首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
In this study, a two-stage fuzzy chance-constrained programming (TFCCP) approach is developed for water resources management under dual uncertainties. The concept of distribution with fuzzy probability (DFP) is presented as an extended form for expressing uncertainties. It is expressed as dual uncertainties with both stochastic and fuzzy characteristics. As an improvement upon the conventional inexact linear programming for handling uncertainties in the objective function and constraints, TFCCP has advantages in uncertainty reflection and policy analysis, especially when the input parameters are provided as fuzzy sets, probability distributions and DFPs. TFCCP integrates the two-stage stochastic programming (TSP) and fuzzy chance-constrained programming within a general optimization framework. TFCCP incorporates the pre-regulated water resources management policies directly into its optimization process to analyze various policy scenarios; each scenario has different economic penalty when the promised amounts are not delivered. TFCCP is applied to a water resources management system with three users. Solutions from TFCCP provide desired water allocation patterns, which maximize both the system’s benefits and feasibility. The results indicate that reasonable solutions were generated for objective function values and decision variables, thus a number of decision alternatives can be generated under different levels of stream flows, α-cut levels and fuzzy dominance indices.  相似文献   

2.
All realistic Multi Criteria Decision Making (MCDM) problems in water resources management face various kinds of uncertainty. In this study the evaluations of the alternatives with respect to the criteria will be assumed to be stochastic. Fuzzy linguistic quantifiers will be used to obtain the uncertain optimism degree of the Decision Maker (DM). A new approach for stochastic-fuzzy modeling of MCDM problems will be then introduced by merging the stochastic and fuzzy approaches into the Ordered Weighted Averaging (OWA) operator. The results of the new approach, entitled SFOWA, give the expected value and the variance of the combined goodness measure for each alternative, which are essential for robust decision making. In order to combine these two characteristics, a composite goodness measure will be defined. By using this measure the model will give more sensitive decisions to the stakeholders whose optimism degrees are different than that of the decision maker. The methodology will be illustrated by using a water resources management problem in the Central Tisza River in Hungary. Finally, SFOWA will be compared to other methods known from the literature to show its suitability for MCDM problems under uncertainty.  相似文献   

3.
Fuzzy process capability indices for quality control of irrigation water   总被引:1,自引:0,他引:1  
Water covers over 70% of the Earth surface and is a very important resource to people and the environment. Water pollution affects drinking water, rivers, lakes and oceans all over the world. This consequently harms human health and the natural environment. Water pollution can also affect the crops. So, water pollution is an important issue for humanity. Therefore, the control of irrigation water is a necessity. In this paper, a methodology based on process capability indices (PCIs) has been presented to control the levels of pH, dissolved oxygen (DO) and temperature (T) in dam’s water for irrigation. Fuzzy PCIs have been proposed for this aim. The fuzzy estimates of $ \hat C_p Water covers over 70% of the Earth surface and is a very important resource to people and the environment. Water pollution affects drinking water, rivers, lakes and oceans all over the world. This consequently harms human health and the natural environment. Water pollution can also affect the crops. So, water pollution is an important issue for humanity. Therefore, the control of irrigation water is a necessity. In this paper, a methodology based on process capability indices (PCIs) has been presented to control the levels of pH, dissolved oxygen (DO) and temperature (T) in dam’s water for irrigation. Fuzzy PCIs have been proposed for this aim. The fuzzy estimates of and are obtained for pH, DO, and T based on Buckley’s interval estimation approach and based on fuzzy specification limits. An application has been made for Kesikk?prü Dam in Ankara, Turkey. In this paper, Buckley’s approach is re-arranged to obtain a triangular fuzzy membership function because it cannot be obtained from Buckley’s approach in some situation.  相似文献   

4.
The present study aims to develop a hybrid multi‐model using the soft computing approach. The model is a combination of a fuzzy logic, artificial neural network (ANN) and genetic algorithm (GA). While neural networks are low‐level computational structures that perform well dealing with raw data, fuzzy logic deal with reasoning on a higher level by using linguistic information acquired from domain experts. However, fuzzy systems lack the ability to learn and cannot adjust themselves to a new environment. Moreover, experts occasionally make mistakes and thus some rules used in a system may be false. A network type structure of the present hybrid model is a multi‐layer feed‐forward network, the main part is a fuzzy system based on the first‐order Sugeno fuzzy model with a fuzzification and a defuzzification processes. The consequent parameters are determined by least square method. The back‐propagation is applied to adjust weights of network. Then, the antecedent parameters of the membership function are updated accordingly by the gradient descent method. The GA was applied to select the fuzzy rule. The hybrid multi‐model was used to forecast the flood level at Chiang Mai (under the big flood 2005) and the Koriyama flood (2003) in Japan. The forecasting results are evaluated using standard global goodness of fit statistic, efficient index (EI), the root mean square error (RMSE) and the peak flood error. Moreover, the results are compared to the results of a neuro‐genetic model (NGO) and ANFIS model using the same input and output variables. It was found that the hybrid multi‐model can be used successfully with an efficiency index (EI) more than 0·95 (for Chiang Mai flood up to 12 h ahead forecasting) and more than 0·90 (for Koriyama flood up to 8 h ahead forecasting). In general, all of three models can predict the water level with satisfactory results. However, the hybrid model gave the best flood peak estimation among the three models. Therefore, the use of fuzzy rule base, which is selected by GA in the hybrid multi‐model helps to improve the accuracy of flood peak. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
The concepts of system load and capacity are pivotal in risk analysis. The complexity in risk analysis increases when the input parameters are either stochastic (aleatory uncertainty) and/or missing (epistemic uncertainty). The aleatory and epistemic uncertainties related to input parameters are handled through simulation-based parametric and non-parametric probabilistic techniques. The complexities increase further when the empirical relationships are not strong enough to derive physical-based models. In this paper, ordered weighted averaging (OWA) operators are proposed to estimate the system load. The risk of failure is estimated by assuming normally distributed reliability index. The proposed methodology for risk analysis is illustrated using an example of nine-input parameters. Sensitivity analyses identified that the risk of failure is dominated by the attitude of a decision-maker to generate OWA weights, missing input parameters and system capacity.
Rehan Sadiq (Corresponding author)Email:
  相似文献   

6.
Fuzzy neural network models for liquefaction prediction   总被引:1,自引:0,他引:1  
Integrated fuzzy neural network models are developed for the assessment of liquefaction potential of a site. The models are trained with large databases of liquefaction case histories. A two-stage training algorithm is used to develop a fuzzy neural network model. In the preliminary training stage, the training case histories are used to determine initial network parameters. In the final training stage, the training case histories are processed one by one to develop membership functions for the network parameters. During the testing phase, input variables are described in linguistic terms such as ‘high’ and ‘low’. The prediction is made in terms of a liquefaction index representing the degree of liquefaction described in fuzzy terms such as ‘highly likely’, ‘likely’, or ‘unlikely’. The results from the model are compared with actual field observations and misclassified cases are identified. The models are found to have good predictive ability and are expected to be very useful for a preliminary evaluation of liquefaction potential of a site for which the input parameters are not well defined.  相似文献   

7.
This paper presents a novel intelligent fuzzy weighted input estimation method which effiviently and robustly estimates the unknown ground motion accelerations. The new input estimation method includes the Kalman Filter (KF) and the recursive least square estimator (RLSE), which is weighted by the fuzzy weighting factor proposed based on the fuzzy logic inference system. By directly synthesizing the Kalman filter with the estimator, this work presents an efficient robust forgetting zone, which is capable of providing a reasonable compromise between the tracking capability and the flexibility against noises. The excellent performace of this inverse method is demonstrated by solving the earthquake-excitation estimation problem, and the proposed algorithm is compared by alternating between the constant and adaptive weighting factors. The results reveal that this method has the properties of better target tracking capability and more effective noise reduction.  相似文献   

8.
This paper addresses the problem of spatial functional extrapolation in the framework of spatial autoregressive Hilbertian processes of order one (SARH(1) processes) introduced in Ruiz-Medina (J Muitivar Anal 102:292–305, 2011a). Moment-based estimators of the operators involved in the state equation of these processes are computed by projection into a suitable orthogonal basis. Specifically, the eigenfunction basis diagonalizing the autocovariance operator is considered. An estimation algorithm is designed for the implementation of the resulting SARH(1)-plug-in projection extrapolator from temporal curves irregularly distributed in space. Its performance is illustrated with a real-data example, where the problem of spatial functional extrapolation of ocean surface temperature profiles is addressed. This problem is crucial in the assessment of climate change anomalies. The data are collected from the public oceanographic bio-optical database: The World-wide Ocean Optics Database. Cross Validation (C.V.) procedures are applied for the evaluation of the estimation results derived.  相似文献   

9.
An extension of the Grey Fuzzy Waste Load Allocation Model (GFWLAM) developed in an earlier work is presented here to address the problem of multiple solutions. Formulation of GFWLAM is based on the approach for solving fuzzy multiple objective optimization problems with max–min as the operator, which usually may not result in a unique solution. The multiple solutions of fuzzy multiobjective optimization model should be obtained as parametric equations or equations that represent a subspace. A two-phase optimization technique, two-phase GFWLAM, is developed to capture all alternative or multiple solutions of GFWLAM. The optimization model in Phase 1 is exactly same as the optimization model described in GFWLAM. The optimization model in Phase 2 maximizes the upper bounds of fractional removal levels of pollutants and minimizes the lower bounds of fractional removal levels of pollutants keeping the value of goal fulfillment level same as obtained from Phase 1. The widths of the interval-valued fractional removal levels play an important role in decision-making as these can be adjusted within their intervals by the decision-maker considering technical and economic feasibility in the final decision scheme. Two-phase GFWLAM widens the widths of interval-valued removal levels of pollutants, thus enhancing the flexibility in decision-making. The methodology is demonstrated with a case study of the Tunga-Bhadra river system in India.  相似文献   

10.
Air pollution is one of the most important threats for the humanity. It can damage not only human health but also Earth’s ecosystem. Because of the harmful effects of air pollution, it should be controlled very carefully. To do the risk assessment of air pollution in Istanbul, the process capability indices (PCIs) which are very effective statistics to summarize the performance of process are used in this paper. Fuzzy PCIs are used to determine the levels of the air pollutants which are measured in different nine stations in Istanbul. Robust PCIs (RPCIs) are used when air pollutants have correlation. Fuzzy set theory has been applied for both PCIs and RPCIs to have more sensitive results. More flexible PCIs obtained by using fuzzy specification limits and fuzzy standard deviation are used to evaluate the air pollution’s level of Istanbul. Additionally some evaluation criteria have been constructed for fuzzy PCIs to interpret the air pollution.  相似文献   

11.
An approach is presented for identifying statistical characteristics of stratigraphies from borehole and hydraulic data. The approach employs a Markov-chain based geostatistical framework in a stochastic inversion. Borehole data provide information on the stratigraphy while pressure and flux data provide information on the hydraulic performance of the medium. The use of Markov-chain geostatistics as opposed to covariance-based geostatistics can provide a more easily interpreted model geologically and geometrically. The approach hinges on the use of mean facies lengths (negative inverse auto-transition rates) and mean transition lengths (inverse cross-transition rates) as adjustable parameters in the stochastic inversion. Along with an unconstrained Markov-chain model, simplifying constraints to the Markov-chain model, including (1) proportionally-random and (2) symmetric spatial correlations, are evaluated in the stochastic inversion. Sensitivity analyses indicate that the simplifying constraints can facilitate the inversion at the cost of spatial correlation model generality. Inverse analyses demonstrate the feasibility of this approach, indicating that despite some low parameter sensitivities, all adjustable parameters do converge for a sufficient number of ensemble realizations towards their “true” values. This paper extends the approach presented in Harp et al. (doi:, 2008) to (1) statistically characterize the hydraulic response of a geostatistical model, thereby incorporating an uncertainty analysis directly in the inverse method, (2) demonstrate that a gradient-based optimization strategy is sufficient, thereby providing relative computational efficiency compared to global optimization strategies, (3) demonstrate that the approach can be extended to a 3-D analysis, and (4) introduce the use of mean facies lengths and mean transition lengths as adjustable parameters in a geostatistical inversion, thereby allowing the approach to be extended to greater than two category Markov-chain models.  相似文献   

12.
A grey fuzzy optimization model is developed for water quality management of river system to address uncertainty involved in fixing the membership functions for different goals of Pollution Control Agency (PCA) and dischargers. The present model, Grey Fuzzy Waste Load Allocation Model (GFWLAM), has the capability to incorporate the conflicting goals of PCA and dischargers in a deterministic framework. The imprecision associated with specifying the water quality criteria and fractional removal levels are modeled in a fuzzy mathematical framework. To address the imprecision in fixing the lower and upper bounds of membership functions, the membership functions themselves are treated as fuzzy in the model and the membership parameters are expressed as interval grey numbers, a closed and bounded interval with known lower and upper bounds but unknown distribution information. The model provides flexibility for PCA and dischargers to specify their aspirations independently, as the membership parameters for different membership functions, specified for different imprecise goals are interval grey numbers in place of a deterministic real number. In the final solution optimal fractional removal levels of the pollutants are obtained in the form of interval grey numbers. This enhances the flexibility and applicability in decision-making, as the decision-maker gets a range of optimal solutions for fixing the final decision scheme considering technical and economic feasibility of the pollutant treatment levels. Application of the GFWLAM is illustrated with case study of the Tunga–Bhadra river system in India.  相似文献   

13.
Decision‐making in reservoir operation has become easy and understandable with the use of fuzzy logic models, which represent the knowledge in terms of interpretable linguistic rules. However, the improvement in interpretability with increase in number of fuzzy sets (‘low’, ‘high’, etc) comes with the disadvantage of increase in number of rules that are difficult to comprehend by decision makers. In this study, a clustering‐based novel approach is suggested to provide the operators with a limited number of most meaningful operating rules. A single triangular fuzzy set is adopted for different variables in each cluster, which are fine‐tuned with genetic algorithm (GA) to meet the desired objective. The results are compared with the multi fuzzy set fuzzy logic model through a case study in the Pilavakkal reservoir system in Tamilnadu State, India. The results obtained are highly encouraging with a smaller set of rules representing the actual fuzzy logic system. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
A fuzzy-Markov-chain-based analysis method for reservoir operation   总被引:3,自引:2,他引:1  
In this study, a fuzzy-Markov-chain-based stochastic dynamic programming (FM-SDP) method is developed for tackling uncertainties expressed as fuzzy sets and distributions with fuzzy probability (DFPs) in reservoir operation. The concept of DFPs used in Markov chain is presented as an extended form for expressing uncertainties including both stochastic and fuzzy characteristics. A fuzzy dominance index analysis approach is proposed for solving multiple fuzzy sets and DPFs in the proposed FM-SDP model. Solutions under a set of α-cut levels and fuzzy dominance indices can be generated by solving a series of deterministic submodels. The developed method is applied to a case study of a reservoir operation system. Solutions from FM-SDP provide a range of desired water-release policies under various system conditions for reservoir operation decision makers, reflecting dynamic and dual uncertain features of water availability simultaneously. The results indicate that the FM-SDP method could be applicable to practical problems for decision makers to obtain insight regarding the tradeoffs between economic and system reliability criteria. Willingness to obtain a lower benefit may guarantee meeting system-constraint demands; conversely, a desire to acquire a higher benefit could run into a higher risk of violating system constraints.  相似文献   

15.
湖泊富营养化评价模糊集理论与模式   总被引:7,自引:0,他引:7  
陈守煜  熊德琪 《湖泊科学》1993,5(2):144-152
根据湖泊(水库)营养化具有模糊性的特点。建立了湖泊(水库)富营养化评价的模糊集理论与模式,并首次提出富营养化指标综合权重矩阵概念及其确定方法。应用该模式对我国12个湖泊(水库)的富营养化程度进行了评价,结论与实际情况相符。为湖泊(水库)富营养化治理和保护提供了科学依据。上述理论与模型原则上亦可在其他环境评价领域中应用。  相似文献   

16.
Erosion due to waves is an important and actual problem for most coastal areas of the North Sea. The objective of this study was to estimate the impact of wave action on the coastline of Sylt Island. From a 2-year time series (November 1999 to October 2001) of hydrological and wave parameters generated with a coupled wave–current modelling system, a period comprising storm ‘Anatol’ (3–4 December 1999) is used to investigate the effects of waves on currents and water levels and the input of wave energy into the coastline. The wave-induced stress causes an increase of the current velocity of 1 m/s over sand and an additional drift along the coast of about 20 cm/s. This produces a water level increase of more than 20 cm in parts of the tidal basin. The model system also calculates the wave energy input into the coastline. Scenario runs for December 1999 with a water level increase of 50 cm and wind velocity increased by 10% show that the input of the wave energy into the west coast of Sylt Island increases by 30% compared to present conditions. With regard to the forecasted near-future (Woth et al., Ocean Dyn 56:3–15, 2006) increase of strong storm surges, the scenario results indicate an increased risk of coastal erosion in the surf zone of Sylt Island.  相似文献   

17.
This paper emphasizes the use of fuzzy sets for incorporating objective and subjective uncertainties to address coevolutionary alignment of a suite of water resources redistribution alternatives in a transboundary channel–reservoir system. The highlighted decision making complexity arises from the interactions between two neighboring water systems (i.e., the Tseng-Wen and Kao-Ping River Basins, South Taiwan) where a pending diversion plan has been under intensive debate for over a decade. While the local stakeholders make uncertain science linked with uncertain politics resulting in endless delay of the diversion plan, the environmental advocacy groups stress the increasing concern of loss of biological integrity due to changes of land use when sharing water resources across the boundary. Consequently, there is a need to generate a novel integration that enables us to consider a vast number of internal weirs, water intakes, reservoirs, drainage ditches, and transfer pipelines within the basin and bring out the connectivity via diversion between these two neighboring river basins under uncertainty. To explore the managerial implications with varying risk perception and risk attitude, four types of fuzzy operators tailored for the fuzzy multi-objective decision analysis depict greater flexibility in representing the complexity of possible trade-offs among those alternatives. These trade-offs in the multi-objective evaluation context are constrained by physical, chemical, socioeconomic, managerial, and technical factors reflecting the needs for adaptive water resources management. Findings indicates that the use of fuzzy operators is instructive, which could provide unique guidance for enlightening the potential barriers in sustainable water resources management at the regional scale.  相似文献   

18.
Three-dimensional attenuation structures are related to the subsurface heterogeneities present in the earth crust. An algorithm for estimation of three-dimensional attenuation structure in the part of Garhwal Himalaya, India has been presented by Joshi (Curr Sci 90:581–585, 2006b; Nat Hazards 43:129–146, 2007). In continuation of our earlier approach, we have presented a method in which strong motion data have been used to estimate frequency-dependent three-dimensional attenuation structure of the region. The border district of Pithoragarh in the Higher Himalaya, India, lies in the central seismic gap region of Himalaya. This region falls in the seismic zones IV and V of the seismic zoning map of India. A dense network consisting of eight accelerographs has been installed in this region. This network has recorded several local events. An algorithm based on inversion of strong motion digital data is developed in this paper to estimate attenuation structure at different frequencies using the data recorded by this network. Twenty strong motion records observed at five stations have been used to estimate the site amplification factors using inversion algorithm defined in this paper. Site effects obtained from inversion has been compared with that obtained using Nakamura (1988) and Lermo et al. (Bull Seis Soc Am 83:1574–1594, 1993) approach. The obtained site amplification term has been used for correcting spectral acceleration data at different stations. The corrected spectral acceleration data have been used as an input to the developed algorithm to avoid effect of near-site soil amplification term. The attenuation structure is estimated by dividing the entire area in several three-dimensional block of different frequency-dependent shear wave quality factor Q β (f). The input to this algorithm is the spectral acceleration of S phase of the corrected accelerogram. The outcome of the algorithm is given in terms of attenuation coefficient and source acceleration spectra. In the present study, this region has been divided into 25 rectangular blocks with thickness of 10 km and surface dimension of 12.5 × 12.1 km, respectively. Present study gives three-dimensional attenuation model of the region which can be used for both hazard estimation and simulation of strong ground motion.  相似文献   

19.
双平方根方程三维叠前深度偏移   总被引:10,自引:6,他引:10       下载免费PDF全文
从双平方根(DSR)形式的波动方程出发,基于沉降观测概念和地震波扰动理论,介绍了深度域的DSR全偏移算子及共成像道集的生成方法. 根据三维地震数据的方位角特征,通过对全偏移算子的稳相近似,依次导出了适应于零方位角道集、Cross line共偏移距道集以及共偏移距矢量道集的偏移算子. 理论分析与合成数据的数值试验表明,DSR全偏移算子、共方位角偏移算子对介质速度变化的适应性很强,而其余两种偏移算子仅适用于缓变速情况.  相似文献   

20.
This paper compares artificial neural network (ANN), fuzzy logic (FL) and linear transfer function (LTF)‐based approaches for daily rainfall‐runoff modelling. This study also investigates the potential of Takagi‐Sugeno (TS) fuzzy model and the impact of antecedent soil moisture conditions in the performance of the daily rainfall‐runoff models. Eleven different input vectors under four classes, i.e. (i) rainfall, (ii) rainfall and antecedent moisture content, (iii) rainfall and runoff and (iv) rainfall, runoff and antecedent moisture content are considered for examining the effects of input data vector on rainfall‐runoff modelling. Using the rainfall‐runoff data of the upper Narmada basin, Central India, a suitable modelling technique with appropriate model input structure is suggested on the basis of various model performance indices. The results show that the fuzzy modelling approach is uniformly outperforming the LTF and also always superior to the ANN‐based models. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号