首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The morpho‐mechanical behaviour of one artificial granite joint with hammered surfaces, one artificial regularly undulated joint and one natural schist joint was studied. The hammered granite joints underwent 5 cycles of direct shear under 3 normal stress levels ranging between 0.3 and 4 MPa. The regularly undulated joint underwent 10 cycles of shear under 6 normal stress levels ranging between 0.5 and 5 MPa and the natural schist replicas underwent a monotonics shear under 5 normal stress levels ranging between 0.4 and 2.4 MPa. These direct shear tests were performed using a new computer‐controlled 3D‐shear apparatus. To characterize the morphology evolution of the sheared joints, a laser sensor profilometer was used to perform surface data measurements prior to and after each shear test. Based on a new characterization of joint surface roughness viewed as a combination of primary and secondary roughness and termed by the joint surface roughness, SRs, one parameter termed ‘joint surface degradation’, Dw, has been defined to quantify the degradation of the sheared joints. Examinations of SRs and Dw prior to and after shearing indicate that the hammered surfaces are more damaged than the two other surfaces. The peak strength of hammered joint with zero‐dilatancy, therefore, significantly differs from the classical formulation of dilatant joint strength. An attempt has been made to model the peak strength of hammered joint surfaces and dilatant joints with regard to their surface degradation in the course of shearing and two peak strength criteria are proposed. Input parameters are initial morphology and initial surface roughness. For the hammered surfaces, the degradation mechanism is dominant over the phenomenon of dilatancy, whereas for a dilatant joint both mechanisms are present. A comparison between the proposed models and the experimental results indicates a relatively good agreement. In particular, compared to the well‐known shear strength criteria of Ladanyi and Archambault or Saeb, these classical criteria significantly underestimate and overestimate the observed peak strength, respectively, under low and high normal stress levels. In addition and based on our experimental investigations, we put forward a model to predict the evolution of joint morphology and the degree of degradation during the course of shearing. Degradations of the artificial undulated joint and the natural schist joint enable us to verify the proposed model with a relatively good agreement. Finally, the model of Ladanyi and Archambault dealing with the proportion of total joint area sheared through asperities, as, once again, tends to underestimate the observed degradation. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

2.
Roughness and wear evolution of three different joint wall surfaces were characterized using surface roughness and surface wear parameters. Parameters were defined by considering the two components of morphology: waviness (“primary” roughness) and surface roughness (“secondary” roughness). Two surface roughness parameters are proposed: joint interface (or single wall) specific surface roughness coefficient SR s (0 ≤ SR s  ≤ 1) for quantifying the amount of “pure” roughness (or specific roughness), and degree of joint interface (or single wall) relative surface roughness DR r (0 ≤ DR r  ≤ 0.5). Two further parameters are also proposed in order to quantify the wear of wall surface: joint interface (or single wall) surface wear coefficient Λinterface, and the degree of joint interface (or single wall) surface wear D w(interface). The three test specimens were: man-made granite joints with hammered surfaces, man-made mortar joints with corrugated surfaces, and mortar joints prepared from natural rough and undulated schist joint replicas. Shearing under monotonic and cyclic shearing was performed using a computer-controlled bidirectional and biaxial shear apparatus. Joint surface data were measured using a noncontact laser sensor profilometer prior to and after each shear test. Calculation of specific surface roughness coefficient SR s , and degree of surface wear D w , indicated that the hammered joint interface with predominant interlocking wears much more (>90%) than the corrugated (27%) and the rough and undulated (23%) joint interfaces having localized interlocking points. The proposed method was also successfully linked to the classical wear theory.  相似文献   

3.
Havasan dam site is located in northwest of Iran. The planned concrete dam is to be built on Cretaceous limestone. Faulted and fractured limestone is exposed at the dam abutments and in the reservoir area. Rock mass properties including the deformation modulus and uniaxial compressive strength were calculated using different rock mass classification systems (RMR, Q, GSI and DMR). Laboratory tests indicate that joint filling materials contain clay with low to high plasticity (CL to CH) and low to medium potential swelling pressures. X-ray diffraction analysis confirms that the reason for potential swelling of joint fillings is the existence of clay minerals (such as illite and montmorillonite). The study results about the shear strength of clay-filled joints show that under JRC–JCS condition (laboratory scale), JRC n –JCS n (large scale) and normal stress equal to 0.25–4 MPa, the range of shear strength of clay-filled joints will be equal to 0.2–2.17 and 0.14–1.72 MPa. In some areas dissolution along the joints results in high permeability, especially in the right abutment. Three dominant joint sets occur in the exploration galleries which have been excavated in the right abutment. The maximum aperture of these joints varies from 7 to 9 cm, and the joints are typically filled with clay. Preliminary analysis shows that the presence of open joints which will cause seepage of water, combined with the impact of the clay-filled joints and forces acting on the slopes, could lead to slope failures and rock falls. In addition, the assessment of slope stability results in abutments using limited equilibrium method and Swedge software under dynamic and static conditions shows that two wedges formed on the slopes of the abutment by the natural joints are potentially unstable. The rock wedge on the left abutment is smaller but presents higher sliding potential. In addition, there is no probability of planar failure due to the geological condition of the dam abutments. This paper summarizes the site investigation and subsequent analysis, which resulted in a recommendation not to construct this site. We offer some potential mitigation plans to consider if a dam were to be built at this site.  相似文献   

4.
5.
In this article, the shear behavior of discontinuities caused by bedding planes of weakness between two different rock types with high strength difference is investigated. The effect of roughness and compressive strength of joint wall in such discontinuities are studied. The designed profiles consist of two regular and three irregular artificial joints molded by three types of plaster mortars with different uniaxial compressive strengths. Firstly, it is demonstrated that the shear behavior of discontinuities with different joint wall compressive strengths (JCS) is different from rock joints with identical wall compressive strengths by showing that Barton’s empirical criterion is not appropriate for the former discontinuities. After that, some correlation equations are proposed between the joint roughness coefficient (JRC) parameter and some surface statistical/fractal parameters, and the normal stress range of Barton’s strength criterion is also modified to be used for such discontinuities. Then, a new empirical criterion is proposed for these discontinuities in such a way that a rational function is used instead of JRC log10(JCS/σ n) as i 0(σ c/σ n)a/[b + (σ c/σ n) a ] by satisfying the peak dilation angle boundary conditions under zero and very high normal stress (physical infinite normal stress causing zero peak dilation angle). The proposed criterion has three surface parameters: i 0, a, and b. The reason for separation of i 0 from JRC is indicated and the method of its calculation is mentioned based on the literature. The two remaining coefficients (a and b) are discussed in detail and it is shown that a shows a power-law relationship with b, introducing the coefficient c through b = c a . Then, it is expressed that a is directly related to discontinuity surface topography. Finally, it is shown that the coefficient c has higher values in irregular profiles in comparison with regular profiles and is dominated by intensity of peak dilation angle reduction (majorly related to the surface irregularity and minorly related to roughness). The coefficient c is to be determined by performing regression analysis on experimental data.  相似文献   

6.
Underestimation of roughness in rough rock joints   总被引:1,自引:0,他引:1  
Numerous studies have been made to improve Barton's shear strength model for the quantification of rock joints. However, in these previous studies, the roughness and shear strength of the rock joint have been underestimated especially for relatively high undulated profiles (joint roughness coefficient (JRC) >14). The main factors of roughness underestimation in rough rock joints are investigated for the proper quantification of rock joint roughness. The aliasing effect and the roughness characteristics are analyzed by using artificial joint profiles and natural rock joint profiles. A 3D camera scanner is adopted to verify the main source of underestimation when using conventional measurement methods. Shear strength tests are carried out by using two types of shear apparatus to study the roughness mobilization characteristics, which may also affect the roughness underestimation. The results of joint roughness assessment, such as aliasing and undulation of waviness, show that the roughness can be underestimated in relatively rough joint profiles (JRC>14). At least two components of roughness parameters are needed to properly represent the joint roughness, for example, the amplitude and the inclination angle of joint asperity. Roughness mobilization is affected by both the normal stress and the asperity scale. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
Summary The northwest-striking Pfahl zone, Bavarian Forest, is a mylonitic shear zone that is associated with brittle-ductile deformation fabrics and a conspicuous hydrothermal quartz mineralization. Two granites from this shear zone yield U–Pb and Pb–Pb evaporation ages between 321–329 Ma and two granodiorites give concordant 238U–206Pb and 235U–207Pb ages of 325±3 Ma and 326±3 Ma, respectively. Zircon populations of the granitoids show sub-types clustering around S20, S10 (granite) and S22 to S24 (granodiorite) testifying different magma affinity. Compositional and isotopic characteristics indicate that the granites and granodiorites were coeval melts, but not differentiates of a single parent magma. The granodiorites were derived from a source with higher time-integrated 87Rb/86Sr and lower 147Sm/144Nd ratios than the granites. One granite body is transected by the shear zone but the main mass of the granite is largely undeformed. This finding suggests that granite intrusion predates the final stage of ductile deformation along the Pfahl shear zone.  相似文献   

8.
Summary The critical excavation depth of a jointed rock slope is an important problem in rock engineering. This paper studies the critical excavation depth for two idealized jointed rock slopes by employing a face-to-face discrete element method (DEM). The DEM is based on the discontinuity analysis which can consider anisotropic and discontinuous deformations due to joints and their orientations. It uses four lump-points at each surface of rock blocks to describe their interactions. The relationship between the critical excavation depth D s and the natural slope angle α, the joint inclination angle θ as well as the strength parameters of the joints c r r is analyzed, and the critical excavation depth obtained with this DEM and the limit equilibrium method (LEM) is compared. Furthermore, effects of joints on the failure modes are compared between DEM simulations and experimental observations. It is found that the DEM predicts a lower critical excavation depth than the LEM if the joint structures in the rock mass are not ignored.  相似文献   

9.
Summary Mineral chemistry and petrological data of chromites from chromitite bands in the N–S trending schist belt of Nuggihalli (southern Karnataka, India), belonging to the Dharwar craton of South India, are presented in this paper. Crystal chemical data indicate a komatiitic affinity of the chromitite. P–T calculations of the chromite-hosting peridotites yielded a pressure range of 13 to 28 kbar and temperatures ranging from 775 to 1080 °C; the oxygen fugacity (log fO2) varies from +0.5 to +1.6 above the QFM buffer. The P, T and fO2 data indicate that Nuggihalli chromitites crystallized in an environment akin to the upper mantle. The studied samples also show partial resetting; the lower temperatures ranging from 515 to 680 °C are ascribed to subsequent metamorphism of the area.  相似文献   

10.
Based on data from two runoff plots and ten stations in hilly loess region Dalihe drainage basin ranging in area from 0.0006 to 3983 km2 on the Loess Plateau, the relationship between mean annual specific sediment yield (Y s) and drainage area (A) is studied, which is different from those for many other drainage areas of the world, neither at the scale of whole basin nor at local scale on the Loess Plateau. With increasing drainage area, the mean annual specific sediment yield experiences two peak values: the first peak value appears at 0.00408 km2 in area corresponding to the whole slope surface, and the second peak value appears at 96.1 km2 in area. The non-linear variation in the Y sA can be explained as follows: the first peak value can be explained by the abrupt increase in slope gradient and flow shear stress resulting in highly increased sediment concentration and specific sediment yield. And the second peak value can be explained by the combined influence of flow shear stress and drainage density, represented by dimensionless variable Ω.  相似文献   

11.
Natural rock joint roughness quantification through fractal techniques   总被引:8,自引:0,他引:8  
Accurate quantification of roughness is important in modeling hydro-mechanical behavior of rock joints. A highly refined variogram technique was used to investigate possible existence of anisotropy in natural rock joint roughness. Investigated natural rock joints showed randomly varying roughness anisotropy with the direction. A scale dependant fractal parameter, K v, seems to play a prominent role than the fractal dimension, D r1d, with respect to quantification of roughness of natural rock joints. Because the roughness varies randomly, it is impossible to predict the roughness variation of rock joint surfaces from measurements made in only two perpendicular directions on a particular sample. The parameter D r1d × K v seems to capture the overall roughness characteristics of natural rock joints well. The one-dimensional modified divider technique was extended to two dimensions to quantify the two-dimensional roughness of rock joints. The developed technique was validated by applying to a generated fractional Brownian surface with fractal dimension equal to 2.5. It was found that the calculated fractal parameters quantify the rock joint roughness well. A new technique is introduced to study the effect of scale on two-dimensional roughness variability and anisotropy. The roughness anisotropy and variability reduced with increasing scale.  相似文献   

12.
Two-dimensional Hurst Index of Joint Surfaces   总被引:2,自引:1,他引:2  
  相似文献   

13.
The Jeori-Wangtu Gneissic Complex (JWGC) exposed as a tectonic window in the Lesser Himalayas represents one of the oldest Gneissic Complex of the Himalayas. Foliated granite and the metapelite constitute the dominant lithologies of the JWGC. The western margin of the JWGC is bounded by a brittle shear while in the east, the tectonic surface is a ductile shear zone.Kyanite schist, chloritoid schist, staurolite schist (St-1), garnet schist and staurolite schist (St-2) are present in a west to east sequence beginning from near to the Jhakhri thrust and up to the contact with the JWGC granite. Mica schist is intermittently present and is the dominant metapelite. Low to medium grade regional metamorphic conditions has been inferred for these rocks.Calc silicate enclaves within the JWGC granite preserve the contact metamorphic effects. These are reflected in development of narrow zones of disequilibrium assemblages of calcareous garnet (grs53), clinopyroxene, K feldspar, calcic plagioclase (An86), quartz, zoned sphene, zoned allanite, amphiboles, calcite and epidote.Recording of contact metamorphic assemblage of 1.80 Ga granite witin the enclave calc silicates and in the host metapelites over an earlier, relict low to medium grade assemblage indicates that the JWGC preserves palaeoproterozoic metamorphic imprints.  相似文献   

14.
The Betam gold deposit, located in the southern Eastern Desert of Egypt, is related to a series of milky quartz veins along a NNW-trending shear zone, cutting through pelitic metasedimentary rocks and small masses of pink granite. This shear zone, along with a system of discrete shear and fault zones, was developed late in the deformation history of the area. Although slightly sheared and boudinaged within the shear zone, the auriferous quartz veins are characterised by irregular walls with a steeply plunging ridge-in-groove lineation. Shear geometry of rootless intra-folial folds and asymmetrical strain shadows around the quartz lenses suggests that vein emplacement took place under a brittle–ductile shear regime, clearly post-dating the amphibolite-facies regional metamorphism. Hydrothermal alteration is pervasive in the wallrock metapelites and granite including sericitisation, silicification, sulphidisation and minor carbonatisation. Ore mineralogy includes pyrite, arsenopyrite and subordinate galena, chalcopyrite, pyrrhotite and gold. Gold occurs in the quartz veins and adjacent wallrocks as inclusions in pyrite and arsenopyrite, blebs and globules associated with galena, fracture fillings in deformed arsenopyrite or as thin, wire-like rims within or around rhythmic goethite. Presence of refractory gold in arsenopyrite and pyrite is inferred from microprobe analyses. Clustered and intra-granular trail-bound aqueous–carbonic (LCO2 + Laq ± VCO2) inclusions are common in cores of the less deformed quartz crystals, whereas carbonic (LCO2 ± VCO2) and aqueous H2O–NaCl (L + V) inclusions occur along inter-granular and trans-granular trails. Clathrate melting temperatures indicate low salinities of the fluid (3–8 wt.% NaCl eq.). Homogenisation temperatures of the aqueous–carbonic inclusions range between 297 and 323°C, slightly higher than those of the intra-granular and inter-granular aqueous inclusions (263–304°C), which are likely formed during grain boundary migration. Homogenisation temperatures of the trans-granular H2O–NaCl inclusions are much lower (130–221°C), implying different fluids late in the shear zone formation. Fluid densities calculated from aqueous–carbonic inclusions along a single trail are between 0.88 and 0.98 g/cm3, and the resulting isochores suggest trapping pressures of 2–2.6 kbar. Based on the arsenopyrite–pyrite–pyrrhotite cotectic, arsenopyrite (30.4–30.7 wt.% As) associated with gold inclusions indicates a temperature range of 325–344°C. This ore paragenesis constrains f S2 to the range of 10−10 to 10−8.5 bar. Under such conditions, gold was likely transported mainly as bisulphide complexes by low salinity aqueous–carbonic fluids and precipitated because of variations in pH and f O2 through pressure fluctuation and CO2 effervescence as the ore fluids infiltrated the shear zone, along with precipitation of carbonate and sericite. Wallrock sulphidation also likely contributed to destabilising the gold–bisulphide complexes and precipitating gold in the hydrothermal alteration zone adjacent to the mineralised quartz veins.  相似文献   

15.
Cretaceous melange of the Cordillera de la Costa belt, north–centralVenezuela, there are knockers of eclogite, barroisite-bearingeclogite, and pelitic glaucophane schist. These occur in a metamorphicmelange matrix that locally consists of marble, serpentinite,amphibolite, actinolite schist, feldspathic schist and gneiss,graphitic schist, chloritoid schist, and garnet-bearing micaschist. The protoliths for these various rock types exhibita wide age range (Cambrian to Early Cretaceous?). Recently discoveredknockers of pelitic glaucophane schist contain Mg-glaucophane+ paragonite + kyanite + garnet + talc + graphite + rutile +quartz. The coexistence of kyanite and Mg-glaucophane suggestsminimum P 2000 MPa at T > 600°C. Eclogite knockers fromthe same outcrop contain garnet and clinopyroxene which yield500°C for cores, 700°C for rims, and P 1200 MPa. Theassemblage garnet–biotite–phengite–albitewithin schists of the melange matrix of this locality indicatesmetamorphic conditions of T = 450–520°C at P = 1800MPa. Because all lithologies in this outcrop record high-P conditions,this metamorphic melange formed before or during peak metamorphismin a mid-Cretaceous subduction zone. KEY WORDS: geothermobarometry; high-P pelitic schist; eclogite; Puerto Cabello; Venezuela  相似文献   

16.
17.
一种新的岩石节理面三维粗糙度分形描述方法   总被引:1,自引:0,他引:1  
孙辅庭  佘成学  蒋庆仁 《岩土力学》2013,34(8):2238-2242
研究并提出一种新的岩石节理面三维粗糙度分形描述方法。首先,基于激光扫描数据将节理表面离散成三角网,并建立与剪切方向相关的三维均方根抵抗角的计算方法。其次,运用分形数学理论,提出一种新的基于三维均方根抵抗角的节理面粗糙度分形描述方法。最后,采用新方法对天然玄武岩节理和花岗岩张拉型节理的粗糙特性进行分析。研究结果表明,提出的新方法能够较全面地反映节理面的三维几何形貌信息,并能描述节理粗糙度的各向异性特性。研究成果为进一步建立岩石节理面的三维剪切强度公式和剪切本构理论奠定了基础。  相似文献   

18.
Summary. A series of laboratory tests was performed on cemented shotcrete-rock joints to investigate the strength and stiffness of the interfaces, while simulating field conditions as close as possible. The direct shear test formed the core of the experimental work, while the tension and compression tests were complementary. To simulate loading conditions experienced in practical cases the direct shear tests were performed under fairly low normal stresses. In most practical cases when shotcrete is used with rock bolts, the normal load on shotcrete lining seldom exceeds 0.2 to 0.5 MPa. The direct shear test results show that, for such normal load range the shear strength is determined by the bond strength for genuinely bonded shotcrete-rock interfaces. For higher normal stresses (σn > 1.0 MPa), which rarely exist at the shotcrete-rock interface, the shear strength is largely influenced by friction resulting in the cohesive strength being less significant. Assessment of the shear surface revealed that the steel fibres in the shotcrete appeared to contribute significantly to the frictional component. The shear and normal stiffnesses of the interface were also determined, which were in principal the stiffnesses of the bond. An interesting observation was the complex interaction at the interface and the mechanisms that controlled the peak shear strength which depended on the surface roughness, the existence of natural flaws and the normal load.  相似文献   

19.
The results of field, petrographic and geochemical work of the granitoids of Hutti-Gurgunta area in the northern part of Eastern Dharwar Craton (EDC) is presented in this paper. This crustal section comprises polyphase banded to foliated TTG gneisses, middle amphibolite facies Gurgunta schist belt and upper greenschist facies Hutti schist belt and abundant granite plutons. The focus of the present study is mainly on basement TTG gneisses and a granite pluton (∼ 240 sq km areal extent), to discuss crustal accretion processes including changing petrogenetic mechanism and geodynamic setting. The TTGs contain quartz, plagioclase, lesser K-feldspar and hornblende with minor biotite while the granite contain quartz, plagioclase, K-feldspar and hornblende. Late stage alteration (chloritisation, sericitisation and epidotisation) is wide spread in the entire area. A huge synplutonic mafic body which is dioritic to meladioritic in composition injects the granite and displays all stages of progressive mixing and hybridization. The studied TTGs and granite show distinct major and trace element patterns. The TTGs are characterized by higher SiO2, high Al2O3, and Na2O, low TiO2, Mg#, CaO, K2O and LILE, and HFS elements compared to granite. TTGs define strong trondhjemite trend whilst granite shows calc-alkaline trend. However, both TTGs and granite show characteristics of Phanerozoic high-silica adakites. The granite also shows characteristics of transitional TTGs in its high LILE, and progressive increase in K2O with differentiation. Both TTGs and granite define linear to sub-linear trends on variation diagrams. The TTGs show moderate total REE contents with fractionated REE patterns (La/YbN =17.73–61.73) and slight positive or without any significant Eu anomaly implying little amount of amphibole or plagioclase in residual liquid. On the other hand, the granite displays poor to moderate fractionation of REE patterns (La/YbN = 9.06–67.21) without any significant Eu anomaly. The TTGs have been interpreted to be produced by low-K basaltic slab melting at shallow depth, whereas the granite pluton has been formed by slab melting at depth and these melts interacted with peridotite mantle wedge. Such changing petrogenetic mechanisms and geodynamic conditions explain increase in the contents of MgO, CaO, Ni and Cr from 2700 Ma to 2500 Ma granitoids in the EDC.  相似文献   

20.
A new constitutive model to describe the shear behavior of rock joints under constant normal stiffness (CNS) and constant normal load (CNL) conditions is proposed. The model was developed using an empirical approach based on the results of a total of 362 direct shear tests on tensile fractured rock joints and replicas of tensile joints and on a new quantitative roughness parameter. This parameter, the active roughness coefficient C r, is derived from the features of the effective roughness mobilized at the contact areas during shearing. The model involves a shear strength criterion and the relations between stresses and displacements in the normal and shear directions, where the effects of the boundary conditions and joint properties are considered by the shape indices C d and C f. The model can be used to predict the shear behavior under CNS as well as CNL conditions. The shear behavior obtained from the experimental results is generally in good agreement with that estimated by the proposed model, and the effects of joint roughness, initial normal stress, and normal stiffness are reasonably reflected in the model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号