首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J. R. INESON 《Sedimentology》1989,36(5):793-819
The Cretaceous of west James Ross Island, Antarctica represents the proximal fill of a late Mesozoic back-arc basin that was probably initiated by oblique extension during the early development of the Weddell Sea. The succession records sedimentation in two contrasting depositional systems: a laterally persistent slope apron flanking the faulted basin margin interrupted both spatially and temporally by coarse-grained submarine fans. Slope apron deposits are dominated by thinly interbedded turbiditic sandstones and mudstones (mudstone association), interspersed with non-channelized chaotic boulder beds, intraformational slump sheets and isolated exotic blocks representing a spectrum of mass-flow processes from debris flow to submarine gliding. Localized sand-rich sequences (sandstone-breccia association) represent sandy debris lobes at the mouths of active slope chutes. The submarine fan sediments (conglomerate association) are typified by coarse conglomerates and pebbly sandstones, interpreted as the deposits of high-density turbidity currents and non-cohesive debris flows. Three assemblages are recognized and are suggested to represent components of the inner channelled zone of coarse-grained submarine fans, from major fan channels through ephemeral, marginal channels or terraces to levee or interchannel environments. The occurrence of both slope apron and submarine fan depositional systems during the Early and Mid-Cretaceous is attributed to localized input of coarse arc-derived sediment along a tectonically active basin margin. Periods of extensive fan development were probably linked to regional tectonic uplift and rejuvenation of the arc source region; cyclicity within individual fan sequences is attributed to migration or switching of fan channels or canyons. Slope apron sedimentation was controlled largely by intrabasinal tectonics. Local unconformities and packets of amalgamated slide sheets and debris flow deposits probably reflect episodic movement on basin margin faults. Differential subsidence across the basin margin anchored the basin slope for at least 20 Myr and precluded basinward progradation of shallow marine environments.  相似文献   

2.
西藏沙丁、荣布地区三叠系—老第三系沉积地质特征   总被引:1,自引:1,他引:0  
研究区从三叠纪到老第三纪,发育的岩石地层主要有确哈拉群(T3)、希湖群(J1-2)、拉贡塘组(J2-3)、多尼组(K1)、竟柱山组(K2)和牛堡组(E2-3)。在沉积相上,经历了从深水沉积到浅水直至陆相沉积的演变,发育有冲积扇、河流、湖泊、三角洲(潮汐)、障壁海岸、浅海、深海和火山碎屑流沉积。古地理分析表明,研究区晚三叠世古地理轮廓是一个从东南向西北和东北方向由浅水碳酸盐台地及深水陆层海底扇沉积共同发育的沉积盆地;早中侏罗世,演变成为一个由深水砂质浊积岩和细屑浊积岩组成的水下席状体沉积;进入中晚侏罗世,其古地理表现为一个陆屑浅海有障壁海岸;到了晚白垩世,研究区表现为以含煤沉积为特征的三角洲相沉积。  相似文献   

3.
珠江口盆地荔湾3-1气田珠江组深水扇沉积相分析   总被引:7,自引:1,他引:6  
根据已钻井取芯段岩相分析,从荔湾3-1气田珠江组深水扇沉积体系中划分出巨厚层和厚层块状砂岩相、厚层正粒序砂岩相、厚层逆粒序砂岩相、平行—板状斜层理砂岩相、滑塌变形砂岩相、薄层砂岩夹层相、薄层(粉)砂岩与泥岩互层相、厚层粉砂岩相、厚层泥岩相和层状深水灰岩相等10种岩相类型和识别出砂岩相组合、泥岩相组合、(粉)砂岩与泥岩互...  相似文献   

4.
Turbidite facies distribution and palaeocurrent analysis of submarine fan evolution in the Pindos foreland basin of west Peloponnesus peninsula (SW Greece) indicate that this part of the foreland was developed during Late Eocene to Early Oligocene in three linear sub‐basins (Tritea, Hrisovitsi and Finikounda). The basin fill conditions, with a multiple feeder system, which is characterized by axial transport of sediments and asymmetric stratigraphic thickness of the studied sediments, indicate that the Pindos Foreland Basin in this area was an underfilled foreland basin. Sediments are dominated by conglomerates, sandstones and mudstones. The flow types that controlled the depositional processes of the submarine fans were grain flows, debris flows and low‐ and high‐density turbidity currents. The sedimentary model that we propose for the depositional mechanisms and geometrical distribution of the turbidite units in the Tritea sub‐basin is a mixed sand‐mud submarine fan with a sequential interaction of progradation and retrogradation for the submarine fan development and shows a WNW main palaeocurrent direction. The Hrisovitsi sub‐basin turbidite system characterized by small‐scale channels was sediment starved, and the erosion during deposition was greater than the two other studied areas, indicating a more restricted basin topography with a NW main palaeocurrent direction. The Finikounda sub‐basin exhibits sand‐rich submarine fans, is characterized by the presence of distinct, small‐scale, thickening‐upward cycles and by the covering of a distal fan by a proximal fan. It was constructed under the simultaneous interaction of progradation and aggradation, where the main palaeocurrent direction was from NNW to SSE. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
北喜马拉雅地区下白垩统海底扇沉积环境   总被引:5,自引:2,他引:5       下载免费PDF全文
北喜马拉雅地区早白垩世沉积以碎屑岩为主,海底扇沉积十分发育。根据沉积岩的矿物成分、结构、构造和产状特征,可将这些海底扇分为6个亚相。根据亚相在空间的排列组合所指示的沉积环境,海底扇的发展过程可划分为萌芽、青春、成熟和消亡四个阶段。在早白垩世早、中期海底扇处于萌芽阶段和青春阶段,沉积岩的砂/?泥比值高,砂岩的矿物成分和结构多样,反映出海岸平原和大陆架较窄,海底坡度较大,从早白垩世开始沉积环境经历了由陆棚向大陆斜坡转移的过程,海平面升高,构造性质主要为水平拉张、裂陷。早白垩世晚期海底扇处于成熟阶段,海岸平原和大陆架宽度加大,砂/?泥比值降低,沉积物以泥质组分为主,富含菱铁矿、钙质结核,少见菊石等生物化石,相变缓慢,水体低能,属于缓倾斜、无明显坡折带的陆缘,反映了北喜马拉雅区的最大海侵事件。由于印度洋扩张、印度板块向北漂移,在早白垩世晚期北喜马拉雅被动陆缘已趋成熟,本区处于大陆斜坡下部强还原的深海-半深海环境。晚白垩世总体上属于海退,海底扇处于消亡阶段,其岩石由泥岩类向砂岩类直至砾岩类演化。白垩纪沉积盆地则相应经历了由陆棚→拉张断陷盆地→陆坡→深海盆地的演变。  相似文献   

6.
Tethyan evolution of Turkey: A plate tectonic approach   总被引:9,自引:0,他引:9  
The Tethyan evolution of Turkey may be divided into two main phases, namely a Palaeo-Tethyan and a Neo-Tethyan, although they partly overlap in time. The Palaeo-Tethyan evolution was governed by the main south-dipping (present geographic orientation) subduction zone of Palaeo-Tethys beneath northern Turkey during the Permo-Liassic interval. During the Permian the entire present area of Turkey constituted a part of the northern margin of Gondwana-Land. A marginal basin opened above the subduction zone and disrupted this margin during the early Triassic. In this paper it is called the Karakaya marginal sea, which was already closed by earliest Jurassic times because early Jurassic sediments unconformably overlie its deformed lithologies. The present eastern Mediterranean and its easterly continuation into the Bitlis and Zagros oceans began opening mainly during the Carnian—Norian interval. This opening marked the birth of Neo-Tethys behind the Cimmerian continent which, at that time, started to separate from northern Gondwana-Land. During the early Jurassic the Cimmerian continent internally disintegrated behind the Palaeo-Tethyan arc constituting its northern margin and gave birth to the northern branch of Neo-Tethys. The northern branch of Neo-Tethys included the Intra-Pontide, Izmir—Ankara, and the Inner Tauride oceans. With the closure of Palaeo-Tethys during the medial Jurassic only two oceanic areas were left in Turkey: the multi-armed northern and the relatively simpler southern branches of Neo-Tethys. The northern branch separated the Anatolide—Tauride platform with its long appendage, the Bitlis—Pötürge fragment from Eurasia, whereas the southern one separated them from the main body of Gondwana-Land. The Intra-Pontide and the Izmir—Ankara oceans isolated a small Sakarya continent within the northern branch, which may represent an easterly continuation of the Paikon Ridge of the Vardar Zone in Macedonia. The Anatolide-Tauride platform itself constituted the easterly continuation of the Apulian platform that had remained attached to Africa through Sicily. The Neo-Tethyan oceans reached their maximum size during the early Cretaceous in Turkey and their contraction began during the early late Cretaceous. Both oceans were eliminated mainly by north-dipping subduction, beneath the Eurasian, Sakaryan, and the Anatolide- Tauride margins. Subduction beneath the Eurasian margin formed a marginal basin, the present Black Sea and its westerly prolongation into the Srednogorie province of the Balkanides, during the medial to late Cretaceous. This resulted in the isolation of a Rhodope—Pontide fragment (essentially an island arc) south of the southern margin of Eurasia. Late Cretaceous is also a time of widespread ophiolite obduction in Turkey, when the Bozkir ophiolite nappe was obducted onto the northern margin of the Anatolide—Tauride platform. Two other ophiolite nappes were emplaced onto the Bitlis—Pötürge fragment and onto the northern margin of the Arabian platform respectively. This last event occurred as a result of the collision of the Bitlis—Pötürge fragment with Arabia. Shortly after this collision during the Campanian—Maastrichtian, a subduction zone began consuming the floor of the Inner Tauride ocean just to the north of the Bitlis—Pötürge fragment producing the arc lithologies of the Yüksekova complex. During the Maastrichtian—Middle Eocene interval a marginal basin complex, the Maden and the Çüngüş basins began opening above this subduction zone, disrupting the ophiolite-laden Bitlis—Pötürge fragment. The Anatolide-Tauride platform collided with the Pontide arc system (Rhodope—Pontide fragment plus the Sakarya continent that collided with the former during the latest Cretaceous along the Intra Pontide suture) during the early to late Eocene interval. This collision resulted in the large-scale south-vergent internal imbrication of the platform that produced the far travelled nappe systems of the Taurides, and buried beneath these, the metamorphic axis of Anatolia, the Anatolides. The Maden basin closed during the early late Eocene by north-dipping subduction, synthetic to the Inner-Tauride subduction zone that had switched from south-dipping subduction beneath the Bitlis—Pötürge fragment to north dipping subduction beneath the Anatolide—Tauride platform during the later Palaeocene. Finally, the terminal collision of Arabia with Eurasia in eastern Turkey eliminated the Çüngüş basin as well and created the present tectonic regime of Turkey by pushing a considerable piece of it eastwards along the two newly-generated transform faults, namely those of North and East Anatolia. Much of the present eastern Anatolia is underlain by an extensive mélange prism that accumulated during the late Cretaceous—late Eocene interval north and east of the Bitlis—Pötürge fragment.  相似文献   

7.
Geological domains in northeastern India evolved though time after the rupture of the Gondwanaland. Collision of the Indian and the Burmese plates took place during the middle part of Cretaceous. Evolution of the Paleogene Barail trough, Neogene Surma and Tipam Groups took place gradually. The Barail trough originated at the active margin of the Indo-Burmese plate convergence. Previously, the Barail sedimentary wedge was interpreted to have been deposited in a deltaic to shallow-marine environment. Latter studies have proposed a new depositional model. The Barail Group, a part of the Assam-Arakan Orogen comprises the lowermost Laisong Formation, middle Jenam and upper Rinji Formation. Most of the Paleogene strata of the Barail Group carry imprints of a deep-water submarine fan near an active subduction zone. A deep-water proximal- to mid-fan depositional setting has been ascribed to the lower Laisong strata. Facies analysis of the extensive exposures of the Jenam Formation, near the Jenamghat, Assam, have enabled a detailed reconstruction of a proximal to mid-part of a submarine fan under an overall influence of turbidity currents and debris flow, ultimately evolving into turbidity currents. The Jenam sedimentary wedge bears tell-tale preservation of olistostromes (chaotic facies) with abundant volcaniclastics and basic rock fragments, massive sandstones, conglomeratic sandstone to sandstone-siltstone-shale and sandstone-siltstone-mudstones with profuse turbidites. Facies attributes amply signal the inherent instability of the Barail trough owing to its location near an active subduction zone. The Jenam suite of rocks containing a strong impress of volcanogenic materials along with quartzo-feldspathic rocks were mixed up by turbidity currents and shed into the submarine environment as the Jenam deep-water turbidites.  相似文献   

8.
The Haymana basin in central Anatolia (Turkey) formed on a Late Cretaceous to Middle Eocene fore-arc accretionary wedge. A sequential model is proposed for the 1-km-thick Lutetian Yamak turbidite complex (YTC) which is the youngest paleotectonic unit of the basin. The YTC represents a prograding submarine fan subdivided into three depositional sequences (DS), each several hundred meters thick. Each depositional sequence consists of a turbidite system (TS), with sandstone and conglomeratic sandstone beds alternating with mudstones, overlain by basin plain mudstones. In each turbidite system, the sandstone and mudstone sequential organization allows the distinction of smaller subdivisions, namely, basic sequences (BS) and basic units (BU), with each basic sequence being composed of several basic units. This subdivision, associated with a two-dimensional geometric reconstruction of the YTC, leads to a better understanding of the evolution in time and space of the submarine fan system. Lower to middle fan depositional lobes, and upper fan and slope channels, are represented. As a whole, the YTC progressed from a sand-poor to a sand-rich system. Depositional sequences (DS) of the YTC may correspond to third-order sea-level cycles of tectonic origin. Accordingly, fourth- and fifth-order cycles might be proposed for the BS and BU, respectively. However, partly because of the limited extent of exposures, the allocyclic origin of these finer subdivisions remains problematic.  相似文献   

9.
In northern Euboea (Eastern Greece), Late Cretaceous platform carbonates of the Pelagonian Zone pass depositionally upwards into Maastrichtian hemipelagic limestones, possibly reflecting a rifting event in the adjacent Neotethys. This is followed by a c. 1 km-thick unit of siliciclastic turbidites, debris flows and detached limestone blocks. Thrust intercalations of ophiolitic rocks comprise altered pillow basalts and ultramafic rocks with ophicalcite. Calcite veins in sheared serpentinite contain planktonic foraminifera and the ophicalcite is directly overlain, with a depositional contact, by Globotruncana-bearing pelagic limestones and calciturbidites of Maastrichtian age. The ophiolitic rocks are interpreted as Late Cretaceous oceanic crust and mantle, that formed at a fracture zone, or rifted spreading axis within a Neotethyan, Vardar basin to the east. During the Early Tertiary (Palaeocene–Eocene), the Neotethyan basin began to close, with development of a subduction-accretion complex, mainly comprising sheared, trench-type sandstones, associated with ophiolitic slices. In response to trench/margin collision, the Pelagonian carbonate platform foundered and limestone debris flows and olistoliths were shed into a siliciclastic foreland basin. Suturing of the Neotethyan ocean basin then resulted in westwards thrusting of oceanic units over the foreland basin, thrusting of slices of inferred Late Cretaceous Pelagonian carbonate platform slope and large-scale recumbent folding.  相似文献   

10.
在对歧口凹陷古近系沙三二亚段的多种单因素沉积学信息——测井相、岩心相、砂分散体系、地震相和地震属性、生物相、矿物岩石学和有机地化与岩石(颜色)、构造、古地貌等分别进行了详细研究的基础上,系统地对多种单因素沉积学信息的空间分布规律和空间配置关系进行了综合分析,总结了沉积学的共性和特殊性规律,使多种单因素沉积学信息起到了相互佐证和互为补充的作用,从而有效地对研究区沉积体系类型、空间配置关系和物源进行了客观的分析和评价。研究认为,歧口凹陷沙三二亚段发育4种主要的沉积体系类型:扇三角洲沉积体系、辫状河三角洲沉积体系、水下扇沉积体系和湖泊沉积体系。其中,在断层活动性强、坡度较陡的地区发育扇三角洲;在坡度较缓的地区发育辫状河三角洲;断控盆地边缘深水区发育近岸水下扇,盆地内部次级断层则控制了远岸水下扇的发育。沉积体系的空间配置受5大主要物源控制:燕山物源、沧县物源、埕宁物源、孔店物源和沙垒田物源。本研究证明,这种"单因素精细取证,多因素综合分析"的方法在拥有丰富勘探资料的断陷盆地沉积体系研究中行之有效。  相似文献   

11.
Sedimentary Characteristics of the Cretaceous in the Songliao Basin   总被引:2,自引:0,他引:2  
The rupture of the lithosphere in Late Jurassic brought about the eruption of basaltic magma in the Songliao Basin. The evolution of the basin in Cretaceous progressed through six stages: pre-rift doming, extensional fracturing, fault subsidence, fault downwarping, downwarping and shringkage, resulting in the deposition of terrstrial facies nearly 10,000 m thick. There are different depositional sequences in these stages: the depositional period of the Early Cretaceous Shahezi and Yincheng Formations is the development stage of the down-faulted basin, forming a volcanic rock-alluvial fan-fan delta-lacustrine (intercalated with episodic turbidites)-swamp facies sequences; the period of the Early Cretaceous Dengluku Formation is the transformation stage of fault subsidence into fault downwarping of the basin, forming a sequence mainly of alluvial plain-lacustrine facies; the depositional period of the Early Cretaceous Quantou Formation-Late Cretaceous Nenjiang Formation is the downwarping stage of the basin, forming an alluvial plain-delta-lacustrine facies sequence; the period of the Late Cretaceous Sifangtai Formation-Mingshui Formation is the shringkage stage of the basin, forming again a sequence mainly of alluvial plain-alluvial fan and small relict lacustrine facies. These vertical depositional sequences fully display the sedimentary characteristics of a failed continental rift basin. Many facts indicate that the two large-scale lake invasions, synchronous with the global rise of sea level, which took place in the downwarping stage of the basin development, led to the connection between the lake and sea.  相似文献   

12.
野外露头剖面的岩石学与岩相组合,沉积特征与相标志,古流向测定,室内砂岩的骨架矿物、重矿物组合及其平面分布规律的研究结果表明:鄂尔多斯盆地西南部上三叠统延长组长8油层组是以线状或点状物源为特征的一套近源快速堆积的冲积扇与扇三角洲沉积体系,形成于盆地由快速拗陷转入逆冲负荷沉降期间。长8沉积期盆地西南部的古水流与物源主要来自盆地西南方向,其次为西北和东南方向。长6油层组沉积期,盆地内部底床下沉作用减缓,湖盆开始收缩,湖盆西岸除北部有少量扇三角洲沉积外,主要为辫状河三角洲沉积:而盆地东北部与东部的沉积作用大大加强,致使在盆地东部形成一系列大型曲流河三角洲沉积体系,至盆地西南部相变为半深湖-深湖相与浊流相沉积。长6沉积期古水流除来自西南、西北和东南方向外.还有来自北东和正东方向的次要物源,它们在盆地西南部悦乐-玄马-板桥-固城-合水-带汇合,使该地带成为混合物源区。  相似文献   

13.
野外露头剖面的岩石学与岩相组合,沉积特征与相标志,古流向测定,室内砂岩的骨架矿物、重矿物组合及其平面分布规律的研究结果表明:鄂尔多斯盆地西南部上三叠统延长组长8油层组是以线状或点状物源为特征的一套近源快速堆积的冲积扇与扇三角洲沉积体系,形成于盆地由快速拗陷转入逆冲负荷沉降期间。长8沉积期盆地西南部的古水流与物源主要来自盆地西南方向,其次为西北和东南方向。长6油层组沉积期,盆地内部底床下沉作用减缓,湖盆开始收缩,湖盆西岸除北部有少量扇三角洲沉积外,主要为辫状河三角洲沉积:而盆地东北部与东部的沉积作用大大加强,致使在盆地东部形成一系列大型曲流河三角洲沉积体系,至盆地西南部相变为半深湖-深湖相与浊流相沉积。长6沉积期古水流除来自西南、西北和东南方向外.还有来自北东和正东方向的次要物源,它们在盆地西南部悦乐-玄马-板桥-固城-合水-带汇合,使该地带成为混合物源区。  相似文献   

14.
The Salar de Atacama basin, the largest “pre-Andean” basin in Northern Chile, was formed in the early Late Cretaceous as a consequence of the tectonic closure and inversion of the Jurassic–Early Cretaceous Tarapacá back arc basin. Inversion led to uplift of the Cordillera de Domeyko (CD), a thick-skinned basement range bounded by a system of reverse faults and blind thrusts with alternating vergence along strike. The almost 6000-m-thick, upper Cretaceous to lower Paleocene sequences (Purilactis Group) infilling the Salar de Atacama basin reflects rapid local subsidence to the east of the CD. Its oldest outcropping unit (Tonel Formation) comprises more than 1000 m of continental red sandstones and evaporites, which began to accumulate as syntectonic growth strata during the initial stages of CD uplift. Tonel strata are capped by almost 3000 m of sandstones and conglomerates of western provenance, representing the sedimentary response to renewed pulses of tectonic shortening, which were deposited in alluvial fan, fluvial and eolian settings together with minor lacustrine mudstone (Purilactis Formation). These are covered by 500 m of coarse, proximal alluvial fan conglomerates (Barros Arana Formation). The top of the Purilactis Group consists of Maastrichtian-Danian alkaline lava and minor welded tuffs and red beds (Cerro Totola Formation: 70–64 Ma K/Ar) deposited during an interval of tectonic quiescence when the El Molino–Yacoraite Late Cretaceous sea covered large tracts of the nearby Altiplano-Puna domain. Limestones interbedded with the Totola volcanics indicate that this marine incursion advanced westwards to reach the eastern CD slope. CD shortening in the Late Cretaceous was accompanied by volcanism and continental sedimentation in fault bounded basins associated to strike slip along the north Chilean magmatic arc to the west of the CD domain, indicating that oblique plate convergence prevailed during the Late Cretaceous. Oblique convergence seems to have been resolved into a highly partitioned strain system where margin-parallel displacements along the thermally weakened arc coexisted with margin-orthogonal shortening associated with syntectonic sedimentation in the Salar de Atacama basin. A regionally important Early Paleocene compressional event is echoed, in the Salar de Atacama basin by a, distinctive, angular unconformity which separates Paleocene continental sediments from Purilactis Group strata. The basin also records the Eocene–Early Oligocene Incaic transpressional episode, which produced, renewed uplift in the Cordillera de Domeyko and triggered the accumulation of a thick blanket of syntectonic gravels (Loma Amarilla Formation).  相似文献   

15.
琼东南盆地宝岛地区层序地层和砂体展布特征分析   总被引:6,自引:1,他引:5  
以层序地层学理论为基础,通过对地震和测井层序进行分析,在琼东南盆地宝岛地区第三系识别出14个地震层序,并分析了各层序的发育特征.总结了不同体系域砂体类型,对各体系域砂体的空间展布进行了详细分析.并指出有利砂体的分布特征:低水位体系域,砂体主要分布在低水位楔、斜坡扇和盆底扇;高水位体系域,主要分布在三角洲、扇三角洲、海底扇和峡谷水道.研究表明,以层序地层学理论为指导,划分层序和体系域,进而对有利砂体进行预测,对该地区油气勘探有重要指导意义.   相似文献   

16.
ABSTRACT The Wagwater Trough is a fault-bounded basin which cuts across east-central Jamaica. The basin formed during the late Palaeocene or early Eocene and the earliest sediments deposited in the trough were the Wagwater and Richmond formations of the Wagwater Group. These formations are composed of up to 7000 m of conglomerates, sandstones, and shales. Six facies have been recognized in the Wagwater Group: Facies I-unfossiliferous massive conglomerates; Facies II—channelized, non-marine conglomerates, sandstones, and shales; Facies III-interbedded, fossiliferous conglomerates and sandstones; Facies IV—fossiliferous muddy conglomerates; Facies V—channelized, marine conglomerates, sandstones, and shales; and Facies VI—thin-bedded sheet sandstones and shales. The Wagwater and Richmond formations are interpreted as fan delta-submarine fan deposits. Facies associations suggest that humid-region fan deltas prograded into the basin from the adjacent highlands and discharged very coarse sediments on to a steep submarine slope. At the coast waves reworked the braided-fluvial deposits of the subaerial fan delta into coarse sand and gravel beaches. Sediments deposited on the delta-front slope were frequently remobilized and moved downslope as slumps, debris flows, and turbidity currents. At the slope-basin break submarine fans were deposited. The submarine fans are characterized by coarse inner and mid-fan deposits which grade laterally into thin bedded turbidites of the outer fan and basin floor.  相似文献   

17.
林畅松  杨起 《现代地质》1991,5(3):252-262,T001
位于鄂尔多斯西缘的贺兰构造带为一中元古代一古生代的奥拉槽。在区内的中寒武和中奥陶统中识别了一套巨厚的深水重力流沉积,其中包括下斜坡滑塌泥石流复合体、浊积扇以及碳酸盐岩斜坡扇裙等沉积类型。主要的相单元包括充填沟道或进入扇面形成的泥石流钙质角砾岩和砾岩、充填辫状水道的多层叠置的砂岩和砂砾岩、上叠扇的砂、泥岩互层以及浊积砂屑或含砾砂屑灰岩等。在中奥陶世该奥拉槽发展成一深水一半深水海槽,沿盆地西侧发育有浊积扇,而东侧仅有碳酸盐岩滑塌扇裙。它们可能是沿深水盆地两侧深大断裂产生的陡坡或水下断崖分布的,代表了早古生代贺兰奥拉槽在强烈沉陷期特定的深水盆地充填。  相似文献   

18.
根据对营尔凹陷下沟组岩心、测井和地震资料的分析,运用现代沉积学、层序地层学理论,将营尔凹陷下白垩统下沟组划分为4个三级层序。营尔凹陷下沟组主要发育辫状河三角洲、扇三角洲、近岸水下扇、远岸水下扇、滑溻浊积体、湖泊共6种沉积相类型,形成不同类型砂体。三角洲前缘亚相及远岸水下扇沉积相砂岩发育,砂岩物性较好,具备储集空间且储盖组合条件好,有利于油气成藏。三角洲平原亚相及近岸水下扇以粗碎屑沉积为主,砂泥分异差,储集物性差,难以形成油气藏。有利沉积相带空间展布与构造的配置关系决定了油气富集高产区的空间分布。  相似文献   

19.
鸡西、勃利盆地白垩纪砂岩的物源分析及构造意义   总被引:7,自引:0,他引:7       下载免费PDF全文
鸡西、勃利盆地白垩纪砂岩骨架矿物成分的模式分析显示:下白垩统城子河组和穆棱组砂岩的源区主要为切割型岛弧,结合古水流方向和砂岩地球化学特征研究,物源区主要为小兴安岭-张广才岭;上白垩统猴石沟组砂岩的源区主要为基底隆升和切割型岛弧。结合古水流方向和砾石的统计结果认为,鸡西、勃利盆地物源区主要为桦南隆起和密山隆起,以及小兴安岭-张广才岭。据白垩纪砂岩物源,晚白垩世砾岩成分,以及区域地质资料分析,下白垩统城子河组和穆棱组时期,鸡西盆地、勃利盆地和黑龙江东部各盆地为统一的原型盆地,早白垩世末期随着桦南隆起和密山隆起的隆升而破坏。并在晚白垩世早期已隆升,并为周缘盆地提供物源,形成现今黑龙江东北部地区的盆岭格局。  相似文献   

20.
准噶尔盆地南缘侏罗纪沉积相演化与盆地格局   总被引:28,自引:4,他引:24       下载免费PDF全文
通过对准噶尔盆地南缘侏罗系5条剖面的沉积特征对比,结合钻井资料和地震资料,确定了准噶尔盆地南缘侏罗纪盆地边界、沉积相演化及盆地格局。头屯河剖面和后峡剖面的沉积相对比及古流向测量表明二者在早、中侏罗世形成于同一沉积体系。在早、中侏罗世,沉积相逐渐从以辫状河-三角洲-湖泊相为主过渡到以河流相-湖泊相为主,沉积水体逐渐变浅;其中三工河组沉积时期盆地沉积范围达到最大,西山窑组沼泽相发育,车排子-莫索湾凸起自西山窑组沉积时期开始形成;早、中侏罗世的盆地边界至少位于后峡以南附近,此时不存在地理分割明显的天山山脉。晚侏罗世-早白垩世早期,沉积相从辫状河-滨浅湖相为主迅速演变为以辫状河-冲积扇相为主。在此期间盆地边界明显向北迁移,天山山脉明显隆升并造就天山南北沉积环境的巨大差异,博格达山构成盆地南缘的又一重要物源体系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号