene ignimbrite volcanism of the East Eurasian margin. This allows us to refer the volcaniclastic rocks of the Sea of Japan to a stage of ignimbrite volcanism that occurred during relative quiescence against a general extension in the continental margin setting.  相似文献   

7.
Strontium and Nd isotopic compositions and trace element abundances were determined for Cretaceous to late Cenozoic igneous rocks from the Japan Sea side of Southwest Japan in order to investigate the effect of the opening of the Japan Sea on igneous activity. The 87Sr/86Sr ratios for both high and low silica rocks decrease with decreasing age since the middle Miocene, when the opening occurred. Similarly, 143Nd/144Nd values for these rocks increase with decreasing age, and are negatively correlated with 87Sr/86Sr ratios. A two-component mixing process can best account for these isotopic and chemical characteristics. One end-member is likely the subcontinental lithospheric mantle (SCLM) and its derivative mafic to intermediate materials which had ɛNd values of around +3. The other endmember consists of mafic to intermediate rocks with low ɛNd values (e.g., −8), probably located in the lower crust. The mantle upwelling associated with the opening of the Japan Sea did not supply typical MORB or MORB-source materials to the crust, but did provide the heat that caused the melting of lithospheric mantle and lower crust. Received: 29 August 1996 / Accepted: 6 May 1997  相似文献   

8.
New data on geology, geochemistry, and isotope systematics of lavas in the East Sikhote-Alin area, along with earlier published evidence for the Sea of Japan, provide insights into the dynamics of back-arc basins and their role in the tectonic and magmatic history of continental margins. Right-lateral strike-slip faulting, the key event in the Cenozoic history of East Sikhote-Alin, apparently had no relation with the subduction in post-Eocene time. At that time, the Late Cretaceous subduction ended and oceanic asthenosphere with Pacific-type MORB isotope signatures injected into the subcontinental mantle through slab windows. The Sea of Japan opening began in the Eocene with formation of small rift basins in the Tatar Strait, which accumulated coastal facies. During the main Miocene phase of activity, the zone affected by oceanic asthenosphere moved eastward, i.e., to the modern deepwater Sea of Japan. The effect of oceanic asthenosphere on the continental margin ended in the Late Miocene after the Sea of Japan had opened and new subduction initiated east of the Japan Islands.  相似文献   

9.
南海北部陆缘盆地形成的构造动力学背景   总被引:2,自引:0,他引:2  
摘要:南海北部陆缘盆地处于印度板块与太平洋及菲律宾海板块之间,但三大板块对南海北部陆缘盆地的影响是不同的。通过对三大板块及古南海演化的研究,可知南海北部陆缘地区应力环境于晚白垩世发生改变。早白垩世处于挤压环境,晚白垩世以来转变为伸展环境并且不同时期的成因不同。晚白垩世-始新世,华南陆缘早期造山带的应力松弛、古南海向南俯冲及太平洋俯冲板块的滚动后退导致其处于张应力环境。始新世时南海北部陆缘裂陷盆地开始产生,伸展环境没有变,但因其是由太平洋板块向西俯冲速率的持续降低及古南海向南俯冲引起的,南海北部陆缘盆地继续裂陷。渐新世-早中新世,地幔物质向南运动及古南海向南俯冲导致南海北部陆缘地区处于持续的张应力环境;渐新世早期南海海底扩张;中中新世开始,三大板块开始共同影响着南海北部陆缘盆地的发展演化。  相似文献   

10.
青藏高原Pb同位素地球化学及其意义   总被引:12,自引:1,他引:11  
根据青藏高原不同构造单元基底片麻岩、花岗岩类和火山岩等不同类型岩石的486套Pb同位素数据的整理和分析,发现青藏高原岩石圈存在3种主要类型,即亏损Pb同位素的特提斯洋地幔域端元、富集Pb同位素的喜马拉雅成熟大陆地壳端元和青藏高原北部的过渡型Pb同位素的地幔端元。这3类地球化学端元与前人通过Sr-Nd同位素研究获得的3类端元一致。拉萨地块内部不同类型岩石的Pb同位素地球化学特征指示出两类岩浆作用,一类是特提斯洋岩石圈俯冲消减再循环和亏损地幔物质注入导致的亲特提斯洋型岩浆作用,另一类是与类似于喜马拉雅大陆地壳物质加入导致的富集地幔源区有关的超钾质岩浆作用。岩浆作用的Pb同位素地球化学记录了特提斯洋俯冲消减作用和随后发生的印度大陆向北拼合、碰撞和俯冲过程,也记录了大规模的壳幔相互作用对高原岩石圈演化与隆升的贡献。  相似文献   

11.
ABSTRACT

We construct a complete density transection based on the velocity structures across the Zhongsha Bank in the South China Sea. Gravity modelling of the lateral density contrasts between tectonic units helps us to determine the structural attributes and boundaries between continental blocks and deep basins. The configuration of the continent–ocean boundary (COB) around the Zhongsha Bank is mapped based on the gravity/magnetic anomaly and crustal structures. A low-density mantle is found beneath the Zhongsha Bank and the oceanic basins, and this mantle is associated with the high heat-flow background. The COB orientation is northeast-east in the north of the bank, with faulted linear structures. In further southeast, where there is a more intact crust, the COB orientation changed to north-northeast. The reconstructed density model and gravity/magnetic map indicate that the Zhongsha Bank is conjugated with the Liyue Bank by a rifted basin, where the crust had experienced localized deformation before the seafloor spreading. Because of the insufficient magmatism in the oceanic basin, the spreading ridge propagates into the weakened continental lithosphere between the two continental blocks, thus completely separating the Zhongsha Bank from the Liyue Bank. Seafloor spreading ridge jumps within the South China Sea may also be affected by the heterogeneous lithosphere beneath the continental blocks and oceanic basins.  相似文献   

12.
邱燕  黄文凯  杜文波  韩冰 《地球科学》2021,46(3):899-915
南海中央海盆南、北两侧陆缘分布着面积较广的减薄陆壳,正确认识海盆减薄陆壳的成因是研究南海构造演化的重要一环.通过分析基于地壳伸展因子公式计算的南海地壳拉张伸展特征和解释中生代以来的陆壳隆升特征等,证实晚中生代以来至渐新世末,该区不仅发生了地壳拉张伸展作用,还发生了较长期的地壳隆升挤压作用,致使酸性侵入岩出露地表,减薄陆壳区的上地壳厚薄分布不均.始新世南海南部发育海陆过渡相和海相沉积、北部仅为陆相沉积,暗示始新世南海古地理格局是南、北陆缘具有不同沉积环境的盆地群,二者之间应该被隆起所隔.这些地质现象说明该区地壳隆升剥蚀与地壳拉张伸展活动时间有较长的重叠.南海中央海盆两侧减薄陆壳的成因不仅仅是地壳拉张伸展所致,而是拉张伸展与隆升剥蚀共同作用的结果,因此可以认为在曾经发生了地壳隆升挤压而遭受长期剥蚀的区域,如果用全地壳伸展因子的公式来估算地壳拉张伸展程度,将得出错误的结论.   相似文献   

13.
The Shiribeshi Seamount off northwestern Hokkaido, the Sea of Japan, is a rear-arc volcano in the Northeast Japan arc. This seamount is composed of calc-alkaline and high-K basaltic to andesitic lavas containing magnesian olivine phenocrysts and mantle peridotite xenoliths. Petrographic and geochemical characteristics of the andesite lavas indicate evidence for the reaction with the mantle peridotite xenoliths and magma mixing between mafic and felsic magmas. Geochemical modelling shows that the felsic end-member was possibly derived from melting of an amphibolitic mafic crust. Chemical compositions of the olivine phenocrysts and their chromian spinel inclusions indicate that the Shiribeshi Seamount basalts in this study was derived from a primary magma in equilibrium with relatively fertile mantle peridotites, which possibly represents the mafic end-member of the magma mixing. Trace-element and REE data indicate that the basalts were produced by low degree of partial melting of garnet-bearing lherzolitic source. Preliminary results from the mantle peridotite xenoliths indicate that they were probably originated from the mantle beneath the Sea of Japan rather than beneath the Northeast Japan arc.  相似文献   

14.
Sedimentary covers are up to 15–20 km thick in ultradeep sedimentary basins. Joint interpretation of seismic reflection sounding and gravimetric data indicates that eclogites are located in the basins under the Moho. In these rocks the velocities of P-waves are close to those in mantle peridotites. The basins show only moderate crustal stretching and their formation was caused primarily by the transformation of gabbroids into dense eclogites in the lower part of the continental crust. The transformation took place episodically as mantle fluids infiltrated the lower crust and it was ensured by pressure rise in the lower crust occurring with the accumulation of sediments. Moderate metamorphism developed in silicic upper crust as temperature and pressure increased under thick sedimentary covers. In iron-rich metasedimentary rocks, deep metamorphism resulted in the density increase, and P-wave velocities there increased to those characteristic of the oceanic crust.  相似文献   

15.
中国东部中-新生代的构造背景是中国地质学界最关注的问题之一。自20世纪70年代板块构造学说引入中国后,中国地质学家普遍接受了太平洋板块向欧亚板块俯冲导致中国东部中生代强烈的构造-岩浆活动和相应的成矿作用的观点,乃至成为被中外学者普遍认知的理论,至今仍然广泛流传。但是,本文研究认为问题很多。众所周知,岛弧是以玄武岩出露为主,大陆弧则是以安山岩出露最多,而中国东部玄武岩和安山岩极不发育。本文按照大数据研究思路,对日本和安第斯全部新生代岩浆岩的统计研究表明,上述认识基本上是对的:日本弧主要是玄武岩,其次是安山岩;安第斯弧主要是安山岩,其次是玄武岩;而中国东部(以浙闽地区为代表),主要是花岗岩,其次是玄武岩,出现双峰式分布的特征。看来,中国东部与日本和安第斯的构造背景完全不同,中国东部没有俯冲作用的明显证据。其次,岛弧和大陆弧有明显的成分和结构分带,如日本弧,从海沟开始,岩浆活动是从前弧-岛弧-后弧-弧后(frant-arc,arc,rear-arc,back-arc)。安第斯弧不如日本弧明显,从海沟向东到大陆是从弧前杂岩-弧岩浆岩-弧后盆地。中国东部(包括东海大陆架、中国东部沿海)与俯冲有关的结构和成分分带哪里有?我们的研究集中讨论了浙闽地区400km宽度范围内侏罗纪-白垩纪岩浆岩的分布,从年龄到地球化学(Si O2的变化,Mg O、K2O的变化,年龄的变化等等),基本上见不到有从东到西分带的趋势,这种情况如何与板块俯冲作用联系起来呢?岛弧岩浆岩主要来源于亏损的地幔、洋壳、深海沉积物,以及由俯冲带带来的流体,因此,岛弧岩浆岩洋壳的特征非常明显。大陆弧也来自地幔,但是,岩浆穿过大陆壳,会带来明显的陆壳混染的影响,因此安第斯型岩浆岩陆壳的印记比较明显。大陆岩浆岩如果不考虑俯冲带的影响,岩浆岩应当来自高热的软流圈地幔。如果高热的软流圈停滞在岩石圈底部,在那里发生部分熔融,形成的应当是大陆溢流玄武岩,而中酸性岩浆岩非常少;相反,如果高热的软流圈突破岩石圈的阻隔而上升到地壳底部,则会加热下地壳底部使之发生部分熔融,形成的则是大量的酸性花岗岩,而玄武岩和安山岩很少。峨眉山是前面的情况,中国东部则是后面的情况。中国东部岩浆岩究竟与日本、安第斯有何异同点?应当是岩石学家研究的首要命题,建议中国的岩石学家和地球化学家不要仅限于中国东部的研究,而将研究的触角延伸一步,深入细致地研究一下日本和安第斯岩浆岩的情况,再对比中国东部的情况,如此可能会得出新的认识,这样的认识也许才可能有益于解决中国东部岩浆岩形成背景的问题。  相似文献   

16.
Cretaceous-Paleogene granitoid rocks and contemporaneous volcanic rocks are widely distributed in the Inner Zone of Southwest Japan. This intense intermediate to felsic magmatism is considered to have taken place on the eastern margin of the Eurasian Continent, before the Southwest Japan Arc drifted away from the continent in the middle Miocene, resulting in the opening of the Japan Sea. The granitoid rocks show regional variations in terms of their radiometric age, petrography, Sr, Nd and O isotope ratios. Based on Sr and Nd isotope ratios, granitoid rocks can be divided into three zones (South, Transitional and North) between the Median Tectonic Line and the Japan Sea. Granitoid rocks and associated gabbros of the North Zone have low initial Sr isotope ratios (0.7048 to 0.7068) and high initial Nd values (+3 to-2.2), whereas granitoid rocks and gabbros from the South Zone have high initial Sr isotope ratios (0.7070 to 0.7088) and low initial Nd values (-3.0to-8.0). Most granitoid rocks from the Transitional Zone have Sr and Nd isotope ratios that lie between those of the North and South Zones, although there is some overlap. Contamination of magmas by upper crust cannot explain this geographical variation in Sr and Nd isotopes. Instead, the regional variation is attributed to compositionally different, magma sources (probably upper mantle and lower crust), beneath the North and South Zones. This is supported by the Sr and Nd isotopic ratios of upper mantle and lower crustal xenoliths included in Cenozoic volcanic rocks in the North and South Zones. These ratios are similar to those of the granitoid rocks in the respective zones. It is suggested that a micro-continent or island arc consisting of continental crust was underthrust beneath the South Zone before or during the Cretaceous, resulting in compositionally distinct sources for granitoid rocks of the North and South Zones. The large variation observed in Sr and Nd isotope ratios for Transitional Zone granitoid rocks is explained by variable proportions of the two different crustal and upper mantle components.  相似文献   

17.
本文报道了在新疆阿尔金山南缘断裂带中首次发现的球状辉长岩,及其产出特征与岩石学、地球化学特征。提出球状辉长岩代表了弧后盆地或活动大陆边缘位置,来自消亡洋壳和上覆楔状地幔岩这两种不同源岩组份的混合物。球状辉长岩的岩浆由消亡洋壳熔融直接产生,但熔体在上升达到地表的过程中,与楔状地幔岩发生反应,并加速楔状地幔岩的熔融,同时发生结晶作用和分异作用。  相似文献   

18.
谢锦龙  黄冲  向峰云 《地质科学》2008,43(1):133-153
南海西部海域构造复杂,主要发育有北东—北东东向、北西向和近南北向3组深大断裂。其中,北西向断裂与板块汇聚、碰撞有关,多具走滑性质;北东—北东东向断裂具有与中国东部裂谷盆地相似的发育特点,呈张扭性质;近南北向断裂可能是南海在扩张活动期间于洋、陆壳过渡部位形成的走滑调节断裂,是洋盆扩张的西部边界。新生代里,南海经历了4次成盆事件与3期扩张活动,盆地经历了古新世—中始新世陆缘断陷、渐新世—早中新世扩展与中中新世以来的热沉降3个演化阶段。陆缘断陷阶段的充填系列主要是北东—北东东向与北西向的河流—冲积扇、湖泊沼泽等陆相沉积及火山岩等;盆地扩展阶段表现为中-小型断陷、断-坳陷逐渐复合与联合为大-中型坳陷,古地理格局逐渐由河流与湖沼陆相环境演变为滨海至浅海相的沉积环境;热沉降阶段的成盆活动逐渐减弱以至停止,地层表现超覆,盆地出现联合迹象。结合以往勘探与油气资源调查成果分析,认为南海西部海域陆架陆坡区发育的大-中型沉积盆地石油地质条件良好,蕴藏着丰富的油气资源,勘探潜力巨大。  相似文献   

19.
A tectonotype of volcanic passive margins exemplified in the conjugate Norwegian and East Greenland margins is considered, with discussion of the Paleogene igneous complexes and the regional rift structure before continental breakup. Fragments of asymmetrical rift have been retained on both sides of the ocean. Large Cretaceous pre-rift sedimentation basins marking the initial stage of the ocean opening are included into the passive margin as well. The continental breakup was accompanied by intense basaltic magmatism over a short time span. This magmatic episode was distinguished by (1) the formation of widespread plateau-basalt complexes on continents and in near-shore areas of the ocean; (2) the development of thick lava series that are recorded in seaward dipping reflector wedges; (3) thick high-velocity lower crust, resulting from magmatic underplating; (4) asymmetrical accretion of the crust and structure formation. The discussion is based on published seismic data and reference sections selected for each margin with consideration of the composition and thickness of the igneous rocks, their lateral variations, source composition, and eruption and crust formation conditions. The characteristic feature of both sections is the two-member structure of volcanic complexes with substantial geochemical differences between the rocks from the lower and upper parts of the section, which correspond to the pre-breakup and breakup phases. At the initial phase, small magma volumes were melted out from the lithosphere. The geochemical signatures of the upper parts of the sections testify to the melting of the asthenospheric mantle. Their spatiotemporal variations reflect the ascent and melting of the deep plume, which was active during and after continental breakup. In the Greenland area, near the central part of the plume, a N-MORB-type mantle magma source gave way to a depleted Iceland-type mantle, while apart from the central part of the plume, its effect is expressed only in the enormous volume of mantle-derived melt without migration of its source. A variety of evidence is provided for the plume’s activity: the great thickness of the volcanic complexes and the relatively stable composition of the melt; the elevated temperature in the mantle; the specific geochemistry of the breakup-related lavas and their lateral zoning; conclusions on the necessity of dynamic support of volcanic eruptions; and recent results of seismographic tomography. The continental breakup inherited a system of older sedimentary basins in the zone of prolonged extension of the lithosphere in the North Atlantic. The continuous dynamic support of extension was most likely provided by long-term ascent of the Iceland plume. The comparison of the considered tectonotype with other volcanic and non-volcanic margins opens the way to further elucidation of the geodynamic processes responsible for the ocean opening.  相似文献   

20.
This work is devoted to the results of the joint Russian-German geodynamic research carried out in the Weddell Sea and West Antarctica during cruise ANT-XXII/3 of the R/V Polarstern in 2005. The study of rock samples collected from the sea floor showed that a heterogeneous structure of the Weddell Sea was formed by spatiotemporal combination of the destruction of continental crust, progressive thalassogenesis (oceanization-taphrogenesis), and rifting, as opposed to a spreading origin. High postconsolidation mobility during the destruction stage led to the areal dismembering and high permeability of the continental crust, as well as to tectonomagmatic activation. The main mechanism of reworking of the continental crust is recognized to be the magmatic replacement by basic-ultrabasic mantle material with formation of a secondary oceanic crust and preservation of relics of the continental crust. The Earth’s endogenous activity was driven by transmagmatic fluid flows, which ascended from the melted core and caused transformation of the Earth’s crust and mantle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号