首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
The accretion of hot slowly rotating gas onto a supermassive black hole is considered. The important case where the velocities of turbulent pulsations at the Bondi radius r B are low, compared to the speed of sound c s, is studied. Turbulence is probably responsible for the appearance of random average rotation. Although the angular momentum at r B is low, it gives rise to the centrifugal barrier at a depth r c = l 2 /GM BH ? r B, that hinders supersonic accretion. The numerical solution of the problem of hot gas accretion with finite angular momentum is found taking into account electron thermal conductivity and bremsstrahlung energy losses of two temperature plasma for density and temperature near Bondi radius similar to observed in M87 galaxy. The saturation of the Spitzer thermal conductivity was also taken into account. The parameters of the saturated electron thermal conductivity were chosen similar to the parameters used in the numerical simulations of interaction of the strong laser beam radiation with plasma targets. These parameters are confirmed in the experiments. It is shown that joint action of electron thermal conductivity and free-free radiation leads to the effective cooling of accreting plasma and formation of the subsonic settling of accreting gas above the zone of a centrifugal barrier. A toroidal condensation and a hollow funnel that separates the torus from the black hole emerge near the barrier. The barrier divides the flow into two regions: (1) the settling zone with slow subKeplerian rotation and (2) the zone with rapid supersonic nearly Keplerian rotation. Existence of the centrifugal barrier leads to significant decrease of the accretion rate ? in comparison with the critical Bondi solution for γ = 5/3 for the same values of density and temperature of the hot gas near Bondi radius. Shear instabilities in the torus and related friction cause the gas to spread slowly along spirals in the equatorial plane in two directions.As a result, outer (r > r c) and inner (r < r c) disks are formed. The gas enters the immediate neighborhood of the black hole or the zone of the internal ADAF flow along the accretion disk (r < r c). Since the angular momentum is conserved, the outer disk removes outward an excess of angular momentum along with part of the matter falling into the torus. It is possible, that such outer Keplerian disk was observed by Hubble Space Telescope around the nucleus of the M87 galaxy in the optical emission lines. We discuss shortly the characteristic times during which the accretion of the gas with developed turbulence should lead to the changes in the orientation of the torus, accretion disk and, possibly, of the jet.  相似文献   

2.
We calculate the amount of angular momentum that thermal photons carry out of a viscous black hole accretion disk, due to the strong Doppler shift imparted to them by the high orbital velocity of the radiating disk material. While thermal emission can not drive accretion on its own, we show that along with disk heating it does nonetheless result in a loss of specific angular momentum, thereby contributing to an otherwise viscosity‐driven accretion flow. In particular, we show that the fraction of the angular momentum that is lost to thermal emission at a radius r in a standard, multi‐color disk is ∼0.4rs/r, where rs is the Schwarzschild radius of the black hole. We briefly highlight the key similarties between this effect and the closely related Poynting‐Robertson effect (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Our goal is to study the regime of disk accretion in which almost all of the angular momentum and energy is carried away by the wind outflowing from the disk in numerical experiments. For this type of accretion the kinetic energy flux in the outflowing wind can exceed considerably the bolometric luminosity of the accretion disk, what is observed in the plasma flow from galactic nuclei in a number of cases. In this paper we consider the nonrelativistic case of an outflow from a cold Keplerian disk. All of the conclusions derived previously for such a system in the self-similar approximation are shown to be correct. The numerical results agree well with the analytical predictions. The inclination angle of the magnetic field lines in the disk is less than 60°, which ensures a free wind outflow from the disk, while the energy flux per wind particle is greater than the particle rotation energy in its Keplerian orbit by several orders of magnitude, provided that the ratio r A/r ? 1, where r A is the Alfvénic radius and r is the radius of the Keplerian orbit. In this case, the particle kinetic energy reaches half the maximum possible energy in the simulation region. The magnetic field collimates the outflowing wind near the rotation axis and decollimates appreciably the wind outflowing from the outer disk periphery.  相似文献   

4.
This work derives the linearized equations of motion, the Lagrangian density, the Hamiltonian density, and the canonical angular momentum density for general perturbations [∝ exp (imφ) with m = 0, ± 1, ...] of a geometrically thin self-gravitating, homentropic fluid disk including the pressure. The theory is applied to “eccentric,” m = ± 1 perturbations of a geometrically thin Keplerian disk. We find m = 1 modes at low frequencies relative to the Keplerian frequency. Further, it is shown that these modes can have negative energy and negative angular momentum. The radial propagation of these low-frequency m = 1 modes can transport angular momentum away from the inner region of a disk and thus increase the rate of mass accretion. Depending on the radial boundary conditions there can be discrete low-frequency, negative-energy, m = 1 modes.  相似文献   

5.
The normal mode oscillations of thin accretion disks around black holes and other compact objects are analyzed and contrasted with those in stars. For black holes, the most robust modes are gravitationally trapped near the radius at which the radial epicyclic frequency is maximum. Their eigenfrequencies depend mainly on the mass and angular momentum of the black hole. The fundamental g-mode has recently been seen in numerical simulations of black hole accretion disks. For stars such as white dwarfs, the modes are trapped near the inner boundary (magnetospheric or stellar) of the accretion disk. Their eigenfrequencies are approximately multiples of the (Keplerian) angular velocity of the inner edge of the disk. The relevance of these modes to the high frequency quasi-periodic oscillations observed in the power spectra of accreting binaries will be discussed. In contrast to most stellar oscillations, most of these modes are unstable in the presence of viscosity (if the turbulent viscosity induced by the magnetorotational instability acts hydrodynamically).  相似文献   

6.
黑洞吸积的双模式特征   总被引:1,自引:0,他引:1  
黑洞吸积必定是跨声速的。对于静态、绝热吸积流,比能量E、比角动量L和质量吸积率M都是空间的常量。跨声速解的非奇异条件,F(E,L,M)=0,使独立参数减为只有两个。对于一对给定的E和L的符合条件E_c>E>E_(Barr)的值(这里E_c是一临界值,E_(Barr)是引力和离心力的联合势垒),上述非奇异条件给出两个不同的吸积率值,对应着两个不同的吸积流声速点位置。然而,物理上合理的整体解却是唯一的,它总是使两个吸积率值中之较小者得到实现。 对于一个不转动的黑洞,吸积以两种模式之一进行。一是类球吸积或称Bondi吸积,角动量的影响和相对论效应均微不足道;另一是盘吸积,这两个因素起决定性作用。两种模式之间的转换是基于声速点位置的间断性跳跃,而这种跳跃是由吸积流参数(例如角动量)的连续变化所引发。Bondi吸积可称为高态而盘吸积为低态,因为前者总对应着较高的吸积率。 随时间变化的吸积流很可能在这两种模式之间来回振荡,呈现出周期性或准周期性或无规则行为。这可以用来解释天鹅座X-1和若干活动星系核的光变现象,从而为黑洞的存在提供有力的观测依据。  相似文献   

7.
We explore an accretion model for low luminosity AGN (LLAGN) that attributes the low radiative output to a low mass accretion rate, , rather than a low radiative efficiency. In this model, electrons are assumed to drain energy from the ions as a result of collisionless plasma microinstabilities. Consequently, the accreting gas collapses to form a geometrically thin disk at small radii and is able to cool before reaching the black hole. The accretion disk is not a standard disk, however, because the radial disk structure is modified by a magnetic torque which drives a jet and which is primarily responsible for angular momentum transport. We also include relativistic effects. We apply this model to the well known LLAGN M87 and calculate the combined disk-jet steady-state broadband spectrum. A comparison between predicted and observed spectra indicates that M87 may be a maximally spinning black hole accreting at a rate of ∼10−3 M  yr−1. This is about 6 orders of magnitude below the Eddington rate for the same radiative efficiency. Furthermore, the total jet power inferred by our model is in remarkably good agreement with the value independently deduced from observations of the M87 jet on kiloparsec scales.  相似文献   

8.
We explore an accretion model for low luminosity AGN (LLAGN) that attributes the low radiative output to a low mass accretion rate, , rather than a low radiative efficiency. In this model, electrons are assumed to drain energy from the ions as a result of collisionless plasma microinstabilities. Consequently, the accreting gas collapses to form a geometrically thin disk at small radii and is able to cool before reaching the black hole. The accretion disk is not a standard disk, however, because the radial disk structure is modified by a magnetic torque which drives a jet and which is primarily responsible for angular momentum transport. We also include relativistic effects. We apply this model to the well known LLAGN M87 and calculate the combined disk-jet steady-state broadband spectrum. A comparison between predicted and observed spectra indicates that M87 may be a maximally spinning black hole accreting at a rate of ∼10−3M yr−1. This is about 6 orders of magnitude below the Eddington rate for the same radiative efficiency. Furthermore, the total jet power inferred by our model is in remarkably good agreement with the value independently deduced from observations of the M87 jet on kiloparsec scales. * This paper has previously been published in Astrophysics and Space Science, vol. 310:3–4.  相似文献   

9.
In Sections 1–6, we determine an approximate analytical model for the density and temperature distribution in the protoplanetary could. The rotation of the planets is discussed in Section 7 and we conclude that it cannot be determined from simple energy conservation laws.The velocity of the gas of the protoplanetary cloud is found to be smaller by about 5×103 cm s–1 in comparison to the Keplerian circular velocity. If the radius of the planetesimals is smaller than a certain limitr 1, they move together with the gas. Their vertical and horizontal motion for this case is studied in Sections 8 and 9.As the planetesimals grow by accretion their radius becomes larger thanr 1 and they move in Keplerian orbits. As long as their radius is betweenr 1 and a certain limitr 2 their gravitational interaction is negligible. In Section 10, we study the accretion for this case.In Section 11, we determine the change of the relative velocities due to close gravitational encounters. The principal equations governing the late stages of accretion are deduced in Section 12, In Section 13 there are obtained approximate analytical solutions.The effect of gas drag and of collisions is studied in Sections 14 and 15, respectively. Numerical results and conclusions concerning the last and principal stage of accretion are drawn in Section 16.  相似文献   

10.
In this paper we investigate both the global and the local hydrodynamics of axisymmetric accretion disks around young stellar objects under the simultaneous action of viscosity, self-gravity and pressure forces. For simplicity, we take for the global model a polytropic equation of state, make the infinitely thin disk approximation and characterize the surface density and temperature profiles in the disk as power laws in the radial distance r from the protostar. We solve the problem of the general density profile of a Keplerian disk showing that self-gravity could not be an important factor for the fast formation of the rocky cores of giant gaseous planets in our solar system. Under the hypothesis that the unperturbed rotation curve of the disk is nearly Keplerian throughout the radial extent, we can estimate with our polytropic model a lower limit for the resulting masses Md(r) of stable disks up to 100 AU. These masses are in the range of the so-called minimum mass solar nebular (d/Ms ≈ 0.01–0.02).By adopting a simplified viscosity model, where the height-integrated turbulent dynamical viscosity ν is a function of the surface density σ like η ∝ σΓ, we derive in the local shearing sheet model linearized evolution equations for small density perturbations describing both a diffusion process and the propagation of acoustic density waves. We solve a special initial value problem and calculate the appropriate Green's function. The analytical solutions so obtained describe in the case Γ < 0 the successive formation of quasi-stationary ring-shaped density structures in a disk with a definite mode of maximum instability, whereas in the case Γ > Γc the density wave equation describes the propagation of an “overstable” ring-shaped acoustic density wavelet to the outer ranges of the accretion disk. Whereas the group velocity of the wave packet is subsonic, the phase velocities of individual wave crests in the wave packet are supersonic. The mode of maximum instability, the growth rate and the number of growing waves in the wavelet are controlled by Γ and α. Our present knowledge concerning turbulent viscosity in protoplanetary disks is not sufficient to decide whether or not the case Γ > Γc is realized.The suggested structuring processes in the linear theory should initiate in the non-linear regime the formation of narrow ring-shaped density shock waves moving through the protoplanetary disk. These non-linear waves could produce extremely spatially and temporally heterogeneous temperature regions in the disk. We speculate that ring-shaped density waves, excited by inner boundary conditions and which have dominated the disk's evolution at early times, are responsible both for the fast growth of dust to planetesimals and at least for the rapid accretion of the rocky cores of giant gaseous planets in the protoplanetary accretion disk (shock wave trigger hypothesis). We derive provisional scaling rules for planetary systems regarding the spacing of orbits as a function of the mass ratio of the protoplanetary disk to the protostar. However, further analytical work and linear as well as nonlinear numerical simulations of density waves excited by inner boundary conditions are needed to consolidate the results and speculations of our linear wave mechanics in the future.  相似文献   

11.
We model the subnebulae of Jupiter and Saturn wherein satellite accretion took place. We expect each giant planet subnebula to be composed of an optically thick (given gaseous opacity) inner region inside of the planet’s centrifugal radius (where the specific angular momentum of the collapsing giant planet gaseous envelope achieves centrifugal balance, located at rCJ ∼ 15RJ for Jupiter and rCS ∼ 22RS for Saturn) and an optically thin, extended outer disk out to a fraction of the planet’s Roche-lobe (RH), which we choose to be ∼RH/5 (located at ∼150 RJ near the inner irregular satellites for Jupiter, and ∼200RS near Phoebe for Saturn). This places Titan and Ganymede in the inner disk, Callisto and Iapetus in the outer disk, and Hyperion in the transition region. The inner disk is the leftover of the gas accreted by the protoplanet. The outer disk may result from the nebula gas flowing into the protoplanet during the time of giant planet gap-opening (or cessation of gas accretion). For the sake of specificity, we use a solar composition “minimum mass” model to constrain the gas densities of the inner and outer disks of Jupiter and Saturn (and also Uranus). Our model has Ganymede at a subnebula temperature of ∼250 K and Titan at ∼100 K. The outer disks of Jupiter and Saturn have constant temperatures of 130 and 90 K, respectively.Our model has Callisto forming in a time scale ∼106 years, Iapetus in 106-107 years, Ganymede in 103-104 years, and Titan in 104-105 years. Callisto takes much longer to form than Ganymede because it draws materials from the extended, low density portion of the disk; its accretion time scale is set by the inward drift times of satellitesimals with sizes 300-500 km from distances ∼100RJ. This accretion history may be consistent with a partially differentiated Callisto with a ∼300-km clean ice outer shell overlying a mixed ice and rock-metal interior as suggested by Anderson et al. (2001), which may explain the Ganymede-Callisto dichotomy without resorting to fine-tuning poorly known model parameters. It is also possible that particulate matter coupled to the high specific angular momentum gas flowing through the gap after giant planet gap-opening, capture of heliocentric planetesimals by the extended gas disk, or ablation of planetesimals passing through the disk contributes to the solid content of the disk and lengthens the time scale for Callisto’s formation. Furthermore, this model has Hyperion forming just outside Saturn’s centrifugal radius, captured into resonance by proto-Titan in the presence of a strong gas density gradient as proposed by Lee and Peale (2000). While Titan may have taken significantly longer to form than Ganymede, it still formed fast enough that we would expect it to be fully differentiated. In this sense, it is more like Ganymede than like Callisto (Saturn’s analog of Callisto, we expect, is Iapetus). An alternative starved disk model whose satellite accretion time scale for all the regular satellites is set by the feeding of planetesimals or gas from the planet’s Roche-lobe after gap-opening is likely to imply a long accretion time scale for Titan with small quantities of NH3 present, leading to a partially differentiated (Callisto-like) Titan. The Cassini mission may resolve this issue conclusively. We briefly discuss the retention of elements more volatile than H2O as well as other issues that may help to test our model.  相似文献   

12.
A study is made of axisymmetric, low sonic-Mach-number flows of a viscous fluid with angular momentum outside of a black-hole. The viscosity is an eddy viscosity due to turbulence in the sheared flows. Self-similar solutions arise naturally, reducing the Navier-Stokes equations to a set of nonlinear ordinary differential equations. These equations are solved analytically for flows of constant specific angular momentum and numerically for more general flows. For flows with non-constant specific angular momentum, the momentum flux density includes a planar discontinuity which is interpreted as an accretion disc. In general, two flow regions appear on each side of the disk, corresponding to accretion onto the disk and jet-like outflows along the ±z-axes. Physical interpretations of the solutions show that these flows arise in response to point sources of axial momentum at the origin directed in the ±z-directions. The power needed to maintain this momentum input is assumed to come from the mass accretion onto the black hole.The hydrodynamic flows are generalized to include a magnetic field. In the limit of infinite electrical conductivity, the possible types of flow patterns are the same as in hydrodynamic case. The magnetic field alters the relative amounts of reversible and irreversible momentum and angular momentum transport by the flow. For a flow with turbulent viscosity, the magnetic field acts to reduce the level of the turbulence and the effective value of the eddy viscosity.  相似文献   

13.
14.
Matter accreting onto black holes suffers a standing or oscillating shock wave in much of the parameter space. The post-shock region is hot, puffed up and reprocesses soft photons from a Keplerian disc to produce the characteristic hard tail of the spectrum of accretion discs. The post-shock torus is also the base of the bipolar jets. We study the interaction of these jets with the hard photons emitted from the disc. We show that radiative force can accelerate outflows but the drag can limit the terminal speed. We introduce an equilibrium speed υeq as a function of distance, above which the flow will experience radiative deceleration.  相似文献   

15.
We examine the spatial stability of spherical adiabatic Bondi accretion on to a point gravitating mass against external perturbations. Both transonic critical and subsonic subcritical accretion are shown to be stable against purely radial acoustic, vortex or entropy perturbations. In the case of non-radial perturbations the amplitude of the perturbations grows without limit with smaller radii. Instability manifests itself only if the size of the accreting body is much less than the Bondi radius so that the inflow is highly supersonic or highly subsonic at the surface of the accretor in the case of critical or subcritical accretion respectively. These asymptotics hold and consequently the instability may develop for adiabatic index of accreting gas γ < 5/3. We suggest that this instability may lead to an essential thermalization of accreting flow thus, particularly, solving the problem of otherwise inefficient energy release in spherical accretion on to a black hole.  相似文献   

16.
The detailed evolution of low-mass main-sequence stars (M < 1M ) with a compact companion is studied. For angular momentum loss associated with magnetic braking it is found that about 10–11–10–12 M yr–1 in stellar wind loss would be required. This wind is 102–103 times stronger than the solar wind, so we believe here magnetic stellar wind is insufficient. It is well known that there is mass outflow in low-mass close binary systems. We believe here that these outflows are centrifugal driven winds from the outer parts of the accretion disks. The winds extract angular momentum from these systems and therefore drive secular evolution. Disk winds are preferred to winds from the secondary, because of the lower disk surface gravity.  相似文献   

17.
The jets observed to emanate from many compact accreting objects may arise from the twisting of a magnetic field threading a differentially rotating accretion disk which acts to magnetically extract angular momentum and energy from the disk. Two main regimes have been discussed, hydromagnetic jets, which have a significant mass flux and have energy and angular momentum carried by both matter and electromagnetic field and, Poynting jets, where the mass flux is small and energy and angular momentum are carried predominantly by the electromagnetic field. Here, we describe recent theoretical work on the formation of relativistic Poynting jets from magnetized accretion disks. Further, we describe new relativistic, fully electromagnetic, particle-in-cell (PIC) simulations of the formation of jets from accretion disks. Analog Z-pinch experiments may help to understand the origin of astrophysical jets.  相似文献   

18.
19.
We present the results of our studies of the aperiodic optical flux variability for SS Cyg, an accreting binary systemwith a white dwarf. The main set of observational data presented here was obtained with the ANDOR/iXon DU-888 photometer mounted on the RTT-150 telescope, which allowed a record (for CCD photometers) time resolution up to 8 ms to be achieved. The power spectra of the source’s flux variability have revealed that the aperiodic variability contains information about the inner boundary of the optically thick flow in the binary system. We show that the inner boundary of the optically thick accretion disk comes close to the white dwarf surface at the maximum of the source’s bolometric light curve, i.e., at the peak of the instantaneous accretion rate onto the white dwarf, while the optically thick accretion disk is truncated at distances 8.5 × 109 cm ∼10R WD in the low state. We suggest that the location of the inner boundary of the accretion disk in the binary can be traced by studying the parameters of the power spectra for accreting white dwarfs. In particular, this allows the mass of the accreting object to be estimated.  相似文献   

20.
We fit the spectra of Cyg X-1 using two component advective flows with Keplerian accretion disks on the equatorial plane surrounded by sub-Keplerian disks when standing shocks are present. The soft photons generated by the bremsstrahlung and synchrotron processes in the sub-Keplerian flow, as well as the multi-colour black body emission from the Keplerian disk are Comptonized by the thermal and non-thermal electrons. By varying Keplerian and sub-Keplerian rates we are able to reproduce the observed soft and hard states as far as X-ray region is concerned and ‘low γ-ray intensity’ and ‘high γ-ray intensity’ states as far as the soft γ-ray region is concerned. We also find two pivotal points where the spectra intersect as is observed in Cyg X-1.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号