首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 658 毫秒
1.
Peralkaline welded tuffs from the islands of Gran Canaria, Canary Islands, and Pantelleria, Italy, show abundant evidence for post-depositional flow. It is demonstrated that rheomorphism, or secondary mass flowage, can occur in welded tuffs of ignimbrite and air-fall origin. The presence of a linear fabric is taken as the diagnostic criterion for the recognition of the process. Deposition on a slope is an essential condition for the development of rheomorphism after compaction and welding. Internal structures produced during rheomorphic flow can be studied by the methods of structural geology and show similar dispositions to comparable features in sedimentary slump sheets. It is shown that secondary flowage can occur in welded tuffs emplaced on gentle slopes, provided that the apparent viscosity of the magma is sufficiently low. Compositional factors favor the development of rheomorphism in densely welded tuffs of peralkaline type.  相似文献   

2.
A type example of Vulcanian eruptive dynamics is the series of 88 explosions that occurred between August and October 1997 at Soufrière Hills volcano on Montserrat Island. These explosions are interpreted to be caused by the pressurization of a conduit by a shallow highly crystalline and degassed magma plug. We test such an interpretation by combining the pressures and porosities of the pre-explosive magma column proposed by Burgisser et al. (2010, doi:10.1016/j.jvolgeores.2010.04.008) into a physical model that reconstructs a depth-referenced density profile of the column for four mechanisms of pressure buildup. Each mechanism yields a different overpressure profile: 1) gas accumulation, 2) conduit wall elasticity, 3) microlite crystallization, and 4) magma flowage. For the first three mechanisms, the three-part vertical layering of the conduit prior to explosion was spatially distributed as a dense cap atop the conduit with a thickness of a few tens of meters, a transition zone of 400–700 m with heterogeneous vesicularities, and, at greater depth, a more homogeneous, low-porosity zone that brings the total column length to ~ 3.5 km. A shorter column can be obtained with mechanism 4: a dense cap of less than a few meters, a heterogeneous zone of 200–500 m, and a total column length as low as 2.5 km. Inflation/deflation cycles linked to a periodic overpressure source offer a dataset that we use to constrain the four overpressure mechanisms. Magma flowage is sufficient to cause periodic edifice deformation through semi-rigid conduit walls and build overpressures able to trigger explosions. Gas accumulation below a shallow plug is also able to build such overpressures and can occur regardless of magma flowage. The concurrence of these three mechanisms offers the highest likelihood of building overpressures leading to the 1997 explosion series. We also explore the consequences of sudden (eruptive) overpressure release on our magmatic columns to assess the role of syn-explosive vesiculation and pre-fragmentation column expansion. We find that large shallow overpressures and efficient syn-explosive vesiculation cause the most dramatic pre-fragmentation expansion. This leads us to depict two end-member pictures of a Vulcanian explosion. The first case corresponds to the widely accepted view that the downward motion of a fragmentation front controls column evacuation. In the second case, syn-explosive column expansion just after overpressure release brings foamed-up magma up towards an essentially stationary and shallow fragmentation front.  相似文献   

3.
The results of studies of the concentrations and the ratios between the forms of organic matter in Volga reservoirs are presented. The reservoirs under consideration have different morphometric characteristics. flowage, and trophic status. Total organic matter content varies from 7.1 to 11.8 g/m3 or from 39.1 to 70.8 g/m2 with the proportion of labile fraction of 4.4–15.2%. The primary production of plankton, the daily value of which accounts for 14–40% of labile organic matter, has a notable effect on its concentration and input. Organic matter pool in Volga reservoirs forms under the effect of the morphometric features of reservoirs, water exchange, and the drainage area. The total characteristics of organic matter in the Upper Volga reservoirs have not experienced significant changes over the 20-year period. However, data for 2005 show that the contribution of primary production to the total concentration of organic matter and its labile fraction have decreased due to a decline in the productivity of planktonic communities recorded in recent years.  相似文献   

4.
Processes generating block and ash flows by gravitational dome collapse (Merapi-type pyroclastic flow) were observed in detail during the 1990–1995 eruption of Unzen volcano, Japan. Two different types were identified by analysis of video records and observations during helicopter flights. Most of the block and ash flows erupted during the 1991–1993 exogenous dome growth stage initially involved crack propagation due to cooling and flowage of the dome lava lobes. The mass around the crack became unstable, locally decreasing in tensile strength. Finally, a slab separated from the lobe front, fragmented progressively from the base to the top within a few seconds, and became a block and ash flow. Rock falls immediately followed, in response to local instability of the lobe front. Clasts in these rock falls fragmented and merged with the preceding flow. In contrast, block and ash flows during the endogenous dome growth stage in 1994 were generated due to local bulge of the dome. Unstable lava blocks collapsed and subsequently fragmented to produce block and ash flows.  相似文献   

5.
After 16 months of quiescence, Mount Etna began to erupt again in mid-July 2006. The activity was concentrated at and around the Southeast Crater (SEC), one of the four craters on the summit of Etna, and eruptive activity continued intermittently for 5 months. During this period, numerous vents displayed a wide range of eruptive styles at different times. Virtually all explosive activities took place at vents at the summit of the SEC and on its flanks. Eruptive episodes, which lasted from 1 day to 2 weeks, became shorter and more violent with time. Volcanic activity at these vents was often accompanied by dramatic mass-wasting processes such as collapse of parts of the cone, highly unusual flowage processes involving both old rocks and fresh magmatic material, and magma–water interaction. The most dramatic events took place on 16 November, when numerous rockfalls and pyroclastic density currents (PDCs) were generated during the opening of a large fracture on the SE flank of the SEC cone. The largest PDCs were clearly triggered explosively, and there is evidence that much of the energy was generated during the interaction of intruding magma with wet rocks on the cone’s flanks. The most mobile PDCs traveled up to 1 km from their source. This previously unknown process on Etna may not be unique on this volcano and is likely to have taken place on other volcanoes. It represents a newly recognized hazard to those who visit and work in the vicinity of the summit of Etna.  相似文献   

6.
Schmincke andSwanson (1967) explained laminar flowage structures as indicators for flow direction of pyroclastic flows that show a radial flow pattern away from the source. Several other authors have reported similar examples, but the influence of pre-flow topographic relief has not been analyzed. Flow lineations were measured for the Ata pyroclastic flow deposit, southwestern Japan. This deposit has covered an undulating basement topography. Preferred orientation of crystals and lithic fragments were measured on thin sections cut parallel to sedimentary layering. The following three factors which control the flow lineation have been recognized. 1) Flow lineations oriented radially away from the source, as described by previous authors, were obtained only for samples collected from the surface of the pyroclastic flow plateau where the basement valleys were nearly filled by earlier flow units. 2) Lineations near the floor of narrow valleys were parallel to the strike of the valley. 3) Flow lineations near the wall of valleys tend to be parallel to the dip of the valley walls. These data suggest that the initial radial movement of pyroclastic flows from the source gradually changes direction to parallel the strike of deep valleys due to confining effect of valley wall. Flows which are trapped within a valley, tends to move towards the bottom of the valley just prior to the final settlement. After the basement topographic relief has been filled up with earlier flow units, the later flows maintain their original radial movement until final settlement.  相似文献   

7.
Kimberlite in certain dykes and in the deepest parts of some diatremes show textural and other features which contrast with those in the breccia diatremes. Some hypabyssal kimberlite intrusions show relatively high-temperature contact phenomena including baking of country-rock sediments and sedimentary xenoliths, and contrasting with the brecciated texture of most diatreme-facies kimberlites, in the hypabyssal kimberlites are numerous examples of preferred orientation of inequidimensional minerals (? trachytic flow texture), and rapid mineralogical gradients from the contact towards the dyke centres that may be attributable to flowage differentiation. In the Benfontein sill (Kimberley area) there is well-developed horizontal banding due to gravitational settling, and pseudo-sedimentary structures are also present. The accumulated evidence indicates that kimberlite existed as a relatively hot fluid up to depths of 2–3 km below the land-surface at the time of intrusion; above this level, gas release caused diatreme formation, brecciation and adiabatic cooling. These views are contrary to those of geologists who postulate eruption of kimberlite as a cold breccia directly from the mantle or deep within the crust, but accords with the views of many Russian geologsts who accept the existence of kimberlite magma, the extrusive equivalent of which is the ultrabasic lava meimechite.  相似文献   

8.
Examples are given of the application of bioestimation??a conceptually new hydrobiological method used to control the process of water quality formation. This paper is the continuation of the paper ??Bioestimation: A New Method for the Control of Water Self-Purification Process and Its Comparison with Bioindication??. The experience in the use of bioestimation in water bodies with different use type, size, salinity, flowage, and geographic position confirmed its universal character, information value, promptness, and the possibility to limit the volume of sample to be sent to 10?C20 cm3, thus simplifying the field works. Each significant factor, which affects the self-purification process, is identified independently, since the bioestimators reflecting it are biotically independent; their number varies depending only on changes in the environmental factors that are external with respect to the community of environmental factors. Bioestimation shows prognostic properties, since it makes it possible to prevent water quality deterioration and to restore the normal course of water self-purification at the stage of its quality formation. The use of bioestimation will extend the positive anthropogenic impact on water bodies.  相似文献   

9.
A longitudinal seismic reflection profile of the Reykjanes Ridge, together with earthquake seismicity patterns, is interpreted in terms of the mantle plume hypothesis. Between 52°N and 57°N Reykjanes Ridge is cut by about 12 fractures whose trend, inferred from other data, is approximately east-west. North of 57° there is little or no indication of east-west fracturing.The 57°N transition from fractured to unfractured basement occurs about 900 km southwest of the postulated Iceland mantle plume. The fractured province exhibits higher seismicity and rougher basement, on transverse profiles, than does the unfractured province. A similar transition to rougher, more seismic ridge crest also occurs 900 km northeast of Iceland. We propose that flowage of hot, basalt-rich asthenosphere away from the Iceland hot spot keeps the axial lithosphere hot, thin, sparsely fractured, and relatively aseismic out to 900 km from the plume. Similar effects are evident in the vicinity of some other plumes located near spreading axes. Some plumes also exhibit a greater number of earthquakes at some distance from the spreading axis — possibly a reflection of non-axial igneous activity or fracturing due to local, plume-generated stresses.The regional basement slope along the longitudinal profile is about 8 × 10?4. If this slope represents a balance between viscous and gravity forces in the flow, a viscosity of the order 1019 poises can be estimated from the Poiseuille equation.A peculiarly flat, opaque reflector was discovered near the Reykjanes axis, about 300 km southwest of Iceland. Several hypotheses are advanced to account for such reflectors by the exceptional volcanic activity associated with high plume discharge.  相似文献   

10.
Continuous, single-channel reflection profiling has been carried out in PVC-lined boreholes, primarily with the aim of ascertaining the position of an old subsurface gas storage tunnel on a proposed dam site. Tube wave reflection patterns thus generated have been interpreted in terms of sediment rigidity and shear wave velocity, and these results could be compared with some independent data. It is interesting to note that, within the well section penetrating Tertiary clays, the velocity of the hydraulic transients apparently was not affected by the PVC casing, which might be explained by a tight coupling between casing and clay wall. In such situations, tube waves turn out a straightforward tool for the determination of shear wave velocity and the derivation of dynamic elastic moduli of unconsolidated sediments. Further applications of the study of the distribution of seismic velocities on the dam site dealt with the consolidation history of the clays. A level of abnormally low P-wave velocities has been detected and interpreted as a gas-charged horizon which, by its coincidence with the base level of clay diapirs, might be considered to have contributed to clay flowage in past geological times. Data about maximum past burial depth, derived from shear wave velocities, turned out to be in agreement with results from consolidation testing.  相似文献   

11.
ComprehensiveanalysesofseismicsourcelayerinXingtaiandTangshanseismicregionsandtheconditionsofmediaaboveandbelowthisLayerTONG...  相似文献   

12.
Receiver function of body wave under the 23 stations in Yunnan was extracted from 3-component broadband digital recording of teleseismic event. Thus, the S-wave velocity structure and distribution characteristics of Poisson's ratio in crust of Yunnan are obtained by inversion. The results show that the crustal thickness is gradually thinned from north to south. The crustal thickness in Zhongdian of northwest reaches as many as 62.0 km and the one in Jinghong of further south end is only 30.2 km. What should be especially noted is that there exists a Moho upheaval running in NS in the Chuxiong region and a Moho concave is generally parallel to it in Dongchuan. In addition, there exists an obvious transversal inhomogeneity for the S-wave velocity structure in upper mantle and crust in the Yunnan region. The low velocity layer exists not only in 10.0-15.0 km in upper crust in some regions, but also in 30.0-40.0 km in lower crust. Generally, the Poisson's ratio is on the high side, however it has a better co  相似文献   

13.
1 Origin, process and method of the research Silt deposition created the fertile Dongting and Jianghan Plains of the middle Yangtze drainage, but has become a main cause of the deteriorating flooding along the middle Yangtze. The history of flood and waterlog of the Yangtze River in last century, esp. the disastrous 1998 flood, has proved that the key to the Yangtze flood control is its middle reach, especially the Jingjiang Segment. To study the silt deposition of the middle Yangtze and …  相似文献   

14.
Pyroclastic deposits interpreted as subaqueous ash-flow tuff have been recognized within Archean to Recent marine and lacustrine sequences. Several authors proposed a high-temperature emplacement for some of these tuffs. However, the subaqueous welding of pyroclastic deposits remains controversial.The Visean marine volcaniclastic formations of southern Vosges (France) contain several layers of rhyolitic and rhyodacitic ash-flow tuff. These deposits include, from proximal to distal settings, breccia, lapilli and fine-ash tuff. The breccia and lapilli tuff are partly welded, as indicated by the presence of fiamme, fluidal and axiolitic structures. The lapilli tuff form idealized sections with a lower, coarse and welded unit and an upper, bedded and unwelded fine-ash tuff. Sedimentary structures suggest that the fine-ash tuff units were deposited by turbidity currents. Welded breccias, interbedded in a thick submarine volcanic complex, indicate the close proximity of the volcanic source. The lapilli and fine-ash tuff are interbedded in a thick marine sequence composed of alternating sandstones and shales. Presence of a marine stenohaline fauna and sedimentary structures attest to a marine depositional environment below storm-wave base.In northern Anatolia, thick massive sequences of rhyodacitic crystal tuff are interbedded with the Upper Cretaceous marine turbidites of the Mudurnu basin. Some of these tuffs are welded. As in southern Vosges, partial welding is attested by the presence of fiamme and fluidal structures. The latter are frequent in the fresh vitric matrix. These tuff units contain a high proportion of vitroclasis, and were emplaced by ash flows. Welded tuff units are associated with non-welded crystal tuff, and contain abundant bioclasts which indicate mixing with water during flowage. At the base, basaltic breccia beds are associated with micritic beds containing a marine fauna. The welded and non-welded tuff sequences are interbedded in an alternation of limestones and marls. These limestones are rich in pelagic microfossils.The evidence above strongly suggest that in both examples, tuff beds are partly welded and were emplaced at high temperature by subaqueous ash flows in a permanent marine environment. The sources of the pyroclastic material are unknown in both cases. We propose that the ash flows were produced during submarine fissure eruptions. Such eruptions could produce non-turbulent flows which were insulated by a steam carapace before deposition and welding. The welded ash-flow tuff deposits of southern Vosges and northern Anatolia give strong evidence for existence of subaqueous welding.  相似文献   

15.
The historical records of Kilauea and Mauna Loa volcanoes reveal that the rough-surfaced variety of basalt lava called aa forms when lava flows at a high volumetric rate (>5–10 m3/s), and the smooth-surfaced variety called pahoehoe forms at a low volumetric rate (<5–10 m3/s). This relationship is well illustrated by the 1983–1990 and 1969–1974 eruptions of Kilauea and the recent eruptions of Mauna Loa. It is also illustrated by the eruptions that produced the remarkable paired flows of Mauna Loa, in which aa formed during an initial short period of high discharge rate (associated with high fountaining) and was followed by the eruption of pahoehoe over a sustained period at a low discharge rate (with little or no fountaining). The finest examples of paired lava flows are those of 1859 and 1880–1881. We attribute aa formation to rapid and concentrated flow in open channels. There, rapid heat loss causes an increase in viscosity to a threshold value (that varies depending on the actual flow velocity) at which, when surface crust is torn by differential flow, the underlying lava is unable to move sufficiently fast to heal the tear. We attribute pahoehoe formation to the flowage of lava at a low volumetric rate, commonly in tubes that minimize heat loss. Flow units of pahoehoe are small (usually <1 m thick), move slowly, develop a chilled skin, and become virtually static before the viscosity has risen, to the threshold value. We infer that the high-discharge-rate eruptions that generate aa flows result from the rapid emptying of major or subsidiary magma chambers. Rapid near-surface vesiculation of gas-rich magma leads to eruptions with high discharge rates, high lava fountains, and fast-moving channelized flows. We also infer that long periods of sustained flow at a low discharge rate, which favor pahoehoe, result from the development of a free and unimpeded pathway from the deep plumbing system of the volcano and the separation of gases from the magma before eruption. Achievement of this condition requires one or more episodes of rapid magma excursion through the rift zone to establish a stable magma pathway.  相似文献   

16.
Abstract The Permian ophiolite emplaced in the Yakuno area, Kyoto Prefecture, consists of metavolcanic sequences, metagabbro and a troctolitic intrusion. The metavolcanics are associated with thick mudstone through a contact that shows the flowage of lava over unconsolidated mud layers on the sea floor. The metavolcanics and metagabbro have rare earth element (REE) patterns that are similar to enriched (E)‐ and transitional (T)‐types ([La/Yb]N = 0.77–11.2) of mid‐oceanic ridge basalts (MORB), whereas their Nb/La ratios (0.40–1.20) are as low as those of back‐arc basin basalts (BABB). Cr‐spinels in the metavolcanic rocks have Cr? of 40–73 and an Fe3+? of 9–24, numbers which are comparable to the values of BABB. These lines of evidence suggest that the Yakuno ophiolite originated more likely from an early stage back‐arc basin rather than from an oceanic plateau, as has been suggested by some researchers. The troctolitic body that intrudes as a 0.5‐km long lens in the metagabbro is composed of troctolite, olivine gabbro and microgabbro. The troctolite is marked by an olivine–plagioclase crystallization sequence, different from the commonly observed olivine–clinopyroxene sequence in other mafic/ultramafic cumulates of the Yakuno ophiolite. The microgabbro, with a composition close to that of the parental magma of the troctolite, is depleted in light REE ([La/Yb]N = 0.18–0.55) so that it has an REE pattern that mimics normal (N)‐type MORB. The interstitial clinopyroxene of the troctolite has highly variable TiO2 contents (0.2–1.4 wt%), which is interpreted to result from postcumulus crystallization of heterogeneous intercumulus melts. The troctolitic intrusion may represent a late stage intrusion that formed in an off‐ridge environment during sea floor spreading of the back‐arc basin. The geochemical variation observed in the Yakuno ophiolite, ranging from N‐ to E‐MORB affinities, reflects the changes in both mantle source compositions and processes involved in magma generation during the evolution of the back‐arc basin.  相似文献   

17.
Granitic continental crust distinguishes the Earth from other planets in the Solar System. Consequently, for understanding terrestrial continent development, it is of great significance to investigate the formation and evolution of granite.Crystal fractionation is one of principal magma evolution mechanisms. Nevertheless, it is controversial whether crystal fractionation can effectively proceed in felsic magma systems because of the high viscosity and non-Newtonian behavior associated with granitic magmas. In this paper, we focus on the physical processes and evaluate the role of crystal fractionation in the evolution of granitic magmas during non-transport processes, i.e., in magma chambers and after emplacement. Based on physical calculations and analyses, we suggest that general mineral particles can settle only at tiny speed(~10~(-9)–10~(-7) m s~(-1))in a granitic magma body due to high viscosity of the magma; however, the cumulating can be interrupted with convection in magma chambers, and the components of magma chambers will tend to be homogeneous. Magma convection ceases once the magma chamber develops into a mush(crystallinity, F~40–50%). The interstitial melts can be extracted by hindered settling and compaction, accumulating gradually and forming a highly silicic melt layer. The high silica melts can further evolve into high-silica granite or high-silica rhyolite. At various crystallinities, multiple rejuvenation of the mush and the following magma intrusion may generate a granite complex with various components. While one special type of granites, represented by the South China lithium-and fluoride-rich granite, has lower viscosity and solidus relative to general granitic magmas, and may form vertical zonation in mineral-assemblage and composition through crystal fractionation. Similar fabrics in general intrusions that show various components on small lengthscales are not the result of gravitational settling. Rather, the flowage differentiation may play a key role. In general, granitic magma can undergo effective crystal fractionation; high-silica granite and volcanics with highly fractionated characteristics may be the products of crystal fractionation of felsic magmas, and many granitoids may be cumulates.  相似文献   

18.
Till deposition by glacier submarginal,incremental thickening   总被引:1,自引:0,他引:1  
Macro‐ and micro‐scale sedimentological analyses of recently deposited tills and complex push/squeeze moraines on the forelands of Icelandic glaciers and in a stacked till sequence at the former Younger Dryas margin of the Loch Lomond glacier lobe in Scotland are used to assess the depositional processes involved in glacier submarginal emplacement of sediment. Where subglacial meltwater is unable to flush out subglacial sediment or construct thick debris‐rich basal ice by cumulative freeze‐on processes, glacier submarginal processes are dictated by seasonal cycles of refreezing and melt‐out of tills advected from up‐ice by a combination of lodgement, deformation and ice keel and clast ploughing. Although individual till layers may display typical A and B horizon deformation characteristics, the spatially and temporally variable mosaic of subglacial processes will overprint sedimentary and structural signatures on till sequences to the extent that they would be almost impossible to classify genetically in the ancient sediment record. At the macro‐scale, Icelandic tills display moderately strong clast fabrics that conform to the ice flow directions documented by surface flutings; very strong fabrics typify unequivocally lodged clasts. Despite previous interpretations of these tills as subglacial deforming layers, micro‐morphological analysis reveals that shearing played only a partial role in the emplacement of till matrixes, and water escape and sediment flowage features are widespread. A model of submarginal incremental thickening is presented as an explanation of these data, involving till slab emplacement over several seasonal cycles. Each cycle involves: (1) late summer subglacial lodgement, bedrock and sediment plucking, subglacial deformation and ice keel ploughing; (2) early winter freeze‐on of subglacial sediment to the thin outer snout; (3) late winter readvance and failure along a decollement plane within the till, resulting in the carriage of till onto the proximal side of the previous year's push moraine; (4) early summer melt‐out of the till slab, initiating porewater migration, water escape and sediment flow and extrusion. Repeated reworking of the thin end of submarginal till wedges produces overprinted strain signatures and clast pavements. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
The 3-month long eruption of Asama volcano in 1783 produced andesitic pumice falls, pyroclastic flows, lava flows, and constructed a cone. It is divided into six episodes on the basis of waxing and waning inferred from records made during the eruption. Episodes 1 to 4 were intermittent Vulcanian or Plinian eruptions, which generated several pumice fall deposits. The frequency and intensity of the eruption increased dramatically in episode 5, which started on 2 August, and culminated in a final phase that began on the night of 4 August, lasting for 15 h. This climactic phase is further divided into two subphases. The first subphase is characterized by generation of a pumice fall, whereas the second one is characterized by abundant pyroclastic flows. Stratigraphic relationships suggest that rapid growth of a cone and the generation of lava flows occurred simultaneously with the generation of both pumice falls and pyroclastic flows. The volumes of the ejecta during the first and second subphases are 0.21 km3 (DRE) and 0.27 km3 (DRE), respectively. The proportions of the different eruptive products are lava: cone: pumice fall=84:11:5 in the first subphase and lava: cone: pyroclastic flow=42:2:56 in the second subphase. The lava flows in this eruption consist of three flow units (L1, L2, and L3) and they characteristically possess abundant broken phenocrysts, and show extensive "welding" texture. These features, as well as ghost pyroclastic textures on the surface, indicate that the lava was a fountain-fed clastogenic lava. A high discharge rate for the lava flow (up to 106 kg/s) may also suggest that the lava was initially explosively ejected from the conduit. The petrology of the juvenile materials indicates binary mixing of an andesitic magma and a crystal-rich dacitic magma. The mixing ratio changed with time; the dacitic component is dominant in the pyroclasts of the first subphase of the climactic phase, while the proportion of the andesitic component increases in the pyroclasts of the second subphase. The compositions of the lava flows vary from one flow unit to another; L1 and L3 have almost identical compositions to those of pyroclasts of the first and second subphases, respectively, while L2 has an intermediate composition, suggesting that the pyroclasts of the first and second subphases were the source of the lava flows, and were partly homogenized during flow. The complex features of this eruption can be explained by rapid deposition of coarse pyroclasts near the vent and the subsequent flowage of clastogenic lavas which were accompanied by a high eruption plume generating pumice falls and/or pyroclastic flows.Editorial responsibility: T. Druitt  相似文献   

20.
Wet surge deposits of different volcanic cycles of the recent Fossa activity at Vulcano have been measured on a bed-by-bed basis, with data recorded to millimeter detail. The wet surge layers are varicoloured with variable thickness, with the most recurrent thickness being about 1 cm. The beds consist of fine ash without internal structures. Textural features include: (a) accretionary lapilli, of maximum size of 0.5 cm, dispersed thoroughout the layer or forming continuous layers of submillimeter size; (b) vesiculated layers which represent 10% to 65% of the total deposit; vesicles have different shapes and smooth walls, varying in volume from 1% to 15–20%; (c) soft-sediment types of bedding deformation, such as gravity flowage ripples, load cast and slumps. The slope angle has not influenced either the concentration and size of the accretionary lapilli or the shape, size, and distribution of vesicles. Only the thickness of the layers decreases with distance from the vent.SEM investigations show features indicating the hydromagmatic origin of the deposits and stressing the role of the fluid phase. Noteworthy is the presence of vesiculated grains, produced by magmatic exsolution, which show chilling effects on the internal walls of the broken bubbles.Grain size analyses reveal that the layers are not graded and most of the samples have a median size finer than 50 μm. The grain size distributions are frequently polymodal, suggesting several closely timed explosions. As all the beds exhibit the same textures, grain size, and particle morphology a single mechanism can explain their deposition. The depositional unit formed at the base of the cloud through the lateral expansion on the ground of a sticky muddy medium consisting of ash and fluid. In general each layer lost its plasticity before the deposition of the next layer. The deposition occurred in a nearly continuous sequence without periods of rest long enough to permit erosional discontinuity.The eruptions are hydromagmatic and occur where magma, at least partially fragmented, comes into effective contact with subsurface water. The process follows a model suggested by Wohletz (1983b, 1986), developing in more than one fragmentation event. In the turbulent surge cloud both severe hydration and alteration of glassy grains and the formation of accretionary lapilli occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号